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Announcements

¢ Homework 2: Due Thursday Feb 19

® Project milestone due: Feb 24

® 4 Pages, NIPS format:
http://nips.cc/Paperinformation/StyleFiles

® Should contain preliminary results (model, experiments,
proofs, ...) as well as timeline for remaining work

® Come to office hours to discuss projects!

¢ Office hours
® Come to office hours before your presentation!

® Andreas: Monday 3pm-4:30pm, 260 Jorgensen
® Ryan: Wednesday 4:00-6:00pm, 109 Moore



Feature selection

® Given random variablesY, X,, ... X,

® Want to predict Y from subset X, = (Xil,...,X )

Ik
Naive Bayes Model

Want k most informative features:

A* = argmax IG(X,; Y) s.t. |A| <k

where IG(X,; Y) = H(Y) - H(Y | X,)
“~

Uncertainty Uncertainty
before knowing X,  after knowing X,



Example: Greedy algorithm for feature selection

® Given: finite set V of features, utility function F(A) = IG(X,; Y)
® Want: | A"C Vsuch that

A" = argmax F'(A)
|A|<k

NP-hard!

Greedy algorithm: w @ w

Start with A=1()

Fori=1tok
s* := argmax, F(A U {s})
A:=AU {s*}

How well can this simple heuristic do?



Key property: Diminishing returns

Selection A = {} Selection B = {X,,X;}

A2 &

Theorem [Krause, Guestrin UAI ‘05]: Information gain F(A) in
Naive Bayes models is submodular!

TEATUTE X,
+ ¢ s Llarge improvement|

Submodularity:
+ o 5 < Small improvement]|

For AC B, F(A U {s}) — F(A) > F(B U {s}) — F(B)




Why is submodularity useful?

Theorem [Nemhauser et al ‘78]
Greedy maximization algorithm returns A
F(Agreeqy) = (1-1/€) max , - F(A)

greedy:

~63%

® Greedy algorithm gives near-optimal solution!

® For info-gain: Guarantees best possible unless P = NP!
[Krause, Guestrin UAI '05]

Submodularity is an incredibly useful and powerful concept!



Monitoring water networks

[Krause et al, ] Wat Res Mgt 2008]

¢ Contamination of drinking water
could affect millions of people
nination =

Simulator from EPA Hach Sensor

® Place sensors to detect contaminations ~$14|(
¢ “Battle of the Water Sensor Networks” competition

Where should we place sensors to quickly detect contamination?

7



Model-based sensing

¢ Utility of placing sensors based on model of the world
® For water networks: Water flow simulator from EPA

* F(A)=Expected impact reduction placing sensors at A

Model predicts L ow impact
Theorem [Krause et al., ] Wat Res Mgt ’08]:

Impact reduction F(A) in water networks is submodular!

location

%‘0 Set V of all

network junctions
High impact reduction F(A) = 0.9 Low impact reduction F(A)=0.01
8




Battle of the Water Sensor Networks Competition

¢ Real metropolitan area network (12,527 nodes)
® Water flow simulator provided by EPA
¢ 3.6 million contamination events

® Multiple objectives:

® Detection time, affected population, ...

® Place sensors that detect well “on average”




What about worst-case?

[Krause et al., NIPS '07]

Knowing the sensor locations, an
adversary contaminates here!

Placement detects
well on “average-case”
(accidental) contamination

Where should we place sensors to quickly detect in the worst case?
10

Very different average-case impact,
Same worst-case impact



Constrained maximization: Outline

Utility function TN\ Yo Selected set

max F'(A)
ACY

Selection cost

—— Bud
subject to C’(A) <B e

Subset selection /

/

Robust optimization Complex constraints
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Optimizing for the worst case

® Separate utility function F, for each contamination i

® F.(A) = impact reduction by sensors A for contamination i

Want to solve

A* = argmax min F;(.A)
A<k *

Each of the F, is submodular

Contamination
at node s Sensors A

Sensors B

Contamination
at noder

i |
Unfortunately, min, F. not submodular! F (B) is high

How can we solve this robust optimization problem?
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How does the greedy algorithm do?

V={ [, &, )

Can only buy k=2

Greedy picks
 first
Opti
solut ence we can't find any en, can

approximation algorithm.
Optimal s Or can we?

rdy score: €

-> Greedy does aiviu ai Iy Mduly. I> LIEere sullieu g better?

Theorem: The problem max, , -, min; F,(A)

does not admit any approximation unless P=NP

13



Alternative formulation

If somebody told us the optimal value,

¢® = max min Fj(A)
A<k i

can we recover the optimal solution A*?
Hoo dogs Tai belp & gl
S L F (4)
Need to find ek

A" = argmm | A| such that mmF (A) > c”

0§_C¢ (’lm.m F(V) = Cpmon
. ? _
Is this any easier? L [ J

Cuex

Yes, if we relax the constraint |A| <k

14



Solving the alternative problem

!
Remains " Fio(A)

submodular™\

= min{ F;(A), ¢}

Problem 1 (last slide)

min |.A|
A

Non-submodul@gnae optimal solutionsls ;b modular!
Don’t know howaiag@ne solves e otheL s as constraint?

15



Maximization vs. coverage

Previously: Wanted

‘ A* =argmax F(A) s.t. |A| <Kk ‘

Now need to solve:
‘ A* =argmin |A| s.t. F(A) > Q ‘

Greedy algorithm:
Start with A := ();
While F(A) < Qand |A|<n
s* := argmax, F(A U {s})
A= AU {s*}

For bound, assume
Fis integral.
If not, just round it.

/

Theorem [Wolsey et al]: Greedy will retur'n A,
|A | < (1+log max, F({s})) |A

reedy

greedy opt |

16




Solving the alternative problem

Problem 1 (last slide)
min |.A|
A

Non-submodular ® Submodular!

Don’t know how to solve Can use greedy algorithm!
17



Back to our example

@ Guessc=1
® First pick /;
® Then pick

=» Optimal solution! )

-

How do we find c?
Do binary search!
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SATURATE Algorithm

[Krause et al, NIPS ‘07]

Given: set V, integer k and monotonic SFs F,...,F
= min, F(V)
Do binary search: ¢ = (¢, +C,,.,)/2

Initialize ¢, =0, C,.,

* Greedily find Ag such that F’_ . (Ag) =c
° If |A;| < ak:increasec,,,
* If |A;| > o k: decrease c,,
until convergence
iteration & late

early

Truncation

/ threshold

(color)

19




Theoretical guarantees

[Krause et al, NIPS ‘07]

Theorem: The problem max, , -, min; F,(A)
does not admit any approximation unless P=NP ®

Theorem: SATURATE finds a solution A¢ such that

min. F.(A;) > OPT, and |A(| < ak

where  OPT, = max, <, min; F,(A)

o =1+ log max, 2. F.({s})

Theorem:

If there were a polytime algorithm with better factor
B <, then NP C DTIME(n'oglogn)

20



Example: Lake monito 't

® Monitor pH values using robotic sensor
transect

Prediction at unobserved

'Observations

I A locations
\ ? True (hidden) pH values
Use probabilistic model

‘ ‘ L - | — (Gaussian processes)
POSltlon S along transect to estimate prediCtion error

pH value

Where should we sense to minimize our maximum error?

min Var(s) — Var(s | A)

(often) su¥modular

[Das & Kempe '08] 21

=

=» Robust submodular
optimization problem!




Comparison with state of the art

Algorithm used in geostatistics: Simulated Annealing
[Sacks & Schiller '88, van Groeningen & Stein 98, Wiens ’05,...]

7 parameters that need to be fine-tuned

0.25
g S 25
§ 02 g
a—) S Greedy c_g o
+| Tois g
Q| © S
o g SATURATE g 15 Simulated
= 0.1 c Annealing
5 35
E . E 1
< 0.05/ S|muIaFed a
= Annealing = SATURA
0.5 | ‘ ‘ ‘ ]
S ‘ ‘ a aa = ca Qe 100
- SATURATE is competitive & 10x faster 4
Nnvi

No parameters to tune!




Results on water networks

Lower is better

<

w
o
o
o

Maximum detection time (minutes)

25001

2000

1500

1000 |

5001

Greedy

Simulated
Annealing

10
Number of sensors

20

No decrease
until all
contaminations
detected!

Water networks

60% lower worst-case detection time! ‘
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Worst- vs. average case

Given: Set V, submodular functions F,...,F, .

Average-case score Worst-case score

Faeld) = — 3" Fi(A) | FuelA) = min Fi(A

1

Want to optimize both average- and worst-case score!

Can modify SATURATE to solve this problem! ©
® Want: F..(A) > c,.and F,(A) > c,.

® Truncate: min{F,(A),c,.} + min{F,(A),C .} = C,.+C,.
24



Worst case impact

lower is better

Worst- vs. average case

70001 | | |
Only optimize for
6000 " average case
5000
i Knee in |
4000 tradeoff curve
Tradeoffs
3000~
(SATURATE /
2000
1000 Only optimize for worst case
V o

0 50 100 150 200 250 300 350

Water
networks
data

Can find good compromise between
average- and worst-case score!
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Constrained maximization: Outline

Utility function TN\ Yo Selected set
max F'(A)
ACY
Selection cost —~

_—— Budget
subject to C'(A) < B o

Subset selection
/ \ 4

Robust optimizatiov Complex constraints

26



Other aspects: Complex constraints

max, F(A) or max, min; F.(A) subject to
°® Sofar: |A|] < k

® |In practice, more complex constraints:
¢ Different costs: C(A) <B

Sensors need to communicate
(form a routing tree)

Locations need to be
connected by paths
[Chekuri & Pal, FOCS '05] o

[Singh et al, JCAI'07] =

Lake monitoring Building monitoring

27



Non-constant cost functions

® For eachs €V, let c(s)>0 be its cost
(e.g., feature acquisition costs, ...)

® Cost of aset C(A) = 2. o c(s) (modular function!)
¢ Want to solve

A* = argmax F(A) s.t. C(A) <B

Cost-benefit greedy algorithm:
Start with A := ();
While there is an seV\A s.t. C(AU{s}) - B
v o argmae FAUL) —F(A)
s:C(AU{s})<B c(s)

A:=AU{s*}

28




Performance of cost-benefit greedy

Want Set A F(A) | C(A)
{a} 2e  |€
max, F(A) s.t. C(A)< 1 10} 1 1

Cost-benefit greedy picks a.
Then cannot afford b!

=» Cost-benefit greedy performs arbitrarily badly!

29



Cost-benefit optimization

[Wolsey ‘82, Sviridenko 04, Leskovec et al '07]

Theorem
* A_g: cost-benefit greedy solution and
® A, unit-cost greedy solution (i.e., ignore costs)

Then
max { F(Az), F(Ayc) } > % (1-1/e) OPT

Can still compute online bounds and
speed up using lazy evaluations

Note: Can also get
¢ (1-1/e) approximation in time O(n?) [Sviridenko '04]
¢ Slightly better than % (1-1/e) in O(n?) [Wolsey ‘82]

30



Example: Cascades in the Blogosphere

[Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, Glance ‘07]

Machine Learning

(Theory) 13bpinii | sisu engadgef“

Learn about
story after us!

Time

Information
cascade

Which blogs should we read to learn about big cascades early? _,



Water vs. Web

Placing sensors in Selecting
water networks VS. informative blogs

¢ |n both problems we are given
¢ Graph with nodes (junctions / blogs) and edges (pipes / links)
¢ Cascades spreading dynamically over the graph (contamination / citations)

® Want to pick nodes to detect big cascades early

In both applications, utility functions submodular ©
[Generalizes Kempe et al, KDD "03]

32



Performance on Blog selection

0.7 \ G \ 400 \ \ \ \ n
reed =1 —
Oloos y Y3 . Exhaustive search
el =1 5300 (All subsets)
Ol 205 B E
als 2 o
ni <04 .(L) Q | aive ]
=19 In-links | £ 200
ol gos3 All outlinks T w
<la 0.2 ; g 100 | n
=) KA # Posts S E Fast greedy
L 0.1 / Random — &(
0 \ mansanesnnes B4 SR (R S S S S —
0 20 40 60 80 100 1 2 3 4 5 6 7 8 9 1«
Number of blogs Number of blogs selected

Blog selection == Blog selection “_“—""”n

~45k blogs

Outperforms state-of-the-art heuristics
700x speedup using submodularity!
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Cost of reading a blog skip

® Naive approach: Just pick 10 best blogs
® Selects big, well known blogs (Instapundit, etc.)
¢ These contain many posts, take long to read!

\ \
Cost/benefit
analysis

o
[o))
|

o
~
\

lgnoring cost

Cascades captured
o
R

OO 2 4 6 8 10 12 14

—
Cost(A) = Number of posts / day

Cost-benefit optimization picks summarizer blogs!

34



Cascades captured

Predicting the

'f

" blogs

¢ Want blogs that will be informative in the future

¢ Split data set; train on historic, test on future

0.05 Greedy on future - °
Teston future 2e®
~ “Cheating” o

#detections

0.1 f a \ Greedy on historic-
0

Test on future

4 6 8 10 12 14
Cost(A) =Wumber of posts / day
Let’s see what
goes wrong here.

Detects on training set

200

0 Jan Feb ar Apr May

e gy . 7] /.
Blogsglectiope.roveldits
het® training datd !
Poor generalization!
Wantbilbgsthat
continue to do well!
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Robust optimization

“Overfit” blog & T
_ = 200 7
selection A g
H
0
Jan Fe Mar r May
= i —
F.(A) .de.tectlons. —— F,(A)=5 F,(A)=6 F(A)=.02
in interval i —_— —
F,(A)=.8 F,(A)=.01
Optimize A* = argmax min F;(.A)
worst-case |.A|<k )

/" ) Detections using SATURATE
Robust” blog 200 5 |

selection A* OJLI‘

Jan Feb Mar Apr May

#detections

Robust optimization < Regularization! ‘
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Predicting the “ " blogs

0.25 Greedyon future\ P o |
Teston future 22~ "Robust solution

0.2 “Cheatin” o Test on future

Greedy on historic
Test on future

Cascades captured

\ "4 6 8 10 12 14
—
Cost(A) = Number of posts / day

50% better generalization!
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Other aspects: Complex constraints,;,

max, F(A) or max, min; F.(A) subject to
@ So far: Al < k
® |n practice, more complex constraints:
¢ Different costs: C(A) <B

Sensors need to communicate
Locations need to be (form a routing tree)

connected by paths
[Chekuri & Pal, FOCS '05]
[Singh et al, JCAI '07]

] e ) In-u,nlr=1--r=|:'
= |~ = = 15

Building monitoring
Lake monitoring
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Naive approach: Greedy-connect

® Simple heuristic: Greedily optimize submodular utility function F(A)
® Then add nodes to minimize communication cost C(A)

Second

eff|C|ent

Very informative,
High communication

F(A) =352'ca)=35"

Communication cost = Expected # of trials

Wafleatn €chdsmgthaiiskiaa easffsses) cost! ®

between information and communication cost
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The pSPIEL Algorithm

[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

® pSPIEL: Efficient nonmyopic algorithm

(padded Sensor Placements at Informative and cost-
Effective Locations)

¢ Decompose sensing region
into small, well-separated
clusters

@ Solve cardinality constrained
problem per cluster (greedy)

¢ Combine solutions using
k-MST algorithm

40



Guarantees for pSPIEL

[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

Theorem:
PSPIEL finds a tree T with

submodular utility F(T) >  Q(1) OPT,
communication cost C(T) < O(log |V|) OPT-

41



What you should know

® Many important objective functions in Bayesian
experimental design are monotonic & submodular
® Entropy
® Information gain*
® Variance reduction*
® Detection likelihood / time

® Greedy algorithm gives near-optimal solution
® Can also solve more complex problems

® Connectedness-constraints (trees/paths)
® Robustness

*under certain assumptions "



