## Human Active Learning, NIPS 2008

By R. Castro, C. Kalish, R. Nowak, R. Qian, T. Rogers, X. Zhu Slides by Cheng William Hong

## Active Learning

- Learner can pick examples for labeling
- ▶ For certain problems, has much better performance
- Paper focuses on application of active learning to classification
  - Both machines and humans
- No previous work attempting to quantify human active learning performance

## Two category learning task

- ► ID binary classification in [0,1]
- $\blacktriangleright$  Data:  $(X_i, Y_i)$
- $Y_i$  is the category of  $X_i$  with probability  $I \varepsilon$



#### No noise

- We have discussed this case extensively in the class
- Error from passive learning is O(1/n)
- ▶ Error from active learning is  $O(2^{-(n+1)})$  via binary search
- What if there is noise?

## In the presence of uncertainty

- Passive learning: Still polynomial error at least
- Active learning: Cannot use deterministic bisection
  - Still can do "binary search", from Bayesian estimation
  - Assume some prior distribution on  $\theta$ : say it is uniformly distributed
  - Bayes' Rule:  $P(A|B) = \frac{P(B|A)\,P(A)}{P(B)}.$
  - ▶ P(A): prior probability
  - ▶ P(A|B): posterior probability
  - ▶ P(B|A): conditional probability
  - ▶ P(B): marginal probability
- Idea: Pick point in the median of the distribution

## Bayesian binary search

Before any information:



- ▶ The median of the CDF is at  $\frac{1}{2}$ , so we pick that point, say we obtain I
- $P(\theta > \frac{1}{2}|(X,Y) = (\frac{1}{2}, 1)) = P((X,Y) = (\frac{1}{2}, 1)|\theta > \frac{1}{2})P(\theta > \frac{1}{2}) = \varepsilon$   $P((X,Y) = (\frac{1}{2}, 1))$
- ▶  $P(\theta \le \frac{1}{2}|(X,Y) = (\frac{1}{2}, I)) = I \varepsilon$
- Update prior distribution:



Pick a new point in the median

## Bayesian binary search

We now have prior distribution:



Say next label is 0



▶ Next label is 0



- This method works well in practice
- ▶ Can be applied to more complicated scenarios

## More complicated boundaries



#### Mathematical bounds

Analysis of a slightly different method with discrete query locations gives:

$$\sup_{\theta \in [0,1]} \mathbb{E}[|\hat{\theta}_n - \theta|] \le 2 \left( \sqrt{\frac{1}{2} + \sqrt{\epsilon(1 - \epsilon)}} \right)^n$$

The performance of any passive learning algorithm is bounded by:

$$\inf_{\hat{\theta}_n} \sup_{\theta \in [0,1]} \mathbb{E}[|\hat{\theta}_n - \theta|] \ge \frac{1}{4} \left(\frac{1 + 2\epsilon}{1 - 2\epsilon}\right)^{2\epsilon} \frac{1}{n+1}$$

Still an exponential advantage from active learning!

# Minimax bounds for active learning by R. Castro and R. Nowak

- ▶ Bounded error:  $\forall x |P(Y=1,X=x) \frac{1}{2}| > c, c > 0$
- Discusses the case of unbounded error
- ▶ Complexity of the boundary characterized by  $\rho = (d-1)/\kappa$ 
  - d are the dimensions of the feature space
  - $\rho$  is the Hölder regularity of the boundary
    - A function is Hölder smooth if it has continuous partial derivatives up to order  $k = Floor(\alpha)$
  - **Behavior of P(Y=I,X=x) around characterized by \kappa** 
    - $\kappa = 1$  for bounded error, >1 for unbounded

#### Error bounds for unbounded error

- Idea is to reduce problem to deciding among a finite collection of representative distributions
- Fastest error decay for active learning:

$$n^{-\frac{\kappa}{2\kappa+\rho-2}}$$

Fastest error decay for passive learning:

$$n^{-\frac{\kappa}{2\kappa+\rho-1}}$$

- Active learning always superior to passive learning (fallback guarantee)
- Upper bounds for learning are similar to a logarithmic factor

#### How do humans learn?



- Passive learning: observe some object and its category label
- Active learning: can also ask questions

## Are people good at picking examples?

- Rich literature of conflicting claims regarding people's ability to pick optimal examples
- Classic example: to assess  $p \Rightarrow q$ 
  - ▶ People examine q instances to see if p holds, ignoring ¬q instances
- Is that based on analyzing the task wrongly?
- Much of the debate in psychological literature is on task analysis and assessing performance
- Opportunity for applying the formal descriptions from machine learning
- ▶ How good are they in comparison to computers?

### What are we looking for in active learning?

- Consistency
  - Generalization error should go to 0
- Fallback guarantee
  - At least as good as passive learning
- What we really want:
  - Error decreases much faster than passive learning

### Questions

- Do humans perform better when they can select their own examples?
- Do they achieve the full benefit?
- Can machine learning be used to help them?
- Do the answers to the above depend on the difficulty of the problem?



## Experimental Setup

#### "Random"

Passive learning condition, subject is presented with uniformly sampled examples

#### "Human-Active"

Active learning condition, subject selects queries and receives labels

#### "Machine-Yoked"

Active learning with machine learning, human observes labels for queries selected by the machine learning algorithm

#### Conditions

- ▶ 33 participants assigned: 13, 14, 6 to the three conditions
- Short practice session followed by 5 x 45 iterations
- $\epsilon$  = 0, 0.05, 0.1, 0.2, 0.4, random order
- $\bullet$  in [1/16, 15/16]
- $\blacktriangleright$  Participants asked to guess  $\theta$  after every 3 iterations
- ▶ Compute mean  $|\theta_n \theta|$

# Q1. Do humans perform better when they can actively select samples for labeling?

- Yes, at least for low noise levels. At higher noise levels, the performance is similar.
- Human estimation error is smaller in Human-Active than in Random
  - Very significant at low noise
  - Deteriorates and becomes similar in performance at high noise levels

### Error trends for $\varepsilon = 0.10$





### Error trends for $\varepsilon = 0.20$





### Error trends for $\varepsilon = 0.40$





# Q2. Can humans achieve the full benefit of active learning?

- Human active learning does have exponential convergence
  - Slower decay constants
- Human passive learning
  - Occasionally does not achieve even polynomial convergence
  - Does not approach optimal performance

## Rate of error decrease (low noise)



## Rate of error decrease (high noise)



## Analysis of error decrease

|              | $\epsilon = 0$ | 0.05  | 0.1   | 0.2   | 0.4   |
|--------------|----------------|-------|-------|-------|-------|
| Human-Active | 0.031          | 0.042 | 0.037 | 0.030 | 0.005 |
| bound (2)    | 0.347          | 0.166 | 0.112 | 0.053 | 0.005 |

Table 1: The exponential decay constants of human active learning is slower than predicted by statistical learning theory for lower noise levels.

# Q3. Can machine learning be used to enhance human learning?

- Looks like it at high noise levels
- Machine-Yoked is similar to Human-Active in low noise but a lot better at high noise

#### Human estimate error



Figure 5: Human estimate error  $|\hat{\theta}_n - \theta|$  under different conditions and noise levels. The x-axis is iteration n. The error bars are  $\pm 1$  standard error. Human-Active is better than Random when noise is low; Machine-Yoked is better than Human-Active when noise is high.

# Q3. Can machine learning be used to enhance human learning?

#### Upon inspection:

- Subjects noticed that the computer was generating examples that converge to the true boundary
- Simply placed their guess near the last training example
- They are probably not actually "learning"
- Inconclusive!

# Q4. Do the above answers depend on the difficulty of the task?

- ▶ Noise level affects human learning significantly
- At high noise the advantage of active learning over passive learning seems to disappear

#### Revisit our wishlist

#### Consistency:

Holds except for a few cases where the slope is almost horizontal

#### ► Fallback guarantee:

 Holds, active learning's advantage may diminish or disappear but it never becomes worse

#### Rate improvement

Seems to be only true at low noise levels

#### Conclusions

- Humans are able to actively select queries and use them to learn faster
  - Ability to do this diminishes with high noise
  - Do not approach theoretic bounds
- Passive learning alone is not a good model for human learning
- The task is not especially natural
  - Perhaps we will obtain different results for a task which is more intuitive and where people have more experience

## My comments

- Interesting premise and experiment
- Very small sample size (only 33)
  - Are the results reproducible?
- One or two people performing particularly badly affected the graph a lot
- At high noise, still exponential advantage from active learning, but graphs are really similar
- General trend is believable
- ▶ Comment about the failure to learn at  $\epsilon$  = 0.10 and 0.20 but not 0.40 is insufficiently supported
- Seems like the differential of the decay constant is smaller for higher noise

#### More comments

- When extrapolating linear relationships, would have been nice if R<sup>2</sup> values were provided
  - A few of them don't seem to fit well at all
- A side idea about the Machine-Yoked
  - "Memorizing" strategy by the human
  - Perhaps we could generate the labeled examples using active learning, but provide them to the human in random order
  - If people are memorizing, then it would greatly affect convergence in later rounds

## Thanks! Questions?