
Real-time adaptive information-theoretic
optimization of neurophysiology experiments

Presented by
Alex Roper

March 5, 2009

Goals

I How do neurons react to stimuli?
I What is a neuron’s preferred stimulus?

I Minimize number of trials.
I Speed - must run in real time.
I Emphasis on dimensional scalability (vision)

Goals

I How do neurons react to stimuli?
I What is a neuron’s preferred stimulus?
I Minimize number of trials.
I Speed - must run in real time.

I Emphasis on dimensional scalability (vision)

Goals

I How do neurons react to stimuli?
I What is a neuron’s preferred stimulus?
I Minimize number of trials.
I Speed - must run in real time.
I Emphasis on dimensional scalability (vision)

Challenges

I Typically high dimension
I Model complexity - memory
I Stimulus complexity - visual bitmap

I Bayesian approach expensive
I Estimation
I Integration
I Multivariate optimization

I Limited firing capacity of a neuron (exhaustion)
I Essential issues

I Update a posteriori beliefs quickly given new data
I Find optimal stimulus quickly

Challenges

I Typically high dimension
I Model complexity - memory
I Stimulus complexity - visual bitmap

I Bayesian approach expensive
I Estimation
I Integration
I Multivariate optimization

I Limited firing capacity of a neuron (exhaustion)
I Essential issues

I Update a posteriori beliefs quickly given new data
I Find optimal stimulus quickly

Challenges

I Typically high dimension
I Model complexity - memory
I Stimulus complexity - visual bitmap

I Bayesian approach expensive
I Estimation
I Integration
I Multivariate optimization

I Limited firing capacity of a neuron (exhaustion)

I Essential issues
I Update a posteriori beliefs quickly given new data
I Find optimal stimulus quickly

Challenges

I Typically high dimension
I Model complexity - memory
I Stimulus complexity - visual bitmap

I Bayesian approach expensive
I Estimation
I Integration
I Multivariate optimization

I Limited firing capacity of a neuron (exhaustion)
I Essential issues

I Update a posteriori beliefs quickly given new data
I Find optimal stimulus quickly

Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.
I We summarize all unknown parameters as θ. This is what

we’re trying to learn.

Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.
I We summarize all unknown parameters as θ. This is what

we’re trying to learn.

Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.
I We summarize all unknown parameters as θ. This is what

we’re trying to learn.

Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.
I We summarize all unknown parameters as θ. This is what

we’re trying to learn.

Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.
I We summarize all unknown parameters as θ. This is what

we’re trying to learn.

Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.

I We summarize all unknown parameters as θ. This is what
we’re trying to learn.

Neuron Model

p(rt |{xt , xt−1, ..., xt−tk}, {rt−1, ..., rt−tk})

I The response rt to stimulus xt is dependent on xt itself, as
well as the history of stimuli and responses for a constant
sliding window.

I This is needed to measure exhaustion, depletion, etc.

λt = E(rt) = f
(∑

i
∑

l=1 tkki,t−l +
∑ta

j=1 aj rt−j ,
)

I Filter coefficients ki,t−l represent dependence on the input
itself.

I aj models dependence on observed recent activity.
I We summarize all unknown parameters as θ. This is what

we’re trying to learn.

Generalized Linear Models

I Distribution function (multivariate gaussian).
I Linear predictor, θ.
I Link function (exponential).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)

I Laplace approximation to construct a Gaussian
approximation of the posterior.

I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.

I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .

I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?

I Complexity is O(td2 + d3)
I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian

I Now we can use Bayes’ rule to find the posterior in one
dimension. O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension.

O(d2).

Updating the Posterior

I Ideally, this runs in real time.
I Approximate the posterior as Gaussian

I The posterior is the product of two smooth, log-concave
terms.

I (The GLM likelihood function and the Gaussian prior)
I Laplace approximation to construct a Gaussian

approximation of the posterior.
I Set µt to the peak of the posterior.
I Set covariance matrix Ct to negative inverse of Hessian of

log posterior at µt .
I Compute directly?
I Complexity is O(td2 + d3)

I O(td2) for product of t likelihood terms.
I O(d3) for inverting the Hessian

I Approximate p(θt−1|xt−1, rt−1) as Gaussian
I Now we can use Bayes’ rule to find the posterior in one

dimension. O(d2).

Deriving the optimal stimulus

I Main idea: maximize conditional mutual information:

I I(θ; rt+1|xt+1, xt , rt) = H(θ|xt , rt)−H(θ|xt+1, rt+1).
I This ends up being equivalent to minimizing the conditional

entropy H(θ|xt+1, rt+1).
I End up with equation for covariance in terms of Fisher

information, Jobs.
I We are able to solve for optimal stimulus using the

Lagrange method for constrained optimization
I Thus, we have a system of equations in the Lagrange

multiplier, and we can simply line search over it.

Deriving the optimal stimulus

I Main idea: maximize conditional mutual information:
I I(θ; rt+1|xt+1, xt , rt) = H(θ|xt , rt)−H(θ|xt+1, rt+1).

I This ends up being equivalent to minimizing the conditional
entropy H(θ|xt+1, rt+1).

I End up with equation for covariance in terms of Fisher
information, Jobs.

I We are able to solve for optimal stimulus using the
Lagrange method for constrained optimization

I Thus, we have a system of equations in the Lagrange
multiplier, and we can simply line search over it.

Deriving the optimal stimulus

I Main idea: maximize conditional mutual information:
I I(θ; rt+1|xt+1, xt , rt) = H(θ|xt , rt)−H(θ|xt+1, rt+1).
I This ends up being equivalent to minimizing the conditional

entropy H(θ|xt+1, rt+1).

I End up with equation for covariance in terms of Fisher
information, Jobs.

I We are able to solve for optimal stimulus using the
Lagrange method for constrained optimization

I Thus, we have a system of equations in the Lagrange
multiplier, and we can simply line search over it.

Deriving the optimal stimulus

I Main idea: maximize conditional mutual information:
I I(θ; rt+1|xt+1, xt , rt) = H(θ|xt , rt)−H(θ|xt+1, rt+1).
I This ends up being equivalent to minimizing the conditional

entropy H(θ|xt+1, rt+1).
I End up with equation for covariance in terms of Fisher

information, Jobs.

I We are able to solve for optimal stimulus using the
Lagrange method for constrained optimization

I Thus, we have a system of equations in the Lagrange
multiplier, and we can simply line search over it.

Deriving the optimal stimulus

I Main idea: maximize conditional mutual information:
I I(θ; rt+1|xt+1, xt , rt) = H(θ|xt , rt)−H(θ|xt+1, rt+1).
I This ends up being equivalent to minimizing the conditional

entropy H(θ|xt+1, rt+1).
I End up with equation for covariance in terms of Fisher

information, Jobs.
I We are able to solve for optimal stimulus using the

Lagrange method for constrained optimization

I Thus, we have a system of equations in the Lagrange
multiplier, and we can simply line search over it.

Deriving the optimal stimulus

I Main idea: maximize conditional mutual information:
I I(θ; rt+1|xt+1, xt , rt) = H(θ|xt , rt)−H(θ|xt+1, rt+1).
I This ends up being equivalent to minimizing the conditional

entropy H(θ|xt+1, rt+1).
I End up with equation for covariance in terms of Fisher

information, Jobs.
I We are able to solve for optimal stimulus using the

Lagrange method for constrained optimization
I Thus, we have a system of equations in the Lagrange

multiplier, and we can simply line search over it.

Deriving the optimal stimulus

I Complexity?

I Rank-one matrix update and line search to compute µt and
Ct .O(d2).

I Eigendecomposition of Ct . O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...
I ...but because of our Gaussian approximation of θ, we can

obtain Ct from Ct−1 with a rank-one modification...
I ...and there are eigendecomposition algorithms that can

take advantage of this.
I This provides an average case runtime of O(d2) for the

data considered, though the complexity is still O(d3) in the
worst case.

Deriving the optimal stimulus

I Complexity?
I Rank-one matrix update and line search to compute µt and

Ct .

O(d2).
I Eigendecomposition of Ct . O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...
I ...but because of our Gaussian approximation of θ, we can

obtain Ct from Ct−1 with a rank-one modification...
I ...and there are eigendecomposition algorithms that can

take advantage of this.
I This provides an average case runtime of O(d2) for the

data considered, though the complexity is still O(d3) in the
worst case.

Deriving the optimal stimulus

I Complexity?
I Rank-one matrix update and line search to compute µt and

Ct .O(d2).
I Eigendecomposition of Ct .

O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...
I ...but because of our Gaussian approximation of θ, we can

obtain Ct from Ct−1 with a rank-one modification...
I ...and there are eigendecomposition algorithms that can

take advantage of this.
I This provides an average case runtime of O(d2) for the

data considered, though the complexity is still O(d3) in the
worst case.

Deriving the optimal stimulus

I Complexity?
I Rank-one matrix update and line search to compute µt and

Ct .O(d2).
I Eigendecomposition of Ct . O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...

I ...but because of our Gaussian approximation of θ, we can
obtain Ct from Ct−1 with a rank-one modification...

I ...and there are eigendecomposition algorithms that can
take advantage of this.

I This provides an average case runtime of O(d2) for the
data considered, though the complexity is still O(d3) in the
worst case.

Deriving the optimal stimulus

I Complexity?
I Rank-one matrix update and line search to compute µt and

Ct .O(d2).
I Eigendecomposition of Ct . O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...
I ...but because of our Gaussian approximation of θ, we can

obtain Ct from Ct−1 with a rank-one modification...

I ...and there are eigendecomposition algorithms that can
take advantage of this.

I This provides an average case runtime of O(d2) for the
data considered, though the complexity is still O(d3) in the
worst case.

Deriving the optimal stimulus

I Complexity?
I Rank-one matrix update and line search to compute µt and

Ct .O(d2).
I Eigendecomposition of Ct . O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...
I ...but because of our Gaussian approximation of θ, we can

obtain Ct from Ct−1 with a rank-one modification...
I ...and there are eigendecomposition algorithms that can

take advantage of this.

I This provides an average case runtime of O(d2) for the
data considered, though the complexity is still O(d3) in the
worst case.

Deriving the optimal stimulus

I Complexity?
I Rank-one matrix update and line search to compute µt and

Ct .O(d2).
I Eigendecomposition of Ct . O(d3)
I Line search over Lagrange multiplier to compute optimal

stimulus. O(d2)

I O(d3) for the eigendecomposition isn’t great...
I ...but because of our Gaussian approximation of θ, we can

obtain Ct from Ct−1 with a rank-one modification...
I ...and there are eigendecomposition algorithms that can

take advantage of this.
I This provides an average case runtime of O(d2) for the

data considered, though the complexity is still O(d3) in the
worst case.

What if θ is dynamic?

I Spike history terms

I Adds a linear term to a quadratic minimization problem for
maximizing entropy.

I Systematic trends in θ.
I Just add a random variable N(0,Ct + Q) for known Q.
I θt+1 = θt + ωt .

What if θ is dynamic?

I Spike history terms
I Adds a linear term to a quadratic minimization problem for

maximizing entropy.

I Systematic trends in θ.
I Just add a random variable N(0,Ct + Q) for known Q.
I θt+1 = θt + ωt .

What if θ is dynamic?

I Spike history terms
I Adds a linear term to a quadratic minimization problem for

maximizing entropy.
I Systematic trends in θ.

I Just add a random variable N(0,Ct + Q) for known Q.
I θt+1 = θt + ωt .

What if θ is dynamic?

I Spike history terms
I Adds a linear term to a quadratic minimization problem for

maximizing entropy.
I Systematic trends in θ.

I Just add a random variable N(0,Ct + Q) for known Q.

I θt+1 = θt + ωt .

What if θ is dynamic?

I Spike history terms
I Adds a linear term to a quadratic minimization problem for

maximizing entropy.
I Systematic trends in θ.

I Just add a random variable N(0,Ct + Q) for known Q.
I θt+1 = θt + ωt .

What if θ is dynamic?

I Spike history terms
I Adds a linear term to a quadratic minimization problem for

maximizing entropy.
I Systematic trends in θ.

I Just add a random variable N(0,Ct + Q) for known Q.
I θt+1 = θt + ωt .

Results

I Simple, memoryless, visual cell
I 25x33 bitmaps.
I Results on average much better, and never worse, than

random.

I Memoryful neuron (simple sine wave)
I Outperformed random sampling for estimating spike history

and stimulus coefficients.
I Non-systematic time drift

I Analogous to eye fatigue/exhaustion.
I Outperformed random sampling for estimating spike history

and stimulus coefficients.

Results

I Simple, memoryless, visual cell
I 25x33 bitmaps.
I Results on average much better, and never worse, than

random.
I Memoryful neuron (simple sine wave)

I Outperformed random sampling for estimating spike history
and stimulus coefficients.

I Non-systematic time drift
I Analogous to eye fatigue/exhaustion.
I Outperformed random sampling for estimating spike history

and stimulus coefficients.

Results

I Simple, memoryless, visual cell
I 25x33 bitmaps.
I Results on average much better, and never worse, than

random.
I Memoryful neuron (simple sine wave)

I Outperformed random sampling for estimating spike history
and stimulus coefficients.

I Non-systematic time drift
I Analogous to eye fatigue/exhaustion.
I Outperformed random sampling for estimating spike history

and stimulus coefficients.

Conclusion

I Approximations based on GLMs allow dramatically faster
algorithm.

I At worst, O(n3). on average, O(n2).
I Fast enough to run in real time even for high-dimensional

problems.

Conclusion

I Approximations based on GLMs allow dramatically faster
algorithm.

I At worst, O(n3). on average, O(n2).

I Fast enough to run in real time even for high-dimensional
problems.

Conclusion

I Approximations based on GLMs allow dramatically faster
algorithm.

I At worst, O(n3). on average, O(n2).
I Fast enough to run in real time even for high-dimensional

problems.

	Introduction
	Approach

