SUPPORT VECTOR MACHINE ACTIVE LEARNING CS 101.2 Caltech, 03 Feb 2009 Paper by S. Tong, D. Koller Presented by Krzysztof Chalupka ## **OUTLINE** - SVM intro - Geometric interpretation - Primal and dual form - Convexity, quadratic programming ## **OUTLINE** - SVM intro - Geometric interpretation - Primal and dual form - Convexity, quadratic programming - Active learning in practice - Short review - The algorithms - Implementation #### **OUTLINE** - SVM intro - Geometric interpretation - Primal and dual form - Convexity, quadratic programming - Active learning in practice - Short review - The algorithms - Implementation - Practical results - Binary classification setting: - Input data $D_X = \{x_1, ..., x_n\}$, labels $\{y_1, ..., y_n\}$ - Consistent hypotheses Version Space V - SVM geometric derivation - For now, assume data linearly separable - Want to find the separating hyperplane that maximizes the distance between any training point and itself - SVM geometric derivation - For now, assume data linearly separable - Want to find the separating hyperplane that maximizes the distance between any training point and itself - Good generalization - SVM geometric derivation - For now, assume data linearly separable - Want to find the separating hyperplane that maximizes the distance between any training point and itself - Good generalization - Computationally attractive (later) Primal form $$minimize_{w,b} \frac{1}{2}||w||^2$$ $$subj \ to \ \forall_i \ y_i(w.x_i+b) \ge 1$$ Primal form $$minimize_{w,b} \frac{1}{2}||w||^2$$ $$subj \ to \ \forall_i \ y_i(w.x_i+b) \ge 1$$ Dual form (Lagrangian multipliers) $$minimize_{\lambda} \sum_{i=1}^{m} \lambda_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \lambda_{i} \lambda_{j} y_{i} y_{j} (x_{i}.x_{j})$$ $$subj\ to\ \forall_{i}\ \lambda_{i} \geq 0\ and\ \sum_{i=1}^{m} \lambda_{i} y_{i} = 0$$ Problem: classes not linearly separable Solution: get more dimensions - Get more dimensions - Project the inputs to a feature space $$f(x) = sgn(\sum_{i=1}^{m} y_i \lambda_i(\Phi(x).\Phi(x_i)) + b)$$ The Kernel Trick: use a (positive definite) kernel as the dot product $$f(x) = sgn(\sum_{i=1}^{m} y_i \lambda_i k(x, x_i) + b)$$ - OK, as the input vectors only appear in the dot product - Again (as in Gaussian Process Optimization) some conditions on the kernel function must be met • Polynomial kernel $k(x, x') = (x.x')^d$ Gaussian kernel $$k(x, x') = exp(-\frac{||x - x'||^2}{2\sigma^2})$$ • Neural Net kernel (pretty cool!) $k(x,x') = tanh(\kappa(x.x') + \Theta)$ - Recap - Want to query as little points as possible and find the separating hyperplane - Recap - Want to query as little points as possible and find the separating hyperplane - Query the most uncertain points first - Recap - Want to query as little points as possible and find the separating hyperplane - Query the most uncertain points first - Request labels until only one hypothesis left in the version space #### • Recap - Want to query as little points as possible and find the separating hyperplane - Query the most uncertain points first - Request labels until only one hypothesis left in the version space - One idea was to use a form of binary search to shrink the version space; that's what we'll do - Back to SVMs - maximize $$sgn(\sum_{i=1}^{m} y_i \lambda_i k(x, x') + b)$$ $$\lambda_i \stackrel{\text{subj to}}{\geq} 0, \ \Sigma_{i=1}^m \lambda_i y + i = 0$$ Area(V) - the surface that the version space occupies on the hypersphere |w| = 1 (assume b = 0) (we use the duality between feature and version space) - Back to SVMs - Area(V) the surface that the version space occupies on the hypersphere |w| = 1 (assume b = 0) (we use the duality between feature and version space) - Ideally, want to always query instances that would halve Area(V) - V+,V- the version spaces resulting from querying a particular point and getting a + or classification - Want to query points with Area(V+) = Area(V-) - Bad Idea - Compute Area(V-) and Area(V+) for each point explicitly - Bad Idea - Compute Area(V-) and Area(V+) for each point explicitly - A better one - Estimate the resulting areas using simpler calculations - Bad Idea - Compute Area(V-) and Area(V+) for each point explicitly - A better one - Estimate the resulting areas using simpler calculations - Even better - Reuse values we already have - Simple Margin - Each data point has a corresponding hyperplane - How close this hyperplane is to w_i will tell us how much it bisects the current version space - Choose x closest to w - Simple Margin - If V_i is highly non-symmetric and/or \mathbf{w}_i is not centrally placed the result might be ugly - MaxMin Margin - Use the fact that an SVMs margin is proportional to the resulting version space's area - The algorithm: for each unlabeled point compute the two margins of the potential version spaces V+ and V-. Request the label for the point with the largest min(m+, m-) - MaxMin Margin - A better approximation of the resulting split - Both MaxMin and Ratio (coming next) computationally more intensive than Simple - But can still do slightly better, still without explicitly computing the areas - Ratio Margin - Similar to MaxMin, but considers the fact that the shape of the version space might make the margins small even if they are a good choice - Choose the point with the largest resulting $$min(\frac{m^{-}}{m^{+}}, \frac{m^{+}}{m^{-}})$$ Seems to be a good choice - Implementation - Once we have computed the SVM to get V+/-, we can use the distance of any support vector x from the hyperplane $$||\Sigma y_i \lambda_i k(x, x_i) + b||$$ to get the margins Good, as many lambdas are 0s - Article text Classification - Reuters Data Set, around 13000 articles - Multi-class classification of articles by topics - Around 10000 dimensions (word vectors) - Sample 1000 unlabelled examples, randomly choose two for a start - Polynomial kernel classification - Active Learning: Simple, MaxMin & Ratio - Articles transformed to vectors of word frequencies ("bag of words") | | Simple | MaxMin | Ratio | Equivalent
Random size | |----------|------------------|------------------|------------------|---------------------------| | Earn | 86.39 ± 1.65 | 87.75 ± 1.40 | 90.24 ± 2.31 | 34 | | Acq | 77.04 ± 1.17 | 77.08 ± 2.00 | 80.42 ± 1.50 | > 100 | | Money-fx | 93.82 ± 0.35 | 94.80 ± 0.14 | 94.83 ± 0.13 | 50 | | Grain | 95.53 ± 0.09 | 95.29 ± 0.38 | 95.55 ± 1.22 | 13 | | Crude | 95.26 ± 0.38 | 95.26 ± 0.15 | 95.35 ± 0.21 | > 100 | | Trade | 96.31 ± 0.28 | 96.64 ± 0.10 | 96.60 ± 0.15 | > 100 | | Interest | 96.15 ± 0.21 | 96.55 ± 0.09 | 96.43 ± 0.09 | > 100 | | Ship | 97.75 ± 0.11 | 97.81 ± 0.09 | 97.66 ± 0.12 | > 100 | | Wheat | 98.10 ± 0.24 | 98.48 ± 0.09 | 98.13 ± 0.20 | > 100 | | Corn | 98.31 ± 0.19 | 98.56 ± 0.05 | 98.30 ± 0.19 | | - Usenet text classification - Five comp.* groups, 5000 documents, 10000 dimensions - 2500 randomly selected for testing, 500 of the remaining for active learning - Generally similar results; Simple turns out unstable #### THE END - SVMs for pattern classification - Active Learning - Simple Margin - MinMax Margin - Ratio Margin - All better than passive learning, but MinMax and Ratio can be computationally intensive - Good results in text classification (also in handwriting recognition etc)