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 Short review
 The algorithms
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 Practical results



SVM A SHORT INTRODUCTION

 Binary classification setting:
 Input data DX={x1, …, xn}, labels {y1, …, yn}
 Consistent hypotheses – Version Space V
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 SVM geometric derivation
 For now, assume data linearly separable
 Want to find the separating hyperplane that 

maximizes the distance between any training 
point and itself

 Good generalization
 Computationally attractive (later)
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 Primal form

 Dual form (Lagrangian multipliers)
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SVM A SHORT INTRODUCTION
 Problem: classes not linearly separable

 Solution: get more dimensions



SVM A SHORT INTRODUCTION

 Get more dimensions
 Project the inputs to a feature space



SVM A SHORT INTRODUCTION

 The Kernel Trick: use a (positive definite) 
kernel as the dot product

 OK, as the input vectors only appear in the dot 
product

 Again (as in Gaussian Process Optimization) 
some conditions on the kernel function must be 
met



SVM A SHORT INTRODUCTION

 Polynomial kernel

 Gaussian kernel

 Neural Net kernel (pretty cool!)



ACTIVE LEARNING

 Recap
 Want to query as little points as possible and find 

the separating hyperplane



ACTIVE LEARNING

 Recap
 Want to query as little points as possible and find 

the separating hyperplane
 Query the most uncertain points first



ACTIVE LEARNING

 Recap
 Want to query as little points as possible and find 

the separating hyperplane
 Query the most uncertain points first
 Request labels until only one hypothesis left in 

the version space
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 Recap
 Want to query as little points as possible and find 

the separating hyperplane
 Query the most uncertain points first
 Request labels until only one hypothesis left in 

the version space
 One idea was to use a form of binary search to 

shrink the version space; that’s what we’ll do



ACTIVE LEARNING

 Back to SVMs
 maximize

subj to

 Area(V) – the surface that the version space 
occupies on the hypersphere |w| = 1 (assume b 
= 0)
(we use the duality between feature and version 
space)
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 Back to SVMs
 Area(V) – the surface that the version space 

occupies on the hypersphere |w| = 1 (assume b 
= 0)
(we use the duality between feature and version 
space)

 Ideally, want to always query instances that 
would halve Area(V)

 V+,V- - the version spaces resulting from 
querying a particular point and getting a + or – 
classification

 Want to query points with Area(V+) = Area(V-) 
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explicitly
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ACTIVE LEARNING

 Bad Idea
 Compute Area(V-) and Area(V+) for each point 

explicitly
 A better one

 Estimate the resulting areas using simpler 
calculations

 Even better
 Reuse values we already have



ACTIVE LEARNING

 Simple Margin
 Each data point has a corresponding 

hyperplane
 How close this hyperplane is to wi will tell us 

how much it bisects the current version space
 Choose x closest to w



ACTIVE LEARNING

 Simple Margin
 If Vi is highly non-symmetric and/or wi is not 

centrally placed the result might be ugly



ACTIVE LEARNING

 MaxMin Margin
 Use the fact that an SVMs margin is proportional 

to the resulting version space’s area 
 The algorithm: for each unlabeled point compute 

the two margins of the potential version spaces 
V+ and V-. Request the label for the point with the 
largest min(m+, m-)



ACTIVE LEARNING

 MaxMin Margin
 A better approximation of the resulting split
 Both MaxMin and Ratio (coming next) 

computationally more intensive  than Simple
 But can still do slightly better, still without 

explicitly computing the areas



ACTIVE LEARNING

 Ratio Margin
 Similar to MaxMin, but considers the fact that the 

shape of the version space might make the 
margins small even if they are a good choice

 Choose the point with the largest resulting

 Seems to be a good choice 



ACTIVE LEARNING

 Implementation
 Once we have computed the SVM to get V+/-, we 

can use the distance of any support vector x 
from the hyperplane

to get the margins
 Good, as many lambdas are 0s



PRACTICAL RESULTS

 Article text Classification
 Reuters Data Set, around 13000 articles
 Multi-class classification of articles by topics
 Around 10000 dimensions (word vectors)
 Sample 1000 unlabelled examples, randomly 

choose two for a start
 Polynomial kernel classification
 Active Learning: Simple, MaxMin & Ratio
 Articles transformed to vectors of word 

frequencies (“bag of words”)
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PRACTICAL RESULTS

 Usenet text classification
 Five comp.* groups, 5000 documents, 10000 

dimensions
 2500 randomly selected for testing, 500 of the 

remaining for active learning
 Generally similar results; Simple turns out 

unstable
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THE END

 SVMs for pattern classification
 Active Learning

 Simple Margin
 MinMax Margin
 Ratio Margin

 All better than passive learning, but MinMax 
and Ratio can be computationally intensive

 Good results in text classification (also in 
handwriting recognition etc)
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