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Multistep Methods
Classical & Structure Preserving
Only the big picture

Many statements  few proofs (in books)

Today
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Many statements, few proofs (in books)
Tried to hit “interesting” parts

High-order Variational Integrators
Different interpretations

Multistep Methods

Idea: Use several previous values
As opposed to “one-step” methods

Simplest: Linear Multistep Methods
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Explicit When?

We’ve seen these before

Adams Methods
Explicit: Adams-Bashforth

, others 0
S l  f  β’  i  d  1 l i l
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Solve for β’s using degree s-1 polynomial
Polynomial matches derivatives, then 
integrate

Implicit: Adams-Moulton
not 0, so use degree s polynomial

Backward Differentiation

“BDF” – good for stiff systems
Implicit
Interpolate y(t) using backward 
diff
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differences
Differentiate and evaluate at 
Set this equal to

Ex:

Handwave Analysis

Generating/Characteristic Polynomials
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Stable if ρ(z) has roots
And all roots on unit circle are simple
Strictly stable if 1 only for



Symmetric Multistep Methods

No Surprise:
and

Implies 
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Stable+Symmetric:
All zeros simple and on unit circle

These can behave nicely (not always)

2nd Order Differential Equation

Same idea
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Stable - similar
Can have double zeros on unit circle

Symmetry: same story

How well do they work?

3 different 4th-order methods
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All good at start A: Strictly Stable
B&C: Symmetric!

C: No Double Zeros (except z=1)
B: Exponential Error Growth (Dahlquist 1956)

Lambert & Watson 
1976

“Stabilized” Version

Split ρ to remove double zeros

Define
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So we get

Use this idea for partitioned methods…

Partitioned Multistep Methods

Same idea:      for y,       for v 
No common roots other than 1
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Symplecticity?

Nope* (at least for linear ones)
Based on “underlying one-step method”
At least not in the standard sense
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“G-symplecticity” (see book)
Doesn’t guarantee anything (by itself)

Still possible to get good behavior
Analysis gets deeper (Chapter XV)
Battle between structure and sensitivity



Higher-Order Var. Integrators 

See thesis by Matt West for more
Discrete Lagrangian of order r

Approximates action integral
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Can show this gives order r integrator

Just need a way to build Lagrangians…

Composition Approach

We’ve seen composition before
Can use it to increase order of schemes

Works for discrete Lagrangians too

B k  t  i t  lti l  t

CS101 – Numerical Geometric Integration

14

Break a step into multiple steps:

Different discrete Lagrangian for each

Composition Approach

Do variations wrt all points

for                     , and
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,

since
Symplectic since it’s a composition of 
symplectic substeps

Equivalent Interpretations

Substeps:
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Single Step:

What if this wasn’t 
from composition?

Galerkin Approach

Choose a space for the sub-interval
Locally extremize action in that space
E.g. polynomial interpolation
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Parameterize
Lagrange polynomial

basis functions

Solved for simultaneously


