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Passive PAC Learning Complexity

� Based on VC dimension

Is there some equivalent for active learning?

To get error < ǫ with probability ≥ 1− δ:

num samples ≥ Õ
(
1

ǫ
(V C (H) log (1/δ))

)



Example: Reals in 1-D

w

hw(x) =

{
1 if x ≥ w
0 if x < w

H={hw : w ∈ R}

P=underlying distribution of points
H=space of possible hypotheses

O(1/ǫ) random labeled examples needed from P to get error rate < ǫ



Example: Reals in 1-D

w

O(1/ǫ) random labeled examples needed from P to get error rate < ǫ

Passive learning:

Active learning (Binary Search):

O(log 1/ǫ) examples needed to get error < ǫ

hw(x) =

{
1 if x ≥ w
0 if x < w

Active learning gives us an exponential improvement!



Example 2: Points on a Circle

� P = some density on circle perimeter

� H = linear separators in R2

h1

h2

h3



Example 2: Points on a Circle

� Passive learning:

� Active learning:

O(1/ǫ)
O(1/ǫ)

No improvement!

Worst case: small ǫ slice of the circle is different



Active Learning Abstracted

� Goal: Narrow down the version space, 
(hypotheses that fit with known labels

� Idea: Think of hypotheses as points

New version 

space if x=0

Cut made by 

observing x

x=1 version space

Version space

Observe x



Shrinking the Version Space

� Define distance between hypotheses:

� Ignore distances less than ǫ
d(h,h’)=P{x:h(x)�= h′(x)}

Qǫ = {(h, h′) ∈ Q : d(h, h′) > ǫ}
Q=H×H

A good cut!



Quick Example

� What is the best cut?

Qǫ = {(h, h′) ∈ Q : d(h, h′) > ǫ}



Quick Example

� Cut edges => shrink version space

After this cut, we have a solution!

The hypotheses left are insignificantly different.



Quantifying “Usefulness” of Points

IF its label reduces the number of edges by a fraction ρ > 0
A point x∈ X is said to ρ− split Qǫ

¼-split

1-split

¾-split



Quantifying the Difficulty of Problems

Subset S of hypotheses is                          if(ρ, ǫ, τ )-splittable

P{x : x ρ-splits Qǫ} ≥ τ

Definition:

”At least a fraction of τ samples are ρ-useful in splitting S.”

ρ small ⇒ smaller splits

τ small ⇒ lots of samples needed to get a good split

ǫ small ⇒ small error



Suppose for some hypothesis space H:

� for some hypotheses 

� “disagree sets” are disjoint

Then:

Lower Bound Result

{x : h0(x) �= hi(x)}
d(h0, hi) > ǫ h1, h2, ..., hN

h0

For any τ and ρ > 1/N , Q is not (ρ, ǫ, τ )-splittable.



An Interesting Result

There is constant c > 0 such that for any dimension d ≥ 2, if

1. H is the class of homogeneous lenear separators in Rd, and
2. P is the uniform distribution over the surface of the unit sphere,

then H is (1/4, ǫ, cǫ)-splittable for all ǫ > 0.

⇒ For any h ∈ H, any ǫ ≤ 1/(32π2
√
d),

B (h, 4ǫ) is
(
1

8
, ǫ,Ω

(
ǫ/
√
d
))

-splittable.



Conclusions

� Active learning not always much better 
than passive.

� “Splittability” is the VC dimension for active 
learning.

� We can use this framework to fit bounds 
for specific problems.


