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I Essential issues
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Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.
I We summarize all unknown parameters as θ. This is what

we’re trying to learn.
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Generalized Linear Models

I Distribution function (multivariate gaussian).
I Linear predictor, θ.
I Link function (exponential).



Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).
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I Main idea: maximize conditional mutual information:

I I(θ; rt+1|xt+1, xt , rt) = H(θ|xt , rt)−H(θ|xt+1, rt+1).
I This ends up being equivalent to minimizing the conditional

entropy H(θ|xt+1, rt+1).
I End up with equation for covariance in terms of Fisher

information, Jobs.
I We are able to solve for optimal stimulus using the

Lagrange method for constrained optimization
I Thus, we have a system of equations in the Lagrange

multiplier, and we can simply line search over it.
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Deriving the optimal stimulus

I Complexity?

I Rank-one matrix update and line search to compute µt and
Ct .O(d2).

I Eigendecomposition of Ct . O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...
I ...but because of our Gaussian approximation of θ, we can

obtain Ct from Ct−1 with a rank-one modification...
I ...and there are eigendecomposition algorithms that can

take advantage of this.
I This provides an average case runtime of O(d2) for the

data considered, though the complexity is still O(d3) in the
worst case.
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I Spike history terms

I Adds a linear term to a quadratic minimization problem for
maximizing entropy.

I Systematic trends in θ.
I Just add a random variable N(0,Ct + Q) for known Q.
I θt+1 = θt + ωt .
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