Sample Complexity Bounds for Active Learning

Paper by Sanjoy Dasgupta

Presenter: Peter Sadowski

Passive PAC Learning Complexity

Based on VC dimension

To get error $< \epsilon$ with probability $\ge 1 - \delta$:

num samples
$$\geq \widetilde{O}\left(\frac{1}{\epsilon}\left(VC\left(H\right)\log\left(1/\delta\right)\right)\right)$$

Is there some equivalent for <u>active</u> learning?

Example: Reals in 1-D

P=underlying distribution of points H=space of possible hypotheses

$$\mathbf{H} = \{ h_w : w \in \mathbb{R} \} \qquad h_w(x) = \begin{cases} 1 & \text{if } x \ge w \\ 0 & \text{if } x < w \end{cases}$$

 $O(1/\epsilon)$ random labeled examples needed from P to get error rate $<\epsilon$

Example: Reals in 1-D

$$h_w(x) = \begin{cases} 1 & \text{if } x \ge w \\ 0 & \text{if } x < w \end{cases}$$

Passive learning:

 $O(1/\epsilon)$ random labeled examples needed from P to get error rate $< \epsilon$

Active learning (Binary Search):

 $O(\log 1/\epsilon)$ examples needed to get error $< \epsilon$

Active learning gives us an exponential improvement!

Example 2: Points on a Circle

P = some density on circle perimeter

■ H = linear separators in R²

Example 2: Points on a Circle

Worst case: small ϵ slice of the circle is different

- Passive learning: $O(1/\epsilon)$
- Active learning: $O(1/\epsilon)$

No improvement!

Active Learning Abstracted

- Goal: Narrow down the version space,
 (hypotheses that fit with known labels)
- Idea: Think of hypotheses as points

Shrinking the Version Space

Define distance between hypotheses:

$$d(h,h')=P\{x:h(x)\neq h'(x)\}$$

lacktriangle Ignore distances less than ϵ

$$Q = H \times H$$

$$Q_{\epsilon} = \{(h, h') \in Q : d(h, h') > \epsilon\}$$

A good cut!

Quick Example

What is the best cut?

$$Q_{\epsilon} = \{(h, h') \in Q : d(h, h') > \epsilon\}$$

Quick Example

Cut edges => shrink version space

After this cut, we have a solution!

The hypotheses left are insignificantly different.

Quantifying "Usefulness" of Points

A point $x \in X$ is said to $\rho - split\ Q_{\epsilon}$ IF its label reduces the number of edges by a fraction $\rho > 0$

Quantifying the Difficulty of Problems

Definition:

Subset S of hypotheses is (ρ, ϵ, τ) -splittable if

$$P\{x : x \rho \text{-splits } Q_{\epsilon}\} \geq \tau$$

"At least a fraction of τ samples are ρ -useful in splitting S."

 $\rho \text{ small } \Rightarrow \text{ smaller splits}$

 $\epsilon \text{ small } \Rightarrow \text{ small error}$

 τ small \Rightarrow lots of samples needed to get a good split

Lower Bound Result

Suppose for some hypothesis space H:

- \square d $(h_0,h_i) > \epsilon$ for some hypotheses $h_1,h_2,...,h_N$
- \square "disagree sets" $\{x: h_0(x) \neq h_i(x)\}$ are disjoint

Then:

For any τ and $\rho > 1/N$, Q is not (ρ, ϵ, τ) -splittable.

An Interesting Result

There is constant c > 0 such that for any dimension $d \geq 2$, if

- 1. H is the class of homogeneous lenear separators in \mathbb{R}^d , and
- 2. P is the uniform distribution over the surface of the unit sphere, then H is $(1/4, \epsilon, c\epsilon)$ -splittable for all $\epsilon > 0$.

$$\Rightarrow \text{ For any } h \in H, \text{ any } \epsilon \leq 1/(32\pi^2\sqrt{d}), \\ B\left(h, 4\epsilon\right) \text{ is } \left(\frac{1}{8}, \epsilon, \Omega\left(\epsilon/\sqrt{d}\right)\right) \text{-splittable.}$$

Conclusions

- Active learning not always much better than passive.
- "Splittability" is the VC dimension for active learning.
- We can use this framework to fit bounds for specific problems.