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Announcements

® Project proposal: Due t 1/27
® Homework 1: Due Thursday 1/29

® Any time is ok.
¢ Office hours

® Come to office hours before your presentation!
® Andreas: Monday 3pm-4:30pm, 260 Jorgensen
® Ryan: Wednesday 4:00-6:00pm, 109 Moore



Recap Bandit Problems

¢ Bandit problems
® Online optimization under limited feedback

® Exploration—Exploitation dilemma
® Algorithms with low regret:
¢ ¢g-greedy, UCB1

¢ Payoffs can be
® Probabilistic

® Adversarial (oblivious / adaptive)



More complex bandits

¢ Bandits with many arms
® Online linear optimization (online shortest paths ...)
¢ X-armed bandits (Lipschitz mean payoff function)

® Gaussian process optimization (Bayesian assumptions about
mean payoffs)

@ Bandits with state

¢ Contextual bandits
® Reinforcement learning

® Key tool: Optimism in the face of uncertainty ©



Course outline

1.  Online decision making

‘2. Statistical active Iearning‘

3. Combinatorial approaches



Spam
’\

Ham .

label = sign(w, + w, x; + w, X,)
(linear separator)

® Labels are expensive (need to ask expert)

¢ Which labels should we obtain to maximize
classification accuracy?



® Background in learning theory
¢ Sample complexity
¢ Key challenges

® Heuristics for active learning
® Principled algorithms for active learning



Credit score Defaulted?
70 0

42 1

36 1

82 0

50 ???

Want decision rule that performs well
for unseen examples (generalization)



More general: Concept learning
® Set X of instances ~ X= P (,... , (co3

> ¢ X >7[’
® True concept c: X = {0,1} Cc((ii :cls (}:“' <<t

® Hypothesis h: X = {0,1} /b;(g;ol [fF iii’,

® Hypothesis space H = {h,, ..., h, ...}

¢ Want to pick good hypothesis

® (agrees with true concept on most instances)



Example: Binary thresholds

¢ Input domain: X={1,2,...,100}
¢ True concept c: o ) + 4+ 4

_ . o
c(x) = +1 ',f X2 1 1 Threshold t 100
c(x)=-1 ifx<t
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How good is a hypothesis?

o

o

J,d\,.,("': tQh.ch/

3
® Distributior@ver X

o erroryelh) = P(FxeX ke #ctl)=E o [1h)c]
* Want h* = argmin,, error.(h)

® Can’t compute error, (h)!
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Concept learning

® Data set D = {(xy,y1),--, (X, ¥Yn)} X € X, v, € {0,1}
® Assume x; drawn independently from Py; y. = c(x))
® Also assume c € H

® h consistent with D &> Vi h(x) =y;
2

® More data = fewer consistent hypotheses

Learning strategy:
® Collect “enough” data
® Qutput consistent hypothesis h

® Hope that error,, . (h) is small
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Sample complexity

o Lete>0

¢ How many samples do we need s.t. all consistent
hypotheses have error< €77

® Def:he Hbad & er7r, (W ¢

® Suppose he His bad. Let x ~ Py, y = c(x).

Then: Pl hlx) 2 ct)) 2 e
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Sample complexity

® P( h bad and “survives” 1 data point) £ [-¢
® P( h bad and “survives” n data points) = (1-5)"

2k, . b

® P( remains > 1 bad h after n data points) =
/P(h( bad (/"l? [Ov.d v L‘a ["O'J""VL‘Nklw‘J ) <

—_—

P(ts, bnd) € Plhe ord) + .+ P(hybnd) € |H] (1-6)"
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Probability of bad hypothesis

K]DC yercams 2 [ loxd (49(’6'11\2”‘3 > _{\H, [/"[) ”
“ f:.[_,ﬂ_ n cla.‘l‘ﬁx. ‘Oa'c'h'lLS L~——
Laxpl(-€ ’") ]

]:gg‘ﬂl foqcl I/MP(’MS‘)
A
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Sample complexity

for finite hypothesis spaces [Haussler '88]

Theorem: Suppose
* |H| < o0,
® Data set |D|=n drawn i.i.d. from P, (no noise)
® O<e<l

Then for any h € H consistent with D:

P( error, .(h) >€) < |H| exp(-€ n) ="

~

“PAC-bound” (probably approximately correct)
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How can we use this result?

P(error,,.(h) >¢€) < |H| exp(-€n) =0

Possibilities:
® Given 9, n solve for €
® Given € and 9, solve for n
* (Given €, n, solve for 0)

Eg: [H[™ ¢ S
> foy Ll —gm < Loy &
> w2 Zag[HH(Og—;L
& 2 Loy M4 f L)
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Example: Credit scoring

® X={1,2,..1000}

¢ H = binary thresholds on X

® |H| = (0o

¢ Want error < 0.01 with probability .999

Need n > 1382 samples
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¢ How do we find consistent hypothesis?

® What if |[H| = 00?

*|What if there’s noise in the data? (or c ¢ H)
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Credit score Defaulted?
36
48
52

70

oO| O —,| O

31

44 2??

No binary threshold function explains
this data with 0 error
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@ Sets of instances X and labels Y ={0,1}
@ Suppose (X,Y)~ Py,
¢ Hypothesis space H

errory,o(h) = E. [ [h(x) —y| 1 = /7 (es) < h) 2473

Want to find
argmin, ., error,,.(h)
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Learning from noisy data
¢ Suppose D = {(Xllyl)l"'l(xnlyn)} where (Xi'yi) ™~ PX,Y

erﬁ-rw(/[{“«) d E(l,)\/‘&y [ hbas 9) V)

Sﬁm«[:[e mv-?,

errOrtrain(h) = (l/n) Z:i | h(xi) o yil

Learning strategy with noisy data

® Collect “enough” data
h)

(h’) = min, ., error

° Qutput h’=argmin,_,, error, .. (

® Hope that error h)

true true(
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Estimating error

® How many samples do we need to accurately
estimate the true error?

* Data set D = {(x,,y4),....(X,¥,)} Where (x;,y;) ~ Py
z;= |h(x)-vy; | €{0,1}
® z.arei.i.d. samples from Bernoulli RV Z = | h(X) - Y|

error,,,..(h) = ?»\ng_ i
error,,.(h) = EL2J

How many samples s.t.

|error,,...(h) —error, .(h)]| is small??

true
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Estimating error

How many samples do we need to accurately
estimate the true error?

Applying Chernoff-Hoeffding bound:
P( |error,, .(h) —error,...(h)] > €) < exp(-2n €?)

f;y- no o/Se
< exp (-&m)

24



Sample complexity with noise
Call he H bad if

error,.,.(h) >error,..(h) + €

P(h bad “survives” n training examples) < exp(-2 n €2)

P(remains > 1 bad h after n examples) < }H/ exp (- zwz)
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PAC Bound for noisy data

Theorem: Suppose
* |H| < o0,
* Data set |D|=n drawn i.i.d. from Py,
° O<e==d
4 - b |-§
Then for asy h € H it holds that  wifh  Pre

log |[H| +1log1/0
errortrue(h) < 67“7°0’I°t7~a7;n(h) —+ \/ Og‘ ‘ + l0g /

S
3
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PAC Bounds: Noise vs. no noise
Want error < € with probability 1-0

No noise: n 2@( log |H| +log 1/0)
Noise: n 2@( log |H| +log 1/0)
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How do we find consistent hypothesis?

‘Whatilel = 00? FWZ

What if there’s noise in the data? (orc¢ H) .~
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Credit score Defaulted?

36.1200

48.7983
52.3847
70.1111
81.3321
44.3141 ?7??

O| O KL, | K

Want to classify continuous instance space
|H| =00
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Large hypothesis spaces

® |dea: Labels of few data points imply labels of many
unlabeled data points

O
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OW many poIints can be arbitrarily

classified using binary thresholds?
@ — ANo rechsld Clarcfier Qonsirfe

with 1 L;S‘ (abe L'ﬁ/

-
-_—1—;‘./1/.“\ b\[") = | I:F X
n + olo =
CGE i/m"w peints — o f- )t
\A/tsa)l":.f' w; € E"l: lJ
x o Lt[%) I S
___1___-’|7 o do @ H: w, ¥\
l Jo;l'm Fdr;\.+

Can wnow Vf“[".?-Q
4 —_

e
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How many points can be arbitrarily

classified using linear separators? (1D)

: i Ll(“} >§f2/n (\Afo -k-\./l .K)
— —+
— X Caan oo vb ["l’rwﬁly, C lo"«f)':/:g/
q‘\ar -h»’o CI"d‘DL (Oon"'n’)L.S
-+ -~ -+
J ¢

fanndt ovbibranls ClossifY
ﬂnﬁ. ’J'L‘rt‘e, data 6&(};/:9
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How many points can be arbitrarily
classified using linear separators? (2D)

| can avbifrnty clinTy

g3 date FOt'n'fS
i 2 £ — + +
Sk
ﬁk Comnot ot Pty clexd G J«*W
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3
¢ Let S C X be a set of instances (abeled f,"

. . .. . s i labele/ _
® A Dichotomy is a nontrivial partition of S=S;, U S,

® S is shattered by hypothesis space H if for any S, =4
dichotomy, there exists a consistent hypothésis #
(i.e., h(x)=1if x& S; and h(x)=0 if x& S,)

® The VC (Vapnik-Chervonenkis) dimension VC(H) of H
is the size of the largest set S shattered by H
(possibly oo)

® VC(H) < oy [H
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VC Generalization bound

Bound for finite hypothesis spaces

log |H))+ log 1/0
{err/ortme(h) < errorirqin(h) + \/@; og 1/
o n

VC-dimension based bound £ log| Hl

/
Y
(@1 + log #?H)) + log %
errorirye(h) < erroryqin(h) + \
n
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Applications

* Allows to prove generalization bounds for large
hypothesis spaces with structure.

® For many popular hypothesis classes, VC dimension
known
® Binary thresholds
® Linear classifiers
® Decision trees

@ Neural networks
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Passive learning protocol

Data source Py y (produces inputs x; and labels y;)

g

Data Set Dn = {(X]_Iy]_)l"'l(xnlyn)}

g

Learner outputs hypothesis h

11

error,.(h) = E,, [h(x) -]
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From passive to active learning

Spam

Ham .

Some labels “more informative” than others
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Statistical passive/active learning protocol

Data source P, (produces inputs x)

Ll

Active learner assembles

data set D, = {(Xy,Y1),---(X,,,¥,,)}
by selectively obtaining labels

g

Learner outputs hypothesis h

g

error,,,.(h) = E.~p[h(x) # c(x)]
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Passive learning

® |nput domain: D=[0,1]
@ True concept c: °

c(x) =+1if x>t Threshold t
c(x)=-1 ifx<t

® Passive learning:
Acquire all labels y, € {+,-}
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Active learning

® |nput domain: D=[0,1]
@ True concept c: °

c(x) =+1if x>t Threshold t
c(x)=-1 ifx<t

@ Active learning:
Decide which labels to obtain
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Comparison

Labels needed to learn
with classification

error €
Passive learning Q(1/¢)
Active learning O(log 1/¢)

Active learning can exponentially reduce the number
of required labels!
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Key challenges

® PAC Bounds we’ve seen so far crucially depend on

N\

° Aively assembling data set causes bias!

® |f we're not careful, active learning can do worse!

*
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What you need to know

® Concepts, hypotheses
® PAC bounds (probably approximate correct)

® For noiseless (“realizable”) case
® For noisy (“unrealizable”) case

® VC dimension
@ Active learning protocol
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