Active Learning and Optimized Information Gathering

Lecture 7 – Learning Theory

CS 101.2 Andreas Krause

Announcements

- Project proposal: Due tomerrow 1/27
- Homework 1: Due Thursday 1/29
 - Any time is ok.
- Office hours
 - Come to office hours before your presentation!
 - Andreas: Monday 3pm-4:30pm, 260 Jorgensen
 - Ryan: Wednesday 4:00-6:00pm, 109 Moore

Recap Bandit Problems

- Bandit problems
 - Online optimization under limited feedback
- Exploration—Exploitation dilemma
- Algorithms with low regret:
 - ε-greedy, UCB1
- Payoffs can be
 - Probabilistic
 - Adversarial (oblivious / adaptive)

More complex bandits

- Bandits with many arms
 - Online linear optimization (online shortest paths ...)
 - X-armed bandits (Lipschitz mean payoff function)
 - Gaussian process optimization (Bayesian assumptions about mean payoffs)
- Bandits with state
 - Contextual bandits
 - Reinforcement learning
- Key tool: Optimism in the face of uncertainty ©

Course outline

Online decision making

2. Statistical active learning

3. Combinatorial approaches

Spam or Ham?

- Labels are expensive (need to ask expert)
- Which labels should we obtain to maximize classification accuracy?

Outline

- Background in learning theory
- Sample complexity
- Key challenges
- Heuristics for active learning
- Principled algorithms for active learning

Credit scoring

Credit score	Defaulted?
70	0
42	1
36	1
82	0
50	???

Want decision rule that performs well for unseen examples (generalization)

More general: Concept learning

• Set X of instances $X = \{1, ..., 100\}$

• True concept c: $X \rightarrow \{0,1\}$

• Hypothesis h: $X \rightarrow \{0,1\}$

$$h(x) = 1 \quad \text{if } x \ge t^1$$

$$h(x) = 0 \quad \text{if } x \le t^1$$

- Hypothesis space $H = \{h_1, ..., h_n, ...\}$
- Want to pick good hypothesis
 - (agrees with true concept on most instances)

Example: Binary thresholds

- Input domain: X={1,2,...,100}
- True concept c:

$$c(x) = +1 \text{ if } x \ge t$$

 $c(x) = -1 \text{ if } x < t$

How good is a hypothesis?

- Set X of instances, concept c: $X \rightarrow \{0,1\}$
- Hypothesis h: $X \to \{0,1\}$, $H = \{h_1, ..., h_n, ...\}$
- Distribution P_X over X
- error_{true}(h) = $P(\xi \times \epsilon \times h(k) \neq c(k)) = E_{k \sim p_{in}}[h(k) c(k)]$
- Want h* = argmin_{h∈ H} error_{true}(h)
- Can't compute error_{true}(h)!

Concept learning

- Data set D = $\{(x_1, y_1), ..., (x_N, y_N)\}, x_i \in X, y_i \in \{0, 1\}$
- Assume x_i drawn **independently** from P_X ; $y_i = c(x_i)$
- Also assume c ∈ H
- h consistent with D \Leftrightarrow $\forall i h(x_i) = y_i$
- More data fewer consistent hypotheses

Learning strategy:

- Collect "enough" data
- Output consistent hypothesis h
- Hope that error_{true}(h) is small

Sample complexity

- Let ε>0
- How many samples do we need s.t. **all** consistent hypotheses have error< ε ??
- Def: h ∈ H bad ⇔ error true (h) > €
- Suppose $h \in H$ is bad. Let $x \sim P_X$, y = c(x).

Then:
$$P(h(x) \neq c(x)) \geq \epsilon$$

Sample complexity

- P(h bad and "survives" 1 data point) ≤ 1-ε
- P(h bad and "survives" n data points) ≤ (1-ε)ⁿ

 \bullet P(remains \geq 1 bad h after n data points) =

$$P(h_1 \text{ bad} \text{ v} h_2 \text{ bad} \text{ v} h_3 \text{ bad} \dots \text{ v} h_N \text{ bad}) \leq P(h_1 \text{ bad}) + P(h_2 \text{ bad}) + \dots + P(h_N \text{ bad}) \leq |H| (1-\varepsilon)^M$$

Probability of bad hypothesis

P(remains
$$\geq 1$$
 both hypotheris) $\leq |H| (1-\epsilon)^m$
after n data points)
$$\leq \exp(-\epsilon m) \cdot |H|$$
P(sth bad happens)

Sample complexity for finite hypothesis spaces [Haussler '88]

Theorem: Suppose

- $|H| < \infty$,
- Data set |D|=n drawn i.i.d. from P_x (no noise)
- 0<ε<1

Then for any $h \in H$ consistent with D:

$$P(error_{true}(h) > \varepsilon) \leq |H| exp(-\varepsilon n) = |H|e^{-\varepsilon n}$$

"PAC-bound" (probably approximately correct)

How can we use this result?

P(error_{true}(h)
$$\geq \epsilon$$
) \leq |H| exp(- ϵ n) = δ

Possibilities:

- Given δ , n solve for ϵ
- Given ε and δ , solve for n
- (Given ε , n, solve for δ)

Eg.:
$$|H|e^{-\varepsilon m} \in S$$
 $\Rightarrow \log |H| - \varepsilon m \leq \log S$
 $\Rightarrow \varepsilon m \geq \log |H| + \log \frac{1}{S}$
 $\Rightarrow n \geq \frac{1}{\varepsilon} (\log |H| + \log \frac{1}{S})$

Example: Credit scoring

- \bullet X = {1,2,...1000}
- H = binary thresholds on X
- |H| = 1001
- Want error \leq 0.01 with probability .999

Need n \geq 1382 samples

Limitations

How do we find consistent hypothesis?

• What if $|H| = \infty$?

What if there's noise in the data? (or c ∉ H)

Credit scoring

Credit score	Defaulted?
36	1
48	0
52	1
70	0
81	0
44	???

No binary threshold function explains this data with 0 error

Noisy data

- Sets of instances X and labels Y = {0,1}
- Suppose (X,Y) \sim P_{XY}
- Hypothesis space H

$$error_{true}(h) = E_{x,y}[|h(x) - y|] = \mathcal{P}(\{(x,y) : h(x) \neq y\})$$

Want to find $\operatorname{argmin}_{h \in H} \operatorname{error}_{\operatorname{true}}(h)$

Learning from noisy data

• Suppose D = $\{(x_1, y_1), ..., (x_n, y_n)\}$ where $(x_i, y_i) \sim P_{X,Y}$

error_{train}(h) =
$$E_{(x,y) \cap P_{xy}}$$
 | $h(x) - y$ | $\sum_{i} |h(x_{i}) - y_{i}|$ | $\sum_{i} |h(x_{i}) - y_{i}|$

Learning strategy with noisy data

- Collect "enough" data
- Output h' = argmin_{h∈ H} error_{train}(h)
- Hope that $error_{true}(h') \approx min_{h \in H} error_{true}(h)$

Estimating error

- How many samples do we need to accurately estimate the true error?
- Data set D = $\{(x_1, y_1), ..., (x_n, y_n)\}$ where $(x_i, y_i) \sim P_{X,Y}$ $z_i = |h(x_i) - y_i| \in \{0,1\}$
- z_i are i.i.d. samples from Bernoulli RV Z = |h(X) Y|

$$error_{train}(h) = \frac{1}{h} \sum_{i=1}^{h} \frac{g_i}{g_i}$$

 $error_{true}(h) = \frac{1}{h} \sum_{i=1}^{h} \frac{g_i}{g_i}$

How many samples s.t. |error_{train}(h) - error_{true}(h)| is small??

Estimating error

How many samples do we need to accurately estimate the true error?

Applying Chernoff-Hoeffding bound:

P(
$$|error_{true}(h) - error_{train}(h)| \ge \varepsilon$$
) $\le exp(-2n \varepsilon^2)$

Sample complexity with noise

Call h∈ H bad if

$$error_{true}(h) > error_{train}(h) + \varepsilon$$

P(h bad "survives" n training examples) \leq exp(-2 n ε^2)

P(remains ≥ 1 bad h after n examples) $\leq |H| \exp(-2n\epsilon^2)$

PAC Bound for noisy data

Theorem: Suppose

- $|H| < \infty$,
- Data set |D|=n drawn i.i.d. from P_{XY}
- 0

Then for $a_{n}^{all} h \in H$ it holds that with Prob l-S

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\log|H| + \log 1/\delta}{2n}}$$

PAC Bounds: Noise vs. no noise

Want error $\leq \varepsilon$ with probability 1- δ

```
No noise: n \ge 1/\epsilon (log |H| + log 1/\delta)
```

Noise: $n \ge 1/\epsilon^2 (\log |H| + \log 1/\delta)$

Limitations

How do we **find** consistent hypothesis?

What if
$$|H| = \infty$$
?

What if there's noise in the data? (or c ∉ H) ✓

Credit scoring

Credit score	Defaulted?
36.1200	1
48.7983	1
52.3847	1
70.1111	0
81.3321	0
44.3141	???

Want to classify continuous instance space

$$|H| = \infty$$

Large hypothesis spaces

Idea: Labels of few data points imply labels of many unlabeled data points

How many points can be *arbitrarily* classified using binary thresholds?

How many points can be *arbitrarily* classified using linear separators? (1D)

$$h(x) = Sign(w_0 + v_1 \cdot x)$$

can arbitrarily classify any two data paints

How many points can be *arbitrarily* classified using linear separators? (2D)

VC dimension

• Let $S \subseteq X$ be a set of instances

- (abeled t

 labeled t

 s | | S
- A **Dichotomy** is a nontrivial partition of $S = S_1 \cup S_0$
- S is **shattered** by hypothesis space H if for $a\eta y S_0 = A$ dichotomy, there exists a consistent hypothesis h (i.e., h(x)=1 if $x \in S_1$ and h(x)=0 if $x \in S_0$)
- The VC (Vapnik-Chervonenkis) dimension VC(H) of H is the size of the largest set S shattered by H (possibly ∞)
- VC(H) ≤ log |H|

VC Generalization bound

Bound for finite hypothesis spaces

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\log|H| + \log 1/\delta}{2n}}$$

VC-dimension based bound

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{VC(H)\left(1 + \log\frac{2n}{VC(H)}\right)}{n}}$$

Applications

- Allows to prove generalization bounds for large hypothesis spaces with structure.
- For many popular hypothesis classes, VC dimension known
 - Binary thresholds
 - Linear classifiers
 - Decision trees
 - Neural networks

Passive learning protocol

Data source $P_{X,Y}$ (produces inputs x_i and labels y_i)

Data set
$$D_n = \{(x_1, y_1), ..., (x_n, y_n)\}$$

Learner outputs hypothesis h

$$error_{true}(h) = E_{x,y} |h(x) - y|$$

From passive to active learning

Some labels "more informative" than others

Statistical passive/active learning protocol

Data source P_X (produces inputs x_i)

Active learner assembles

data set $D_n = \{(x_1, y_1), ..., (x_n, y_n)\}$

by selectively obtaining labels

Learner outputs hypothesis h

$$\bigcup$$

$$error_{true}(h) = E_{x\sim P}[h(x) \neq c(x)]$$

Passive learning

- Input domain: D=[0,1]
- True concept c:

$$c(x) = +1 \text{ if } x \ge t$$

 $c(x) = -1 \text{ if } x < t$

Passive learning:
 Acquire all labels y_i ∈ {+,-}

Active learning

- Input domain: D=[0,1]
- True concept c:

$$c(x) = +1 \text{ if } x \ge t$$

 $c(x) = -1 \text{ if } x < t$

- Passive learning: Acquire all labels $y_i \in \{+,-\}$
- Active learning:
 Decide which labels to obtain

Comparison

	Labels needed to learn with classification error ϵ
Passive learning	$\Omega(1/\epsilon)$
Active learning	O(log 1/ε)

Active learning can exponentially reduce the number of required labels!

Key challenges

- PAC Bounds we've seen so far crucially depend on (i.i.d.) data!!
- Actively assembling data set causes bias!
 - If we're not careful, active learning can do worse!

What you need to know

- Concepts, hypotheses
- PAC bounds (probably approximate correct)
 - For noiseless ("realizable") case
 - For noisy ("unrealizable") case
- VC dimension
- Active learning protocol