Real-time adaptive information-theoretic optimization of neurophysiology experiments

Presented by Alex Roper

March 5, 2009

Goals

- ▶ How do neurons react to stimuli?
- ▶ What is a neuron's preferred stimulus?

Goals

- How do neurons react to stimuli?
- What is a neuron's preferred stimulus?
- Minimize number of trials.
- Speed must run in real time.

Goals

- How do neurons react to stimuli?
- What is a neuron's preferred stimulus?
- Minimize number of trials.
- Speed must run in real time.
- ► Emphasis on dimensional scalability (vision)

- Typically high dimension
 - Model complexity memory
 - Stimulus complexity visual bitmap

- Typically high dimension
 - Model complexity memory
 - Stimulus complexity visual bitmap
- Bayesian approach expensive
 - Estimation
 - Integration
 - Multivariate optimization

- Typically high dimension
 - Model complexity memory
 - Stimulus complexity visual bitmap
- Bayesian approach expensive
 - Estimation
 - Integration
 - Multivariate optimization
- ► Limited firing capacity of a neuron (exhaustion)

- Typically high dimension
 - Model complexity memory
 - Stimulus complexity visual bitmap
- Bayesian approach expensive
 - Estimation
 - Integration
 - Multivariate optimization
- Limited firing capacity of a neuron (exhaustion)
- Essential issues
 - Update a posteriori beliefs quickly given new data
 - Find optimal stimulus quickly

$$p(r_t | \{x_t, x_{t-1}, ..., x_{t-t_k}\}, \{r_{t-1}, ..., r_{t-t_k}\})$$

$$p(r_t|\{x_t,x_{t-1},...,x_{t-t_k}\},\{r_{t-1},...,r_{t-t_k}\})$$

▶ The response r_t to stimulus x_t is dependent on x_t itself, as well as the history of stimuli and responses for a constant sliding window.

$$p(r_t|\{x_t,x_{t-1},...,x_{t-t_k}\},\{r_{t-1},...,r_{t-t_k}\})$$

- ▶ The response r_t to stimulus x_t is dependent on x_t itself, as well as the history of stimuli and responses for a constant sliding window.
- ▶ This is needed to measure exhaustion, depletion, etc.

$$p(r_t|\{x_t,x_{t-1},...,x_{t-t_k}\},\{r_{t-1},...,r_{t-t_k}\})$$

- ► The response r_t to stimulus x_t is dependent on x_t itself, as well as the history of stimuli and responses for a constant sliding window.
- This is needed to measure exhaustion, depletion, etc.

$$\lambda_t = E(r_t) = f\left(\sum_i \sum_{l=1}^{t_k} t_k k_{i,t-l} + \sum_{j=1}^{t_a} a_j r_{t-j},\right)$$

$$p(r_t|\{x_t,x_{t-1},...,x_{t-t_k}\},\{r_{t-1},...,r_{t-t_k}\})$$

- ► The response r_t to stimulus x_t is dependent on x_t itself, as well as the history of stimuli and responses for a constant sliding window.
- This is needed to measure exhaustion, depletion, etc.

$$\lambda_t = E(r_t) = f\left(\sum_i \sum_{l=1}^{t_k} t_k k_{i,t-l} + \sum_{j=1}^{t_a} a_j r_{t-j},\right)$$

▶ Filter coefficients $k_{i,t-l}$ represent dependence on the input itself.

$$p(r_t|\{x_t,x_{t-1},...,x_{t-t_k}\},\{r_{t-1},...,r_{t-t_k}\})$$

- ► The response r_t to stimulus x_t is dependent on x_t itself, as well as the history of stimuli and responses for a constant sliding window.
- This is needed to measure exhaustion, depletion, etc.

$$\lambda_t = E(r_t) = f\left(\sum_i \sum_{l=1}^{t_k} t_k k_{i,t-l} + \sum_{j=1}^{t_a} a_j r_{t-j},\right)$$

- ▶ Filter coefficients $k_{i,t-l}$ represent dependence on the input itself.
- ► a_i models dependence on observed recent activity.

$$p(r_t|\{x_t,x_{t-1},...,x_{t-t_k}\},\{r_{t-1},...,r_{t-t_k}\})$$

- ► The response r_t to stimulus x_t is dependent on x_t itself, as well as the history of stimuli and responses for a constant sliding window.
- This is needed to measure exhaustion, depletion, etc.

$$\lambda_t = E(r_t) = f\left(\sum_i \sum_{l=1}^{t_i} t_k k_{i,t-l} + \sum_{j=1}^{t_a} a_j r_{t-j}\right)$$

- Filter coefficients k_{i,t-l} represent dependence on the input itself.
- a_i models dependence on observed recent activity.
- ▶ We summarize all unknown parameters as θ . This is what we're trying to learn.

Generalized Linear Models

- Distribution function (multivariate gaussian).
- Linear predictor, θ .
- Link function (exponential).

- ldeally, this runs in real time.
- Approximate the posterior as Gaussian

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)
- Laplace approximation to construct a Gaussian approximation of the posterior.

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)
- Laplace approximation to construct a Gaussian approximation of the posterior.
 - Set μ_t to the peak of the posterior.
 - Set covariance matrix C_t to negative inverse of Hessian of log posterior at μ_t .

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)
- Laplace approximation to construct a Gaussian approximation of the posterior.
 - Set μ_t to the peak of the posterior.
 - Set covariance matrix C_t to negative inverse of Hessian of log posterior at μ_t.
 - ▶ Compute directly?

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)
- Laplace approximation to construct a Gaussian approximation of the posterior.
 - Set μ_t to the peak of the posterior.
 - Set covariance matrix C_t to negative inverse of Hessian of log posterior at μ_t.
 - Compute directly?
 - Complexity is $O(td^2 + d^3)$

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)
- Laplace approximation to construct a Gaussian approximation of the posterior.
 - Set μ_t to the peak of the posterior.
 - Set covariance matrix C_t to negative inverse of Hessian of log posterior at μ_t.
 - Compute directly?
 - Complexity is $O(td^2 + d^3)$
 - O(td²) for product of t likelihood terms.
 - $ightharpoonup O(d^3)$ for inverting the Hessian
 - ▶ Approximate $p(\theta_{t-1}|x_{t-1},r_{t-1})$ as Gaussian

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)
- Laplace approximation to construct a Gaussian approximation of the posterior.
 - Set μ_t to the peak of the posterior.
 - Set covariance matrix C_t to negative inverse of Hessian of log posterior at μ_t.
 - Compute directly?
 - Complexity is $O(td^2 + d^3)$
 - O(td²) for product of t likelihood terms.
 - $ightharpoonup O(d^3)$ for inverting the Hessian
 - ▶ Approximate $p(\theta_{t-1}|x_{t-1},r_{t-1})$ as Gaussian
 - Now we can use Bayes' rule to find the posterior in one dimension.

- Ideally, this runs in real time.
- Approximate the posterior as Gaussian
 - The posterior is the product of two smooth, log-concave terms.
 - (The GLM likelihood function and the Gaussian prior)
- Laplace approximation to construct a Gaussian approximation of the posterior.
 - Set μ_t to the peak of the posterior.
 - Set covariance matrix C_t to negative inverse of Hessian of log posterior at μ_t.
 - Compute directly?
 - Complexity is $O(td^2 + d^3)$
 - O(td²) for product of t likelihood terms.
 - $ightharpoonup O(d^3)$ for inverting the Hessian
 - ▶ Approximate $p(\theta_{t-1}|x_{t-1},r_{t-1})$ as Gaussian
 - Now we can use Bayes' rule to find the posterior in one dimension. $O(d^2)$.

▶ Main idea: maximize conditional mutual information:

- Main idea: maximize conditional mutual information:
- $I(\theta; r_{t+1}|x_{t+1}, x_t, r_t) = \mathcal{H}(\theta|x_t, r_t) \mathcal{H}(\theta|x_{t+1}, r_{t+1}).$

- Main idea: maximize conditional mutual information:
- $I(\theta; r_{t+1}|x_{t+1}, x_t, r_t) = \mathcal{H}(\theta|x_t, r_t) \mathcal{H}(\theta|x_{t+1}, r_{t+1}).$
- ► This ends up being equivalent to minimizing the conditional entropy $\mathcal{H}(\theta|x_{t+1},r_{t+1})$.

- Main idea: maximize conditional mutual information:
- $I(\theta; r_{t+1}|x_{t+1}, x_t, r_t) = \mathcal{H}(\theta|x_t, r_t) \mathcal{H}(\theta|x_{t+1}, r_{t+1}).$
- ► This ends up being equivalent to minimizing the conditional entropy $\mathcal{H}(\theta|x_{t+1},r_{t+1})$.
- End up with equation for covariance in terms of Fisher information, J_{obs}.

- Main idea: maximize conditional mutual information:
- $I(\theta; r_{t+1}|x_{t+1}, x_t, r_t) = \mathcal{H}(\theta|x_t, r_t) \mathcal{H}(\theta|x_{t+1}, r_{t+1}).$
- ► This ends up being equivalent to minimizing the conditional entropy $\mathcal{H}(\theta|x_{t+1},r_{t+1})$.
- End up with equation for covariance in terms of Fisher information, J_{obs}.
- We are able to solve for optimal stimulus using the Lagrange method for constrained optimization

- Main idea: maximize conditional mutual information:
- $I(\theta; r_{t+1}|x_{t+1}, x_t, r_t) = \mathcal{H}(\theta|x_t, r_t) \mathcal{H}(\theta|x_{t+1}, r_{t+1}).$
- ► This ends up being equivalent to minimizing the conditional entropy $\mathcal{H}(\theta|x_{t+1},r_{t+1})$.
- End up with equation for covariance in terms of Fisher information, J_{obs}.
- We are able to solve for optimal stimulus using the Lagrange method for constrained optimization
- ► Thus, we have a system of equations in the Lagrange multiplier, and we can simply line search over it.

▶ Complexity?

- ▶ Complexity?
 - ▶ Rank-one matrix update and line search to compute μ_t and C_t .

- ▶ Complexity?
 - ▶ Rank-one matrix update and line search to compute μ_t and $C_t.O(d^2)$.
 - ▶ Eigendecomposition of C_t .

- Complexity?
 - ▶ Rank-one matrix update and line search to compute μ_t and $C_t.O(d^2)$.
 - ▶ Eigendecomposition of C_t . $O(d^3)$
 - ▶ Line search over Lagrange multiplier to compute optimal stimulus. O(d²)
- $ightharpoonup O(d^3)$ for the eigendecomposition isn't great...

- Complexity?
 - ▶ Rank-one matrix update and line search to compute μ_t and $C_t.O(d^2)$.
 - ▶ Eigendecomposition of C_t . $O(d^3)$
 - ▶ Line search over Lagrange multiplier to compute optimal stimulus. O(d²)
- $ightharpoonup O(d^3)$ for the eigendecomposition isn't great...
- ▶ ...but because of our Gaussian approximation of θ , we can obtain C_t from C_{t-1} with a rank-one modification...

Deriving the optimal stimulus

- Complexity?
 - ▶ Rank-one matrix update and line search to compute μ_t and $C_t.O(d^2)$.
 - ▶ Eigendecomposition of C_t . $O(d^3)$
 - ▶ Line search over Lagrange multiplier to compute optimal stimulus. O(d²)
- ▶ $O(d^3)$ for the eigendecomposition isn't great...
- ▶ ...but because of our Gaussian approximation of θ , we can obtain C_t from C_{t-1} with a rank-one modification...
- ...and there are eigendecomposition algorithms that can take advantage of this.

Deriving the optimal stimulus

- Complexity?
 - ▶ Rank-one matrix update and line search to compute μ_t and $C_t.O(d^2)$.
 - ▶ Eigendecomposition of C_t . $O(d^3)$
 - ▶ Line search over Lagrange multiplier to compute optimal stimulus. O(d²)
- ▶ $O(d^3)$ for the eigendecomposition isn't great...
- ▶ ...but because of our Gaussian approximation of θ , we can obtain C_t from C_{t-1} with a rank-one modification...
- ...and there are eigendecomposition algorithms that can take advantage of this.
- ▶ This provides an average case runtime of $O(d^2)$ for the data considered, though the complexity is still $O(d^3)$ in the worst case.

Spike history terms

- Spike history terms
 - Adds a linear term to a quadratic minimization problem for maximizing entropy.

- Spike history terms
 - Adds a linear term to a quadratic minimization problem for maximizing entropy.
- ▶ Systematic trends in θ .

- Spike history terms
 - Adds a linear term to a quadratic minimization problem for maximizing entropy.
- Systematic trends in θ .
 - ▶ Just add a random variable $N(0, C_t + Q)$ for known Q.

- Spike history terms
 - Adds a linear term to a quadratic minimization problem for maximizing entropy.
- Systematic trends in θ .
 - ▶ Just add a random variable $N(0, C_t + Q)$ for known Q.
 - $\bullet \ \theta_{t+1} = \theta_t + \omega_t.$

- Spike history terms
 - Adds a linear term to a quadratic minimization problem for maximizing entropy.
- Systematic trends in θ .
 - ▶ Just add a random variable $N(0, C_t + Q)$ for known Q.
 - $\bullet \ \theta_{t+1} = \theta_t + \omega_t.$

Results

- Simple, memoryless, visual cell
 - ▶ 25x33 bitmaps.
 - Results on average much better, and never worse, than random.

Results

- Simple, memoryless, visual cell
 - 25x33 bitmaps.
 - Results on average much better, and never worse, than random.
- Memoryful neuron (simple sine wave)
 - Outperformed random sampling for estimating spike history and stimulus coefficients.

Results

- Simple, memoryless, visual cell
 - 25x33 bitmaps.
 - Results on average much better, and never worse, than random.
- Memoryful neuron (simple sine wave)
 - Outperformed random sampling for estimating spike history and stimulus coefficients.
- Non-systematic time drift
 - Analogous to eye fatigue/exhaustion.
 - Outperformed random sampling for estimating spike history and stimulus coefficients.

Conclusion

Approximations based on GLMs allow dramatically faster algorithm.

Conclusion

- Approximations based on GLMs allow dramatically faster algorithm.
- ▶ At worst, $O(n^3)$. on average, $O(n^2)$.

Conclusion

- Approximations based on GLMs allow dramatically faster algorithm.
- ▶ At worst, $O(n^3)$. on average, $O(n^2)$.
- Fast enough to run in real time even for high-dimensional problems.