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Announcements
Homework 2: Due Thursday Feb 19

Project milestone due: Feb 24

4 Pages, NIPS format:

http://nips.cc/PaperInformation/StyleFiles

Should contain preliminary results (model, experiments, 

proofs, …) as well as timeline for remaining work

Come to office hours to discuss projects!

Office hours

Come to office hours before your presentation!

Andreas: Monday 3pm-4:30pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore
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Feature selection
Given random variables Y, X1, … Xn

Want to predict Y from subset XA = (Xi1
,…,Xik

)

Want k most informative features:

A* = argmax IG(XA; Y) s.t. |A| ≤ k

where IG(XA; Y) = H(Y) - H(Y | XA)

Y

“Sick”

X1

“Fever”

X2

“Rash”

X3

“Male”

Naïve Bayes Model

Uncertainty

before knowing XA

Uncertainty

after knowing XA
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Example: Greedy algorithm for feature selection

Given: finite set V of features, utility function F(A) = IG(XA; Y)

Want:       A*⊆ V such that

NP-hard!

How well can this simple heuristic do?

Greedy algorithm:

Start with A = ∅

For i = 1 to k

s* := argmaxs F(A ∪ {s})

A := A ∪ {s*}

Y
“Sick”

X1

“Fever”
X2

“Rash”
X3

“Male”
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s

Key property: Diminishing returns

Selection A = {} Selection B = {X2,X3}

Adding X1

will help a lot!

Adding X1

doesn’t help much
New 

feature X1

B      A

s

+

+

Large improvement

Small improvement

For A⊆ B, F(A ∪ {s}) – F(A) ≥ F(B ∪ {s}) – F(B)

Submodularity:

Y
“Sick”

X1

“Fever”

X2

“Rash”
X3

“Male”

Y
“Sick”

Theorem [Krause, Guestrin UAI ‘05]: Information gain F(A) in 

Naïve Bayes models is submodular! 
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Why is submodularity useful?

Theorem [Nemhauser et al ‘78]

Greedy maximization algorithm returns Agreedy:

F(Agreedy) ≥ (1-1/e) max|A|≤ k F(A)

Greedy algorithm gives near-optimal solution!

For info-gain: Guarantees best possible unless P = NP! 

[Krause, Guestrin UAI ’05]

Submodularity is an incredibly useful and powerful concept!

~63%
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Monitoring water networks
[Krause et al, J Wat Res Mgt 2008]

Contamination of drinking water

could affect millions of people

Contamination

Place sensors to detect contaminations

“Battle of the Water Sensor Networks” competition

Where should we place sensors to quickly detect contamination?

Sensors

Simulator from EPA Hach Sensor

~$14K
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Model-based sensing

Utility of placing sensors based on model of the world

For water networks: Water flow simulator from EPA

F(A)=Expected impact reduction placing sensors at A

S2

S3

S4
S1 S2

S3

S4

S1

High impact reduction F(A) = 0.9 Low impact reduction F(A)=0.01

Model predicts

High impact

Medium impact

location

Low impact

location

Sensor reduces

impact through

early detection!

S1

Contamination

Set V of all 

network junctions

Theorem [Krause et al., J Wat Res Mgt ’08]:

Impact reduction F(A) in water networks is submodular! 
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Battle of the Water Sensor Networks Competition

Real metropolitan area network (12,527 nodes)

Water flow simulator provided by EPA

3.6 million contamination events

Multiple objectives: 

Detection time, affected population, …

Place sensors that detect well “on average”
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What about worst-case?
[Krause et al., NIPS ’07]

S2

S3

S4
S1

Knowing the sensor locations, an 

adversary contaminates here! 

Where should we place sensors to quickly detect in the worst case?

Very different average-case impact,

Same worst-case impact

S2

S3

S4

S1

Placement detects 

well on “average-case”

(accidental) contamination
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Robust optimization Complex constraints

Constrained maximization: Outline

Selected setUtility function

BudgetSelection cost

Subset selection
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Separate utility function Fi for each contamination i

Fi(A) = impact reduction by sensors A for contamination i

Want to solve

Each of the Fi is submodular

Unfortunately, mini Fi not submodular!

How can we solve this robust optimization problem?

Optimizing for the worst case

Contamination 

at node s Sensors A

Fs(A) is high

Contamination 

at node r

Fr(A) is lowFr(B) is high

Fs(B) is high

Sensors B
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How does the greedy algorithm do?

Theorem: The problem max|A|≤ k mini Fi(A) 

does not admit any approximation unless P=NP

Optimal

solution

Greedy picks

first

Then, can

choose only

or  

� Greedy does arbitrarily badly. Is there something better?

V={     ,     ,     }

Can only buy k=2

Greedy score: ε
Optimal score: 1

1

ε

ε

ε

0

0

mini Fi

21

2ε

ε1

εε

20

01

F2F1Set A

Hence we can’t find any

approximation algorithm.

Or can we?
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Alternative formulation

If somebody told us the optimal value, 

can we recover the optimal solution A*?

Need to find

Is this any easier?

Yes, if we relax the constraint |A| ≤ k
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Solving the alternative problem
Trick: For each Fi and c, define truncation

c

|A|

Fi(A)

F’i,c(A)

Same optimal solutions!

Solving one solves the other
Non-submodular �

Don’t know how to solve
Submodular!

But appears as constraint?

Problem 1 (last slide) Problem 2

Remains 

submodular!
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Maximization vs. coverage
Previously: Wanted

A* = argmax F(A)  s.t.  |A| ≤ k

Now need to solve:

A* = argmin |A|  s.t.  F(A) ≥ Q

Greedy algorithm:

Start with A := ∅;

While F(A) < Q and |A|< n

s* := argmaxs F(A ∪ {s})

A := A ∪ {s*}

Theorem [Wolsey et al]: Greedy will return Agreedy

|Agreedy| ≤ (1+log maxs F({s})) |Aopt|

For bound, assume 

F is integral.

If not, just round it.
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Solving the alternative problem
Trick: For each Fi and c, define truncation

c

|A|

Fi(A)

F’i,c(A)

Non-submodular �

Don’t know how to solve
Submodular!

Can use greedy algorithm!

Problem 1 (last slide) Problem 2
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Back to our example

Guess c=1

First pick 

Then pick 

� Optimal solution!

How do we find c?

Do binary search!

1

(1+εεεε)/2

(1+εεεε)/2

εεεε

½

½

F’avg,1

1

ε

ε

ε

0

0

mini Fi

21

2ε

ε1

εε

20

01

F2F1Set A
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Truncation

threshold

(color)

SATURATE Algorithm 
[Krause et al, NIPS ‘07]

Given: set V, integer k and monotonic SFs F1,…,Fm

Initialize cmin=0, cmax = mini Fi(V)

Do binary search: c = (cmin+cmax)/2

Greedily find AG such that F’avg,c(AG) = c

If |AG| ≤ α k: increase cmin

If |AG| >  α k: decrease cmax

until convergence
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Theoretical guarantees
[Krause et al, NIPS ‘07]

Theorem:

If there were a polytime algorithm with better factor 

β < α, then NP ⊆ DTIME(nlog log n)

Theorem:   SATURATE finds a solution AS such that

mini Fi(AS) ≥ OPTk and |AS| ≤ α k

where OPTk = max|A|≤k mini Fi(A)

α = 1 + log maxs ∑i Fi({s})

Theorem: The problem max|A|≤ k mini Fi(A) 

does not admit any approximation unless P=NP �
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Example: Lake monitoring

Monitor pH values using robotic sensor

Position s along transect

p
H

 v
a

lu
e

Observations A

True (hidden) pH values

Prediction at unobserved

locations

transect

Where should we sense to minimize our maximum error?

Use probabilistic model

(Gaussian processes)

to estimate prediction error

(often) submodular

[Das & Kempe ’08]

Var(s | A)

���� Robust submodular 
optimization problem!
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Comparison with state of the art

Algorithm used in geostatistics: Simulated Annealing

[Sacks & Schiller ’88, van Groeningen & Stein ’98, Wiens ’05,…]

7 parameters that need to be fine-tuned

Environmental monitoring

b
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Precipitation data
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0.5

1

1.5

2

2.5

Number of sensors

M
a

x
im

u
m

 m
a

rg
in

a
l 
v
a
ri
a

n
c
e

Greedy

SATURATE
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Annealing

SATURATE is competitive & 10x faster

No parameters to tune!

SATURATE
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SATURATE

Results on water networks

60% lower worst-case detection time!

Water networks
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until all

contaminations

detected!

0 10 20
0

Greedy

Simulated
Annealing
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Worst- vs. average case
Given: Set V, submodular functions F1,…,Fm

Very pessimistic!Too optimistic?

Worst-case scoreAverage-case score

Want to optimize both average- and worst-case score!

Can modify SATURATE to solve this problem! ☺

Want: Fac(A) ≥ cac and Fwc(A) ≥ cwc

Truncate:  min{Fac(A),cac} + min{Fwc(A),cwc} ≥ cac+cwc
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Worst- vs. average case

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

7000

Knee in

tradeoff curve

Only optimize for
average case

Only optimize for worst case

Tradeoffs

(SATURATE)

W
o
rs
t 
c
a
s
e
im

p
a
ct
 

lo
w
e
r 
is
 b
e
tt
e
r

Average case impact
lower is better

Water

networks

data

Can find good compromise between 
average- and worst-case score!
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Robust optimization Complex constraints

Constrained maximization: Outline

Selected set

Budget

Subset selection

Utility function

Selection cost
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Other aspects: Complex constraints

maxA F(A) or maxA mini Fi(A) subject to

So far:  |A|   ≤ k

In practice, more complex constraints:

Different costs: C(A) ≤ B

Locations need to be 

connected by paths
[Chekuri & Pal, FOCS ’05]

[Singh et al, IJCAI ’07]

Lake monitoring

Sensors need to communicate 

(form a routing tree)

Building monitoring
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Non-constant cost functions
For each s ∈ V, let c(s)>0 be its cost
(e.g., feature acquisition costs, …)

Cost of a set C(A) = ∑s∈ A c(s)   (modular function!)

Want to solve

A* = argmax F(A)  s.t.  C(A) ≤ B

Cost-benefit greedy algorithm:

Start with A := ∅;

While there is an s∈V\A  s.t. C(A∪{s}) · B

A := A ∪ {s*}
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Performance of cost-benefit greedy

Want

maxA F(A) s.t. C(A)≤ 1

Cost-benefit greedy picks a.

Then cannot afford b!

� Cost-benefit greedy performs arbitrarily badly!

11{b}

ε2ε{a}

C(A)F(A)Set A
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Cost-benefit optimization
[Wolsey ’82, Sviridenko ’04, Leskovec et al ’07]

Theorem

ACB: cost-benefit greedy solution and

AUC: unit-cost greedy solution (i.e., ignore costs)

Then 

max { F(ACB), F(AUC) } ≥ ½ (1-1/e) OPT

Can still compute online bounds and 

speed up using lazy evaluations

Note: Can also get

(1-1/e) approximation in time O(n4) [Sviridenko ’04]

Slightly better than ½ (1-1/e) in O(n2) [Wolsey ‘82]
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T
im

e

Information 

cascade

Example: Cascades in the Blogosphere
[Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, Glance ‘07]

Which blogs should we read to learn about big cascades early?

Learn about

story after us!
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Water vs. Web

In both problems we are given

Graph with nodes (junctions / blogs) and edges (pipes / links)

Cascades spreading dynamically over the graph (contamination / citations)

Want to pick nodes to detect big cascades early

Placing sensors in

water networks

Selecting

informative blogsvs.

In both applications, utility functions submodular ☺

[Generalizes Kempe et al, KDD ’03]
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Performance on Blog selection

Outperforms state-of-the-art heuristics

700x speedup using submodularity!

Blog selection
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Naïve approach: Just pick 10 best blogs

Selects big, well known blogs (Instapundit, etc.)

These contain many posts, take long to read!

0 1 2 3 4 5
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4
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Cost(A) = Number of posts / day

Cost/benefit

analysis

Ignoring cost

Cost-benefit optimization picks summarizer blogs!

0 2 4 6 8 10 12 14

skip
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Predicting the “hot” blogs

Jan Feb Mar Apr May
0

200

#
d
e
te

c
ti
o
n
s

Detects on training set

Greedy on historic
Test on future

Poor generalization!

Why’s that?

0 1000 2000 3000 4000
0

0.05

0.1

0.15

0.2

0.25 Greedy on future
Test on future

“Cheating”

C
a

sc
a

d
e

s 
ca

p
tu

re
d

Cost(A) = Number of posts / day

Detect well

here! 

Detect poorly

here! 

Want blogs that will be informative in the future

Split data set; train on historic, test on future

Blog selection “overfits”

to training data!

Let’s see what

goes wrong here.

Want blogs that

continue to do well!

0 2 4 6 8 10 12 14
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Robust optimization

Jan Feb Mar Apr May
0

200

#
d
e
te

c
ti
o
n
s

Jan Feb Mar Apr May
0

200

#
d
e
te

c
ti
o
n
s

Detections using SATURATE

F1(A)=.5

F2 (A)=.8

F3 (A)=.6

F4(A)=.01

F5 (A)=.02

Optimize

worst-case

Fi(A) = detections 

in interval i

“Overfit” blog 

selection A

“Robust” blog 

selection A*

Robust optimization ���� Regularization!
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Predicting the “hot” blogs

Greedy on historic
Test on future

Robust solution
Test on future

0 1000 2000 3000 4000
0

0.05

0.1

0.15

0.2

0.25 Greedy on future
Test on future

“Cheating”
C
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e
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p
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d

Cost(A) = Number of posts / day

50% better generalization!

0 2 4 6 8 10 12 14
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Other aspects: Complex constraints

maxA F(A) or maxA mini Fi(A) subject to

So far: |A|   ≤ k

In practice, more complex constraints:

Different costs: C(A) ≤ B

Locations need to be 

connected by paths
[Chekuri & Pal, FOCS ’05]

[Singh et al, IJCAI ’07]

Lake monitoring

Sensors need to communicate 

(form a routing tree)

Building monitoring

skip
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Naïve approach: Greedy-connect

Simple heuristic: Greedily optimize submodular utility function F(A)

Then add nodes to minimize communication cost C(A)

Want to find optimal tradeoff

between information and communication cost
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The pSPIEL Algorithm
[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

pSPIEL: Efficient nonmyopic algorithm

(padded Sensor Placements at Informative and cost-

Effective Locations)

C1 C2

C3
C41

1
3

2

1

3 2

21 2
Decompose sensing region 

into small, well-separated 

clusters

Solve cardinality constrained 

problem per cluster (greedy)

Combine solutions using 

k-MST algorithm
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Theorem: 

pSPIEL finds a tree T with 

submodular utility  F(T)≥ Ω(1)    OPTF

communication cost C(T)≤ O(log |V|)  OPTC

Guarantees for pSPIEL
[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]
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What you should know
Many important objective functions in Bayesian 

experimental design are monotonic & submodular

Entropy

Information gain*

Variance reduction*

Detection likelihood / time

Greedy algorithm gives near-optimal solution

Can also solve more complex problems

Connectedness-constraints (trees/paths)

Robustness

*under certain assumptions


