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Emphasis on dimensional scalability (vision)
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Challenges

» Typically high dimension
» Model complexity - memory
» Stimulus complexity - visual bitmap
» Bayesian approach expensive
» Estimation
» Integration
» Multivariate optimization
» Limited firing capacity of a neuron (exhaustion)
» Essential issues

» Update a posteriori beliefs quickly given new data
» Find optimal stimulus quickly
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» The response r; to stimulus x; is dependent on x; itself, as
well as the history of stimuli and responses for a constant
sliding window.

» This is needed to measure exhaustion, depletion, etc.

A= E(r) = (0 ki + 22 ajnj,
j

» Filter coefficients k;;_, represent dependence on the input
itself.

» a; models dependence on observed recent activity.

» We summarize all unknown parameters as 6. This is what
we're trying to learn.



Generalized Linear Models

» Distribution function (multivariate gaussian).
» Linear predictor, 6.
» Link function (exponential).
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» Ideally, this runs in real time.
» Approximate the posterior as Gaussian
» The posterior is the product of two smooth, log-concave

terms.
» (The GLM likelihood function and the Gaussian prior)

» Laplace approximation to construct a Gaussian
approximation of the posterior.
» Set u; to the peak of the posterior.
» Set covariance matrix C; to negative inverse of Hessian of
log posterior at y;.
» Compute directly?
» Complexity is O(td? + d®)
» O(td?) for product of t likelihood terms.
» O(d®) for inverting the Hessian
» Approximate p(6;_1|x;—1, ri—1) as Gaussian
» Now we can use Bayes’ rule to find the posterior in one
dimension. O(d?).
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» Main idea: maximize conditional mutual information:

> 1(0; revalXewr, Xe, 1) = H(O|Xt, 1) — H(O|Xer1, Meat)-

» This ends up being equivalent to minimizing the conditional
entropy H(0[Xi+1, It+1)-

» End up with equation for covariance in terms of Fisher
information, Jyps.

» We are able to solve for optimal stimulus using the
Lagrange method for constrained optimization

» Thus, we have a system of equations in the Lagrange
multiplier, and we can simply line search over it.
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Deriving the optimal stimulus

v

Complexity?
» Rank-one matrix update and line search to compute ¢ and
C:.O(d?).
» Eigendecomposition of C;. O(ad®)
» Line search over Lagrange multiplier to compute optimal
stimulus. O(d?)

O(d®) for the eigendecomposition isn’t great...

...but because of our Gaussian approximation of 4, we can
obtain C; from C;_1 with a rank-one modification...

...and there are eigendecomposition algorithms that can
take advantage of this.

This provides an average case runtime of O(d?) for the
data considered, though the complexity is still O(d?) in the
worst case.
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Results

» Simple, memoryless, visual cell
» 25x33 bitmaps.
» Results on average much better, and never worse, than
random.
» Memoryful neuron (simple sine wave)
» Outperformed random sampling for estimating spike history
and stimulus coefficients.
» Non-systematic time drift
» Analogous to eye fatigue/exhaustion.
» Outperformed random sampling for estimating spike history
and stimulus coefficients.
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Conclusion

» Approximations based on GLMs allow dramatically faster
algorithm.

» At worst, O(n®). on average, O(n?).

» Fast enough to run in real time even for high-dimensional
problems.
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