SUPPORT VECTOR MACHINE ACTIVE LEARNING

CS 101.2 Caltech, 03 Feb 2009

Paper by S. Tong, D. Koller Presented by Krzysztof Chalupka

OUTLINE

- SVM intro
 - Geometric interpretation
 - Primal and dual form
 - Convexity, quadratic programming

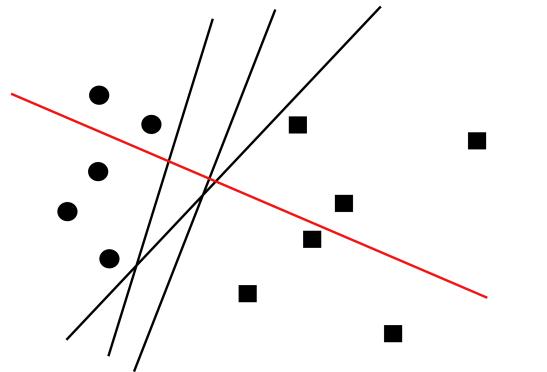
OUTLINE

- SVM intro
 - Geometric interpretation
 - Primal and dual form
 - Convexity, quadratic programming
- Active learning in practice
 - Short review
 - The algorithms
 - Implementation

OUTLINE

- SVM intro
 - Geometric interpretation
 - Primal and dual form
 - Convexity, quadratic programming
- Active learning in practice
 - Short review
 - The algorithms
 - Implementation
- Practical results

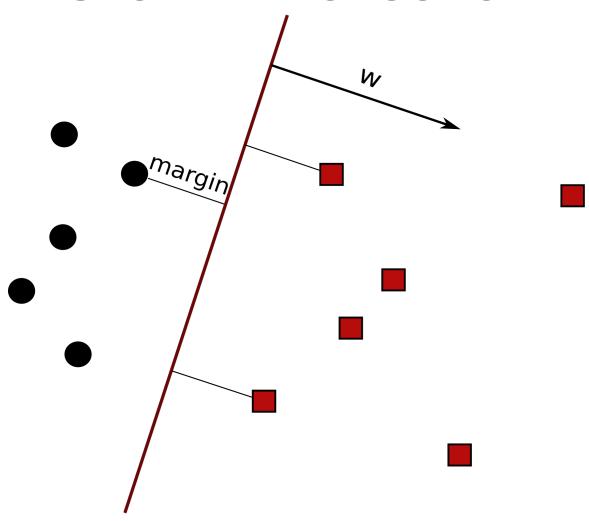
- Binary classification setting:
 - Input data $D_X = \{x_1, ..., x_n\}$, labels $\{y_1, ..., y_n\}$
 - Consistent hypotheses Version Space V



- SVM geometric derivation
 - For now, assume data linearly separable
 - Want to find the separating hyperplane that maximizes the distance between any training point and itself

- SVM geometric derivation
 - For now, assume data linearly separable
 - Want to find the separating hyperplane that maximizes the distance between any training point and itself
 - Good generalization

- SVM geometric derivation
 - For now, assume data linearly separable
 - Want to find the separating hyperplane that maximizes the distance between any training point and itself
 - Good generalization
 - Computationally attractive (later)



Primal form

$$minimize_{w,b} \frac{1}{2}||w||^2$$

$$subj \ to \ \forall_i \ y_i(w.x_i+b) \ge 1$$

Primal form

$$minimize_{w,b} \frac{1}{2}||w||^2$$

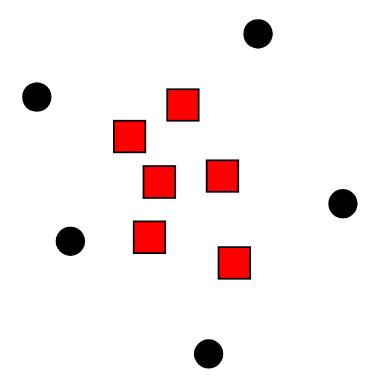
$$subj \ to \ \forall_i \ y_i(w.x_i+b) \ge 1$$

Dual form (Lagrangian multipliers)

$$minimize_{\lambda} \sum_{i=1}^{m} \lambda_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \lambda_{i} \lambda_{j} y_{i} y_{j} (x_{i}.x_{j})$$

$$subj\ to\ \forall_{i}\ \lambda_{i} \geq 0\ and\ \sum_{i=1}^{m} \lambda_{i} y_{i} = 0$$

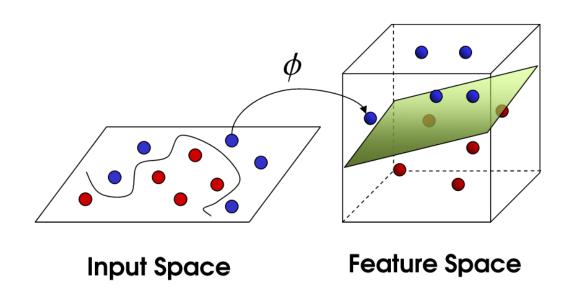
Problem: classes not linearly separable



Solution: get more dimensions

- Get more dimensions
 - Project the inputs to a feature space

$$f(x) = sgn(\sum_{i=1}^{m} y_i \lambda_i(\Phi(x).\Phi(x_i)) + b)$$



 The Kernel Trick: use a (positive definite) kernel as the dot product

$$f(x) = sgn(\sum_{i=1}^{m} y_i \lambda_i k(x, x_i) + b)$$

- OK, as the input vectors only appear in the dot product
- Again (as in Gaussian Process Optimization) some conditions on the kernel function must be met

• Polynomial kernel $k(x, x') = (x.x')^d$

Gaussian kernel

$$k(x, x') = exp(-\frac{||x - x'||^2}{2\sigma^2})$$

• Neural Net kernel (pretty cool!) $k(x,x') = tanh(\kappa(x.x') + \Theta)$

- Recap
 - Want to query as little points as possible and find the separating hyperplane

- Recap
 - Want to query as little points as possible and find the separating hyperplane
 - Query the most uncertain points first

- Recap
 - Want to query as little points as possible and find the separating hyperplane
 - Query the most uncertain points first
 - Request labels until only one hypothesis left in the version space

• Recap

- Want to query as little points as possible and find the separating hyperplane
- Query the most uncertain points first
- Request labels until only one hypothesis left in the version space
- One idea was to use a form of binary search to shrink the version space; that's what we'll do

- Back to SVMs
 - maximize

$$sgn(\sum_{i=1}^{m} y_i \lambda_i k(x, x') + b)$$

$$\lambda_i \stackrel{\text{subj to}}{\geq} 0, \ \Sigma_{i=1}^m \lambda_i y + i = 0$$

Area(V) - the surface that the version space occupies on the hypersphere |w| = 1 (assume b = 0)

(we use the duality between feature and version space)

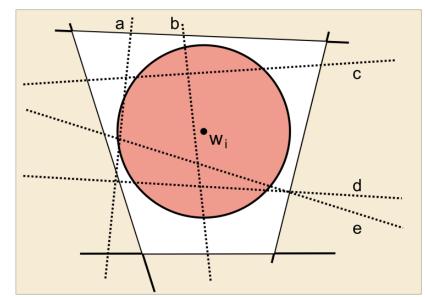
- Back to SVMs
 - Area(V) the surface that the version space occupies on the hypersphere |w| = 1 (assume b = 0)
 (we use the duality between feature and version space)
 - Ideally, want to always query instances that would halve Area(V)
 - V+,V- the version spaces resulting from querying a particular point and getting a + or classification
 - Want to query points with Area(V+) = Area(V-)

- Bad Idea
 - Compute Area(V-) and Area(V+) for each point explicitly

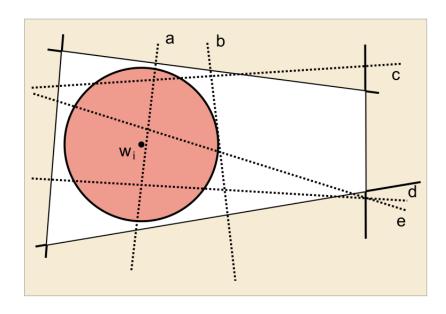
- Bad Idea
 - Compute Area(V-) and Area(V+) for each point explicitly
- A better one
 - Estimate the resulting areas using simpler calculations

- Bad Idea
 - Compute Area(V-) and Area(V+) for each point explicitly
- A better one
 - Estimate the resulting areas using simpler calculations
- Even better
 - Reuse values we already have

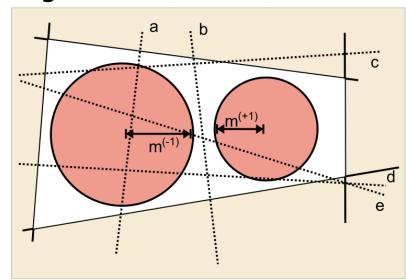
- Simple Margin
 - Each data point has a corresponding hyperplane
 - How close this hyperplane is to w_i will tell us how much it bisects the current version space
 - Choose x closest to w



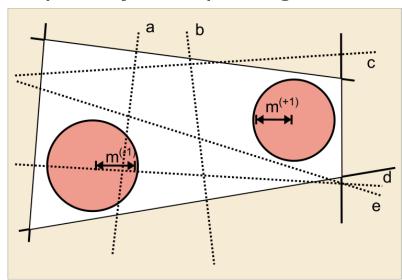
- Simple Margin
 - If V_i is highly non-symmetric and/or \mathbf{w}_i is not centrally placed the result might be ugly



- MaxMin Margin
 - Use the fact that an SVMs margin is proportional to the resulting version space's area
 - The algorithm: for each unlabeled point compute the two margins of the potential version spaces V+ and V-. Request the label for the point with the largest min(m+, m-)



- MaxMin Margin
 - A better approximation of the resulting split
 - Both MaxMin and Ratio (coming next) computationally more intensive than Simple
 - But can still do slightly better, still without explicitly computing the areas



- Ratio Margin
 - Similar to MaxMin, but considers the fact that the shape of the version space might make the margins small even if they are a good choice
 - Choose the point with the largest resulting

$$min(\frac{m^{-}}{m^{+}}, \frac{m^{+}}{m^{-}})$$

Seems to be a good choice

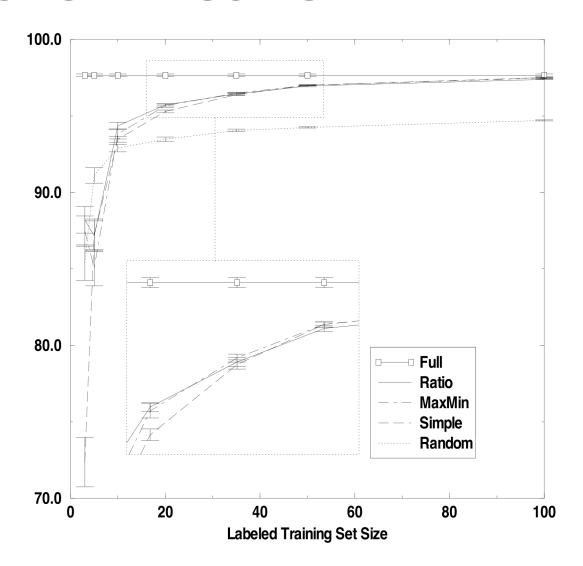
- Implementation
 - Once we have computed the SVM to get V+/-, we can use the distance of any support vector x from the hyperplane

$$||\Sigma y_i \lambda_i k(x, x_i) + b||$$

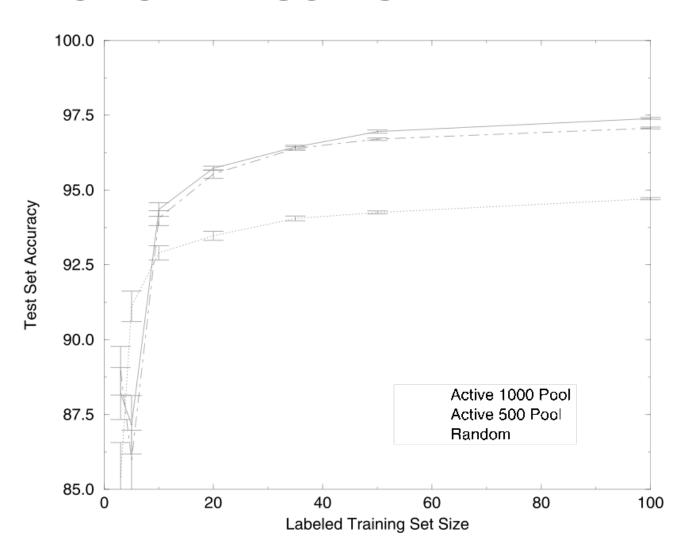
to get the margins

Good, as many lambdas are 0s

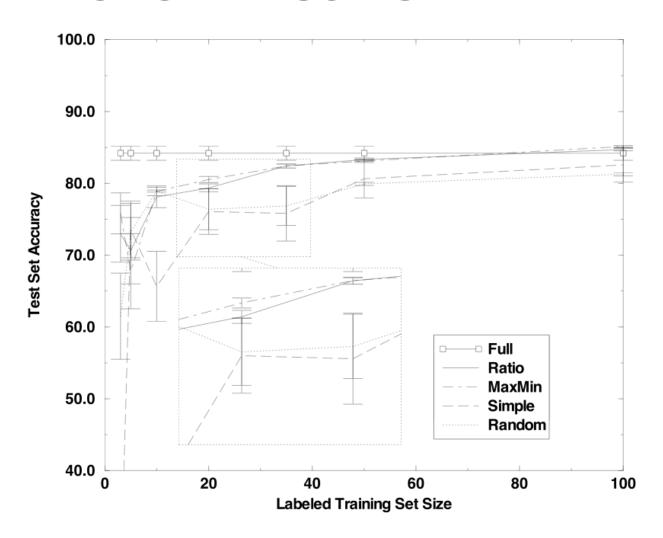
- Article text Classification
 - Reuters Data Set, around 13000 articles
 - Multi-class classification of articles by topics
 - Around 10000 dimensions (word vectors)
 - Sample 1000 unlabelled examples, randomly choose two for a start
 - Polynomial kernel classification
 - Active Learning: Simple, MaxMin & Ratio
 - Articles transformed to vectors of word frequencies ("bag of words")

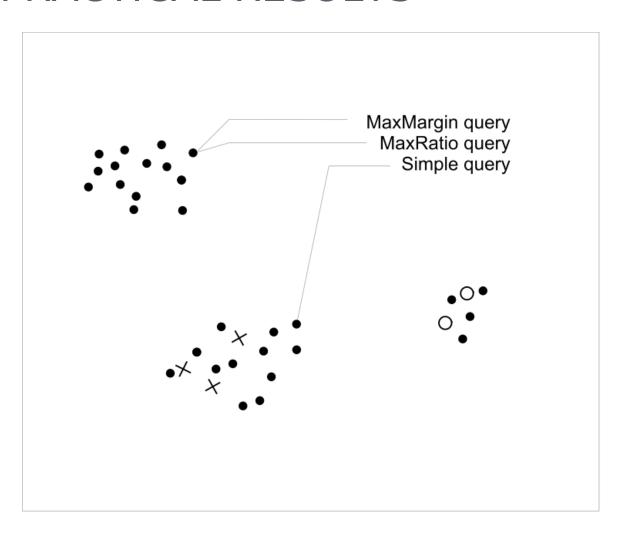


	Simple	MaxMin	Ratio	Equivalent Random size
Earn	86.39 ± 1.65	87.75 ± 1.40	90.24 ± 2.31	34
Acq	77.04 ± 1.17	77.08 ± 2.00	80.42 ± 1.50	> 100
Money-fx	93.82 ± 0.35	94.80 ± 0.14	94.83 ± 0.13	50
Grain	95.53 ± 0.09	95.29 ± 0.38	95.55 ± 1.22	13
Crude	95.26 ± 0.38	95.26 ± 0.15	95.35 ± 0.21	> 100
Trade	96.31 ± 0.28	96.64 ± 0.10	96.60 ± 0.15	> 100
Interest	96.15 ± 0.21	96.55 ± 0.09	96.43 ± 0.09	> 100
Ship	97.75 ± 0.11	97.81 ± 0.09	97.66 ± 0.12	> 100
Wheat	98.10 ± 0.24	98.48 ± 0.09	98.13 ± 0.20	> 100
Corn	98.31 ± 0.19	98.56 ± 0.05	98.30 ± 0.19	



- Usenet text classification
 - Five comp.* groups, 5000 documents, 10000 dimensions
 - 2500 randomly selected for testing, 500 of the remaining for active learning
 - Generally similar results; Simple turns out unstable





THE END

- SVMs for pattern classification
- Active Learning
 - Simple Margin
 - MinMax Margin
 - Ratio Margin
- All better than passive learning, but MinMax and Ratio can be computationally intensive
- Good results in text classification (also in handwriting recognition etc)