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Passive PAC Learning Complexity

m Based on VC dimension
To get error < € with probability > 1 — ¢:

num samples > O (% (VC (H)log (1/5)))

Is there some equivalent for active learning?
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Example: Reals in 1-D

P=underlying distribution of points
H=space ot possible hypotheses
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O(1/e) random labeled examples needed from P to get error rate < e



Example: Reals in 1-D

1 ifx>w
hw(x): .
0 ifx<w
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Passive learning:

O(1/€) random labeled examples needed from P to get error rate < e

Active learning (Binary Search):

O(log 1/€) examples needed to get error < €

Active learning gives us an exponential improvement!



Example 2: Points on a Circle

m P = some density on circle perimeter

m H = linear separators in R? h
1

h3



Example 2: Points on a Circle

Worst case: small € slice of the circle is different

m Passive learning: O(1/e)
m Active learning:  O(1/¢)

No improvement!
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Active Learning Abstracted

m Goal: Narrow down the version space,
(hypotheses that fit with known labels

m [dea: Think of hypotheses as points
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Shrinking the Version Space

m Define distance between hypotheses:
d(h,h")=P{x:h(x)# h'(x)}
m [gnore distances less than €
Q=HxH
Qc={(h,h") € Q:d(h,h') > €}
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Quick Example
m What is the best cut?
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Q. = {_(f;, W) e Q:d(h,h') > e)



Quick Example

m Cut edges => shrink version space

After this cut, we have a solution!

The hypotheses left are insignificantly different.
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Quantifying “Usefulness” of Points

A point x€ X is said to p — split Q.
IF its label reduces the number of edges by a fraction p > 0

1a-split
1-split
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Quantifying the Difficulty of Problems

Definition:
Subset S of hypotheses is (p, ¢, 7)-splittable |f

P{x : x p-splits Q.} > 7
” At least a fraction of 7 samples are p-useful in splitting S.”

p small = smaller splits
e small = small error
7 small = lots of samples needed to get a good split
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Lower Bound Result

Suppose for some hypothesis space H:
d(ho, h;) > ¢ for some hypotheses hy, b, ..., Ay

“disagree sets” 1@ : hol@ z)} are disjoint
Thenﬁ< ;

For any 7 and p > 1/N, Q is not (p, €, 7)-splittable.
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An Interesting Result

There is constant ¢ > 0 such that for any dimension d > 2, if

1. H is the class of homogeneous lenear separators in R%, and
2. P is the uniform distribution over the surface of the unit sphere,

then H is (1/4, €, ce)-splittable for all € > 0.

= For any h € H, any € < 1/(3272V/d),
B (h, 4e) is (%, e, Q) (e/\/&)) _splittable.
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Conclusions

m Active learning not always much better
than passive.

m “Splittability” is the VC dimension for active
learning.

m We can use this framework to fit bounds
for specific problems.



