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Announcements

¢ Homework 2: Due Thursday Feb 19

® Project milestone due: Feb 24

® 4 Pages, NIPS format:
http://nips.cc/Paperinformation/StyleFiles

® Should contain preliminary results (model, experiments,
proofs, ...) as well as timeline for remaining work

® Come to office hours to discuss projects!

¢ Office hours
® Come to office hours before your presentation!

® Andreas: Monday 3pm-4:30pm, 260 Jorgensen
® Ryan: Wednesday 4:00-6:00pm, 109 Moore



Course outline

1.  Online decision making

2. Statistical active learning

3. Combinatorial approaches




Medical diagnosis

¢ Want to predict medical condition of patient given
noisy symptoms / tests
® Body temperature
@ Rash on skin

healthy |sick

* Cough Treatment -SS S
¢ Increased antibodies No treatment | 0 -SSS
in blood

¢ Abnormal MRI

® Treating a healthy patient is bad,
not treating a sick patient is terrible

® Each test has a (potentially different) cost

¢ Which tests should we perform to make most
effective decisions?



Value of information

‘ Prior P(Y) ‘ ‘obs X. = )> ‘ Posterior P(Y | x) ‘I:> Reward

¢ Value of information:
Reward[ P(Y | x;) ] = max, EU(a | x;)

® Reward can by any function of the distribution P(Y | x)
® Important examples:

® Posterior variance of Y
® Posterior entropy of Y



Optimal value of information

¢ Can we efficiently optimize value of information?

=>» Answer depends on properties of the
distribution P(X,,...,X,,,Y)

Theorem [Krause & Guestrin IJCAI '05]:

® |f the random variables form a Markov Chain, can find
optimal (exponentially large!) decision tree in
polynomial time ©

® There exists a class of distributions for which we can
perform efficient inference (i.e., compute P(Y|X)),
where finding the optimal decision tree is NPPP hard




Approximating value of information?

¢ |f we can’t find an optimal solution, can we find
provably near-optimal approximations??



Feature selection

® Given random variablesY, X,, ... X,

® Want to predict Y from subset X, = (Xil,...,X )

Ik
Naive Bayes Model

Want k most informative features:

A* = argmax IG(X,; Y) s.t. |A| <k

where IG(X,; Y) = H(Y) - H(Y | X,)
“~

Uncertainty Uncertainty
before knowing X,  after knowing X,



Example: Greedy algorithm for feature selection

® Given: finite set V of features, utility function F(A) = IG(X,; Y)
® Want: | A"C Vsuch that

A" = argmax F'(A)
|A|<k

NP-hard!

Greedy algorithm: w @ w

Start with A=1()

Fori=1tok
s* := argmax, F(A U {s})
A:=AU {s*}

How well can this simple heuristic do?



Key property: Diminishing returns

Selection A = {} Selection B = {X,,X;}

A2 &

Theorem [Krause, Guestrin UAI ‘05]: Information gain F(A) in
Naive Bayes models is submodular!

TEATUTE X,
+ ¢ s Llarge improvement|

Submodularity:
+ o 5 < Small improvement]|

For AC B, F(A U {s}) — F(A) > F(B U {s}) — F(B)

10



Why is submodularity useful?

Theorem [Nemhauser et al ‘78]
Greedy maximization algorithm returns A
F(Agreeqy) = (1-1/€) max , - F(A)

greedy:

~63%

® Greedy algorithm gives near-optimal solution!

® For info-gain: Guarantees best possible unless P = NP!
[Krause, Guestrin UAI '05]

Submodularity is an incredibly useful and powerful concept!
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Set functions

® Finite setV=1{1,2,...,n} A=Fivr 4,3 ¢V
® Function F: 2V — R Xa 2 (Ko )
® Will always assume F(()) = 0 (w.l.0.g.)

® Assume black-box that can evaluate F for any input A
® Approximate (noisy) evaluation of F is ok

® Example: F(A)  =1G(X,; Y) = H(Y) = H(Y | X,)
= ZerA P(XA) [log P(y | XA) — log P(y)]

Ceaner) Crain EDED

F({X.,X;}) = 0.9 F({X2,X3}) = 0.5 12



Submodular set functions

@ Set function F on V is called submodular if
For all A,B C V: F(A)+F(B) > F(AUB)+F(AMNB)

C& > *

® Equivalent diminishing returns characterization:

Submodularity: T oS <z£ge improvement|

+ S < smallimprovement|

For ACB, s¢ B, F(A U {s}) — F(A) > F(B U {s}) — F(B)

13



Submodularity and supermodularity

@ Set function F on V is called submodular if
1) For all A,B C V: F(A)+F(B) > F(AUB)+F(AMB)
< 2) For all ACB, s¢ B, F(A U {s}) — F(A) > F(B U {s}) — F(B)

® Fis called supermodular if =F is submodular
® Fis called modular if F is both sub- and supermodular
for modular (“additive”) F, F(A) = 2., w(i)

14



Node predicts
values of positio

Place sensors
in building

ns

with some radius

/

Example: Set cover

Possible ®
locations, 72
\

%

> .
®
®

For A C V: F(A) = “area

covered by sensors placed at A”

Formally:
W finite set, collection of n subsets S, C W
For A C V={1,...,n} define F(A) = |U,_ » S|
1

5



Set cover is submodular

eooos o000

\ F(AU{S"})-F(A)
+i¢i oo

TE / F(B{S})-F(B)

B = {51152153154}

AR R RN

16



Example: Mutual information

® Given random variables X,..., X,
* F(A) = 1(Xy; Xv\A) = H(Xv\A) — H(Xv\A | Xa)

Lemma: Mutual information F(A) is submodular

FA U (s1) = F(A) = HX,| X,) = HOX,| X0 )

Ac : HX(G) 2 Hi%1K)
“a'ufmm/f‘:‘m neror hasfy ‘!

O.(A) = F(AU{s})-F(A) monotonically nonincreasing
< F submodular ©

17



Example: Influence in social networks
[Kempe, Kleinberg, Tardos KDD 03]

Prob. of
influencing

/

Who should get free cell phones?
V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}

F(A) = Expected number of people influenced when targeting A
18



Influence in social networks is submodular
[Kempe, Kleinberg, Tardos KDD 03]

Charlie

Key idea: Flip coins c in advance = “live” edges

F.(A) = People influenced under outcome c (set cover!)
)‘—'—“[IZ‘) :Dc P[‘> FC(A}

F(A) = 2. P(c) F.(A) is submodular as well! 19



Closedness properties

F,,...,F,, submodular functions on Vand A,,...,A_ >0
Then: F(A) = 2.. A, F.(A) is submodular!

Submodularity closed under nonnegative linear
combinations!

Extremely useful fact!!

® Fo(A) submodular = 2., P(8) F4(A) submodular!

® Multicriterion optimization:
F,,...,F., submodular, A.>0 = >.. A. F.(A) submodular

20



Submodularity and Concavity

Suppose g: N — Rand F(A) = g(|A|)
Then F(A) submodular if and only if g concave!
E.g., g could say “buying in bulk is cheaper”

V'

g(lAl)

Al

21



Maximum of submodular functions

Suppose F,(A) and F,(A) submodular.
Is F(A) = max(F,(A),F,(A)) submodular?

V'

F(A) = max(Fy(A),F,(A))

>
Al

max(F,,F,) not submodular in general!
22



Minimum of submodular functions
Well, maybe F(A) = min(F,(A),F,(A)) instead?

IR -
i LS F({a,b}) - F{a))=1
{b} 0 1
{a,b} |1 1

min(F,F,) not submodular in general!

But stay tuned — we'll address min; F; later!

23



Maximizing submodular functions

Minimizing convex functions: Minimizing submodular functions:
Polynomial time solvable! Polynomial time solvable!
Maximizing convex functions: Maximizing submodular functions:
NP hard! NP hard!
But can get

approximation
guarantees ©

24



Maximizing influence
[Kempe, Kleinberg, Tardos KDD "03]

® F(A) = Expected #people influenced when targeting A
® F monotonic: If A C B: F(A) < F(B)
Hence V = argmax, F(A)

More interesting: argmax, F(A) — Cost(A)

25



Maximizing non-monotonic functions

® Suppose we want for not monotonic F

A* = argmax F(A) s.t. ACV

® Example: | N A

® F(A) = U(A) — C(A) where U(A) is submodular utility,
and C(A) is supermodular cost function

® |n general: NP hard. Moreover:

® If F(A) can take negative values:
As hard to approximate as maximum independent set
(i.e., NP hard to get O(n'¢) approximation)

26



Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak FOCS ’07]

Theorem

There is an efficient randomized local search procedure,
that, given a positive submodular function F, F({))=0,
returns set A such that

F(A.) > (2/5) max, F(A)

® picking a random set gives % approximation
(Y2 approximation if F is symmetric!)

® we cannot get better than % approximation unless P = NP

27



Scalarization vs. constrained maximization

Given monotonic utility F(A) and cost C(A), optimize:

Option 1: Option 2:

max, F(A) — C(A) max, F(A)

s.t. ACYV s.t. C(A) <B
“Scalarization” “Constrained maximization”

Can get 2/5 dpprox... Coming up...

if F(A)-C(A) >0

forall ACV

Positiveness is a
strong requirement ®

28



Constrained maximization: Outline

Monotonic submodular——\ f_ Selected set
max F'(A)
ACY
Selection cost —~

_—— Budget
subject to C(A) < B o

t@_ﬁtﬂ}“\w‘\‘\‘?ﬁ

Robust optimization Complex constraints

29



Monotonicity

@ A set function is called monotonic if
A CBCV=FA)<F(B)

® Examples:
® [nfluence in social networks [Kempe et al KDD "03]

® For discrete RVs, entropy F(A) = H(X,) is monotonic:
Suppose B=A U C. Then
F(B) = H(Xa Xc) = H(X,) + H(X | X,) > H(X,) = F(A)

® Information gain: F(A) = H(Y)-HE' | X,)
® Set cover
® Matroid rank functions (dimension of vector spaces, ...)

‘ see

30



Subset selection

® Given: Finite set V, monotonic submodular function F, F(()) = 0

® Want: | A"C Vsuch that

A" = argmax F'(A)
[A|<Ek

NP-hard!

31



Exact maximization of monotonic submodular functions

1) Mixed integer programming [Nemhauser et al '81]

max m
s.t. N < F(B) + 2scv\5 0 6(B) forallBC S
2. O < K
o, € {0,1}

where 6,(B) = F(B U {s}) — F(B)

Solved using constraint generation

2) Branch-and-bound: “Data-correcting algorithm”
[Goldengorin et al '99]

Both algorithms worst-case exponential!

32



Approximate maximization

® Given: finite set V, monotonic submodular function F(A)
Want: | A"C V such that

A" = argmax F'(A)
[A|<Ek

NP-hard!

Greedy algorithm:
Start with A, = ( & & w
Fori=1tok

s, := argmax, F(A_, U {s}) - F(A_,)
A=A U{s}

33



Performance of greedy algorithm

Theorem [Nemhauser et al ‘78]

Given a monotonic submodular function F, F(())=0, the
greedy maximization algorithm returns A

F(Agreeqy) = (1-1/€) max ., F(A)

greedy

~63%

Sidenote: Greedy algorithm gives
1/2 approximation for
maximization over any matroid C!
[Fisher et al "78]

34



Example: Submodularity of info-gain

Y, Y Xq, oo X, discrete RVs
F(A) = IG(Y; X,) = H(Y)-H(Y | X,)
® F(A) is always monotonic
® However, NOT always submodular

Theorem [Krause & Guestrin UAI’ 05]
If X; are all conditionally independent given'Y,
then F(A) is submodular!

Hence, greedy algorithm works!

In fact, NO algorithm can do better
than (1-1/e) approximation! 35




Building a Sensing Chair

[Mutlu, Krause, Forlizzi, Guestrin, Hodgins UIST ‘07]

® People sit a lot

@ Activity recognition in
assistive technologies

® Seating pressure as
user interface

Equipped with

4 1sensor per cm?!

Leah Lean Slouch
Can we get similar left forward

accuracy with fewer, 82% accuracy on
cheaper sensors? 10 postures! [Tan et al] 35



How to place sensors on a chair?

® Sensor readings at locations V as random variables
® Predict posture Y using probabilistic model P(Y,V)
® Pick sensor locations A* C V to minimize entropy:

A* = argmax IG(Y; X 4)

Possible locations V |A|<E

——— Placed sensors, did a user study:

Accuracy Cost
Before 82% $16,000 ®
After

‘ Similar accuracy at <1% of the cost!

37




Variance reduction

(a.k.a. Orthogonal matching pursuit, Forward Regression)

® LetY =, o Xi+€, and (X,,...,X,,€) ~ N(; W,X)
® Want to pick subset X, to predict Y
® Var(Y | X,=x,): conditional variance of Y given X, = x,

® Expected variance: Var(Y | X,) = [ p(x,) Var(Y | X,=x,) dx,
® Variance reduction: F (A) = Var(Y)—Var(Y | X,)

F,(A) is always monotonic

Theorem [Das & Kempe, STOC '08] *under some
F,(A) is submodular* conditions on X

=» Orthogonal matching pursuit near optimal!

[see other analyses by Tropp, Donoho et al., and Temlyakov]
38



Monitoring water networks

[Krause et al, ] Wat Res Mgt 2008]

¢ Contamination of drinking water
could affect millions of people
nination =

Simulator from EPA Hach Sensor

® Place sensors to detect contaminations ~$14|(
¢ “Battle of the Water Sensor Networks” competition

Where should we place sensors to quickly detect contamination?

39



Model-based sensing

¢ Utility of placing sensors based on model of the world
® For water networks: Water flow simulator from EPA

* F(A)=Expected impact reduction placing sensors at A

Model predicts L ow impact
Theorem [Krause et al., ] Wat Res Mgt ’08]:

Impact reduction F(A) in water networks is submodular!

location

%‘0 Set V of all

network junctions
High impact reduction F(A) = 0.9 Low impact reduction F(A)=0.01
40




Battle of the Water Sensor Networks Competition

¢ Real metropolitan area network (12,527 nodes)
® Water flow simulator provided by EPA
¢ 3.6 million contamination events

® Multiple objectives:

® Detection time, affected population, ...

® Place sensors that detect well “on average”

41



Bounds on optimal solution

[Krause et al., ) Wat Res Mgt '08]

Offline
1.2 (Nemhauser)

bound \

<
L
O
Q ol 1
S
g3
5 2| os
= Y Water
o<l Greedy networks
© T 04 solution g
= : ata
o
9 0.2
O | | |
0 5 10 15 20
—

Number of sensors placed

(1-1/e) bound quite loose... can we get better bounds?

42



Data dependent bounds

[Minoux 78]
@ Suppose A is candidate solution to

‘ argmax F(A) s.t. |[A] <k ‘

and A* ={s,,...,s,} be an optimal solution
Avio .. ommS

F(AY) < F(m) = F(A “?w) Ay Tor-o; ‘;))

<F(Avio 3)) -F(a)

¢ F(A)+ 2 S ¢ b

fFog gach s V\A, Igt é“Y F‘jﬂJﬂ‘gJ‘{s}[(AgQ

Order such that 0, > 9, > > O,
Then: F(A*) < F(A) + 2._%0

i
a3



Bounds on optimal solution

[Krause et al., ) Wat Res Mgt '08]

1.4 ‘
Offline
2 1.2 (Nemhauser)
s i bound “\ Data-dependent |
= b
g 1 o \ Water
£ <5 Grlef,dy networks
0 .= , solution
o T o4 data
()
0y
0.2
O | | | |
0 3 10 15 20
—

Number of sensors placed

Submodularity gives data-dependent bounds on the
performance of any algorithm 44



BWSN Competition results

[Ostfeld et al., ] Wat Res Mgt 2008]

@ 13 participants
@ Performance measured in 30 different criteria

G: Genetic algorithm  D: Domain knowledge
H: Other heuristic E: “Exact” method (MIP)

30
- 25

G H E

m
| @)

- 15
G - 10

Total Score
Higher is better
| IO
|

« Rl PR S Y A M
‘ 24% better performance than runner-up! ©
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What was the trick?

Simulated all 3.6M contaminations on 2 weeks / 40 processors
152 GB data on disk 16 GB in main memory (compressed)
=» Very accurate computation of F(A) Very slow evaluation of F(A) ®

_ E . 30 hours/20 sensors
51 9300 | A
el = i Exhaustive search o 6 weeks for all
ol £ i, (All subsets) )
al B, e 30 settings ®
%) ) ] Naive
- § E greedy . .
o % 100 | L ubmodularity
£ o A 7
Q| ¢ i - to the rescue
S P T
v - -
v o-&—*
1 2 3 4 5 6 7 8 9 10

Number of sensors selected
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Scaling up greedy algorithm
[Minoux 78]

In round i+1,
® have picked A, = {s,,...,S.}
* pick s, = argmax_ F(A, U {s})-F(A)
l.e., maximize “marginal benefit” o (A:)

0,(A)) = F(A; U {s})-F(A)

Key observation: Submodularity implies

| <j=8,(A) > 5(A) - )

'l

Marginal benefits can never increase!

47



“Lazy” greedy algorithm

[Minoux 78]

Lazy greedy algorithm:
- First iteration as usual Benefit 54(A)

- Keep an ordered list of marginal
benefits O, from previous iteration

- Re-evaluate 9, only for top "
element

- If §, stays on top, use it, d
otherwise re-sort ¢

Note: Very easy to compute online bounds, lazy evaluations, etc.

[Leskovec et al. '07]
48



Result of lazy evaluation

Simulated all 3.6M contaminations on 2 weeks / 40 processors

152 GB data on disk

, 16 GB in main memory (compressed)

=» Very accurate computation of F(A) Very slow evaluation of F(A) ®

Lower is better

<

= N w
o o o
o o o

Running time (minutes)

o

E I
Exhaustive search ’
i, (All subsets)

Naive
greedy >
/“.

" Fast greedy |

.
o,"

-
.

j \ \ \ \ \
1 2 3 4 5 6 7 8 9 10
Number of sensors selected

30 hours/20 sensors

6 weeks for all
30 settings ®

ubmodularity
to the rescue:

Using “lazy evaluations”:
1 hour/20 sensors

Done after 2 days! ©
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What about worst-case?

[Krause et al., NIPS '07]

Knowing the sensor locations, an
adversary contaminates here!

Placement detects
well on “average-case”
(accidental) contamination

Where should we place sensors to quickly detect in the worst case?
50

Very different average-case impact,
Same worst-case impact



