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Announcements
Project proposal: Due tomorrow 1/27

Homework 1: Due Thursday 1/29

Any time is ok. 

Office hours

Come to office hours before your presentation!

Andreas: Monday 3pm-4:30pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore
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Recap Bandit Problems

Bandit problems

Online optimization under limited feedback

Exploration—Exploitation dilemma

Algorithms with low regret:

ε-greedy, UCB1

Payoffs can be

Probabilistic

Adversarial (oblivious / adaptive)
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More complex bandits

Bandits with many arms

Online linear optimization (online shortest paths …)

X-armed bandits (Lipschitz mean payoff function)

Gaussian process optimization (Bayesian assumptions about 

mean payoffs)

Bandits with state

Contextual bandits

Reinforcement learning

Key tool: Optimism in the face of uncertainty ☺
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Course outline
1. Online decision making

2. Statistical active learning

3. Combinatorial approaches
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Spam or Ham?

Labels are expensive (need to ask expert)

Which labels should we obtain to maximize 

classification accuracy?
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label = sign(w0 + w1 x1 + w2 x2)

(linear separator)
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Outline

Background in learning theory

Sample complexity

Key challenges

Heuristics for active learning

Principled algorithms for active learning
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Credit scoring

???50

082

136

142

070

Defaulted?Credit score

Want decision rule that performs well

for unseen examples (generalization)
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More general: Concept learning
Set X of instances

True concept c: X � {0,1}

Hypothesis h: X � {0,1} 

Hypothesis space H = {h1, …, hn, …}

Want to pick good hypothesis 

(agrees with true concept on most instances)
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Example: Binary thresholds
Input domain: X={1,2,…,100}

True concept c:

c(x) = +1 if x≥ t

c(x) = -1  if x < t

- - - - + + + +

1001 Threshold t
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How good is a hypothesis?
Set X of instances, concept c: X � {0,1}

Hypothesis h: X � {0,1} , H = {h1, …, hn, …}

Distribution PX over X

errortrue(h) =

Want h* = argminh∈ H errortrue(h)

Can’t compute errortrue(h)!
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Concept learning
Data set D = {(x1,y1),…,(xN,yN)}, xi ∈ X, yi ∈ {0,1}

Assume xi drawn independently from PX; yi = c(xi) 

Also assume c ∈ H

h consistent with D �

More data � fewer consistent hypotheses

Learning strategy: 

Collect “enough” data

Output consistent hypothesis h

Hope that errortrue(h) is small
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Sample complexity
Let ε>0

How many samples do we need s.t. all consistent 

hypotheses have error< ε??

Def: h ∈ H bad �

Suppose h∈ H is bad. Let x ∼ PX, y = c(x). 

Then:
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Sample complexity
P( h bad and “survives” 1 data point) = 

P( h bad and “survives” n data points) = 

P( remains ≥ 1 bad h after n data points) = 
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Probability of bad hypothesis
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Sample complexity 

for finite hypothesis spaces [Haussler ’88]

Theorem: Suppose 

|H| < ∞, 

Data set |D|=n drawn i.i.d. from PX (no noise)

0<ε <1

Then for any h ∈ H consistent with D:

P( errortrue(h) > ε) ≤ |H| exp(-ε n)

“PAC-bound” (probably approximately correct)



17

How can we use this result?

P( errortrue(h) ≥ ε ) ≤ |H| exp(-ε n) = δ

Possibilities:

Given δ, n solve for ε

Given ε and δ, solve for n

(Given ε, n, solve for δ)
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Example: Credit scoring
X = {1,2,…1000}

H = binary thresholds on X

|H| = 

Want error ≤ 0.01 with probability .999

Need n ≥ 1382 samples
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Limitations
How do we find consistent hypothesis?

What if |H| = ∞?

What if there’s noise in the data? (or c ∉ H)
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Credit scoring

???44

081

070

152

048

136

Defaulted?Credit score

No binary threshold function explains

this data with 0 error
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Noisy data
Sets of instances X and labels Y = {0,1}

Suppose (X,Y)∼ PXY

Hypothesis space H

errortrue(h) = Ex,y[ |h(x) − y| ]

Want to find 

argminh∈ H errortrue(h)
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Learning from noisy data
Suppose D = {(x1,y1),…,(xn,yn)} where (xi,yi) ∼ PX,Y

errortrain(h) = (1/n) ∑i |h(xi) − yi|

Learning strategy with noisy data

Collect “enough“ data

Output h’ = argminh∈ H errortrain(h)

Hope that errortrue(h’) ≈minh ∈H errortrue(h)
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Estimating error
How many samples do we need to accurately 
estimate the true error?

Data set D = {(x1,y1),…,(xn,yn)} where (xi,yi) ∼ PX,Y

zi = |h(xi) - yi | ∈ {0,1}

zi are i.i.d. samples from Bernoulli RV Z = |h(X) - Y|

errortrain(h) =

errortrue(h)  =

How many samples s.t. 
|errortrain(h) – errortrue(h)| is small??
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Estimating error
How many samples do we need to accurately 

estimate the true error?

Applying Chernoff-Hoeffding bound:

P( |errortrue(h) – errortrain(h)| ≥ ε) ≤ exp(-2n ε2)
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Sample complexity with noise
Call h∈ H bad if 

errortrue(h) > errortrain(h) + ε

P(h bad “survives” n training examples) ≤ exp(-2 n ε2)

P(remains≥ 1 bad h after n examples) ≤
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PAC Bound for noisy data
Theorem: Suppose 

|H| < ∞, 

Data set |D|=n drawn i.i.d. from PXY

0<ε <1

Then for any h ∈ H it holds that

errortrue(h) ≤ errortrain(h) +

√
log |H|+ log 1/δ

2n
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PAC Bounds: Noise vs. no noise
Want error ≤ ε with probability 1-δ

No noise: n ≥ 1/ε ( log |H| + log 1/δ )

Noise: n ≥ 1/ε2 ( log |H| + log 1/δ )
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Limitations
How do we find consistent hypothesis?

What if |H| = ∞?

What if there’s noise in the data? (or c ∉ H)
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Credit scoring

???44.3141

081.3321

070.1111

152.3847

148.7983

136.1200

Defaulted?Credit score

Want to classify continuous instance space

|H| = ∞∞∞∞
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Large hypothesis spaces
Idea: Labels of few data points imply labels of many 

unlabeled data points
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How many points can be arbitrarily 

classified using binary thresholds?
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How many points can be arbitrarily 

classified using linear separators? (1D)
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How many points can be arbitrarily 

classified using linear separators? (2D)



34

VC dimension
Let S ⊆ X be a set of instances

A Dichotomy is a nontrivial partition of S = S1 ∪ S0

S is shattered by hypothesis space H if for any 

dichotomy, there exists a consistent hypothesis h 

(i.e., h(x)=1 if x∈ S1 and h(x)=0 if x∈ S0)

The VC (Vapnik-Chervonenkis) dimension VC(H) of H 

is the size of the largest set S shattered by H

(possibly ∞)

VC(H) ≤
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VC Generalization bound

errortrue(h) ≤ errortrain(h) +

√
log |H|+ log 1/δ

2n

errortrue(h) ≤ errortrain(h) +

√√√√V C(H)
(
1 + log 2n

V C(H)

)
+ log 4

δ

n

Bound for finite hypothesis spaces

VC-dimension based bound
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Applications
Allows to prove generalization bounds for large 

hypothesis spaces with structure.

For many popular hypothesis classes, VC dimension 

known

Binary thresholds

Linear classifiers

Decision trees

Neural networks
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Passive learning protocol

Data source PX,Y (produces inputs xi and labels yi)

Data set Dn = {(x1,y1),…,(xn,yn)}

Learner outputs hypothesis h

errortrue(h) = Ex,y |h(x) − y|
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From passive to active learning
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Some labels “more informative” than others
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Statistical passive/active learning protocol

Data source PX (produces inputs xi)

data set Dn = {(x1,y1),…,(xn,yn)}

Learner outputs hypothesis h

errortrue(h) = Ex~P[h(x) ≠ c(x)]

Active learner assembles 

by selectively obtaining labels
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Passive learning
Input domain: D=[0,1]

True concept c:

c(x) = +1 if x≥ t

c(x) = -1  if x < t

Passive learning:

Acquire all labels yi∈ {+,-}

10 Threshold t
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Active learning
Input domain: D=[0,1]

True concept c:

c(x) = +1 if x≥ t

c(x) = -1  if x < t

Passive learning:

Acquire all labels yi∈ {+,-}

Active learning:

Decide which labels to obtain

10 Threshold t
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Comparison

Active learning can exponentially reduce the number 

of required labels!

O(log 1/ε)Active learning

Ω(1/ε)Passive learning

Labels needed to learn 

with classification 

error ε
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Key challenges
PAC Bounds we’ve seen so far crucially depend on 

i.i.d. data!!

Actively assembling data set causes bias!

If we’re not careful, active learning can do worse!
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What you need to know
Concepts, hypotheses

PAC bounds (probably approximate correct)

For noiseless (“realizable”) case

For noisy (“unrealizable”) case

VC dimension

Active learning protocol


