

Online Optimization in X-Armed Bandits

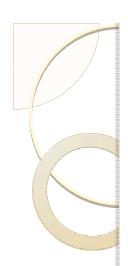
CS101.2

January 20th, 2009

Paper by S. Bubeck, R. Munos, G. Stoltz, C.

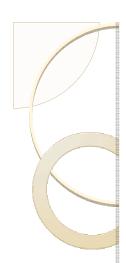
Szepersvári

Slides by C. Chang



Review of Bandits

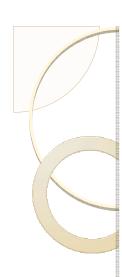
- Started with k arms
 - Integral, finite domain of arms
 - General idea: Keep track of average and confidence for each arm
 - Expected regret using $UCB_1 = O(\log n)$



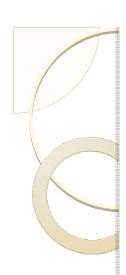
Review of Bandits

- Last week
- Bandit arms against "adversaries"
 - Oblivious
 - $O(n^{2/3})$
 - Adaptive
 - $O(n^{3/4})$

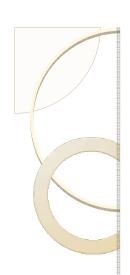
- What about infinitely many arms?
- Draw arms from $X = [0, 1]^D$
 - D-dimensional vector of values from 0 to 1
- Mean-payoff function, f, maps from X →
 R
- No adversaries (fixed payoffs)



• What if there are no restrictions on the shape of *f*?

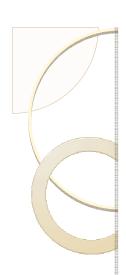


- What if there are no restrictions on the shape of *f*?
- Then we don't know anything about arms we haven't pulled



- What if there are no restrictions on the shape of f?
- Then we don't know anything about arms we haven't pulled
- With infinitely many arms, this means we can't do anything!

- Okay, so no continuity at all goes too far
- Generalize the mean-payoff function function to be "pretty smooth"
- That way, we can (hopefully) get information about a neighborhood of arms from a single pull
- We will use Lipschitz continuity



Lipschitz Continuity

- Intuitively, the slope of the function is bounded
- That is, it never increases or decreases faster than a certain rate
- This seems like it can give us information about an area with a single pull

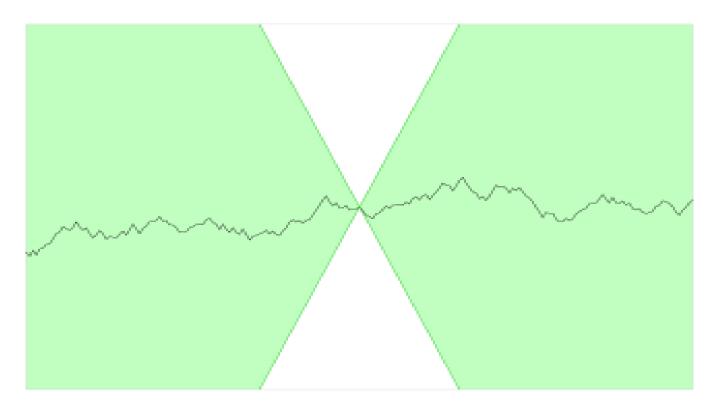
Lipschitz Continuity • Formal definition:

- Function f(x) is Lipschitz continuous if,
- Given a dissimilarity function, d(x,y),
- $f(x) f(y) \le k \times d(x,y)$
- k is the Lipschitz constant



Lipschitz Continuity

- For a function f with a certain constant k,
 we call the function k-Lipschitz
- We'll assume 1-Lipschitz
 - For another k, we can just adjust the payoffs to make the function I-Lipschitz
 - We're really just concerned with relative performance versus other strategies on the same f



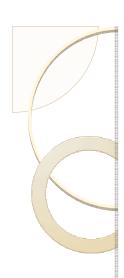
Function will stay inside the green cone (Graphic taken with permission from Wikipedia under GNU Free Documentation License 1.2)

Examples of functions that are Lipschitz:

- Examples of functions that are Lipschitz:
 - $\circ f(x) = \sin(x)$
 - \circ f(x) = |x|
 - $\circ f(x,y) = x + y$

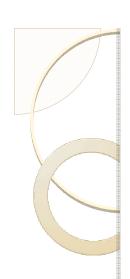
- Examples of functions that are Lipschitz:
 - $\circ f(x) = \sin(x)$
 - \circ f(x) = |x|
 - $\circ f(x,y) = x + y$
- And functions that aren't:

- Examples of functions that are Lipschitz:
 - $\circ f(x) = \sin(x)$
 - \circ f(x) = |x|
 - $\circ f(x,y) = x + y$
- And functions that aren't:
 - \circ f(x) = x^2
 - \circ f(x) = x / (x 3)



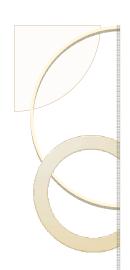
Application

 Why would we need a bandit arm strategy for non-linear mean-payoff functions?



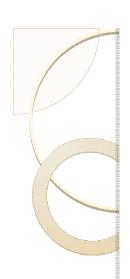
Application

- One example: Modeling airflow over a plane wing
- A parameter vector is an arm
- Pulling an arm is costly
 - Difficult to actually calculate (computer models, PDEs...)
- Still want to maximize some kind of result across the arms



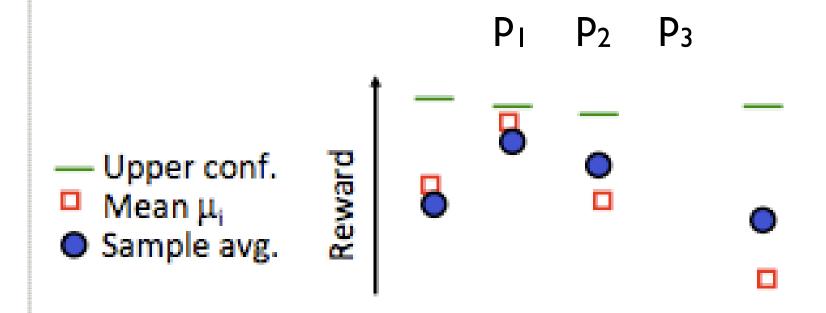
Developing an Algorithm

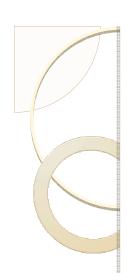
- Okay, so it's useful
- What kind of algorithm should we use?
- Random?
 - We've seen how well this works out
- Other obvious approaches are less applicable with infinitely many arms...



Developing an Algorithm

 We can reuse the ideas from the UCB_I algorithm



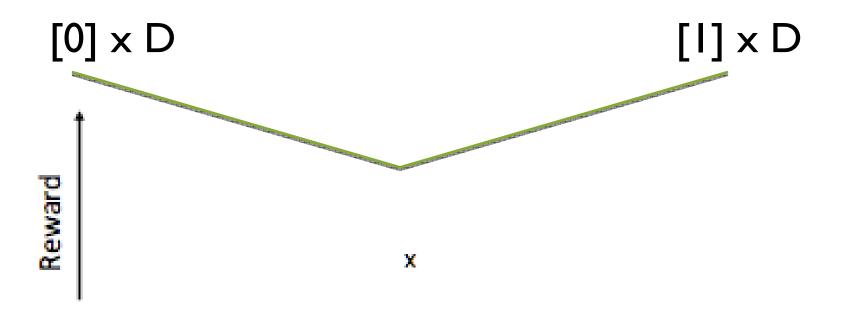


Adjustments Needed

- Not discrete arms, but a continuum
 - We will have need a UCB for all arms over the arm-space
- We can get some confidence about any pulled arm's neighbors because of Lipschitz

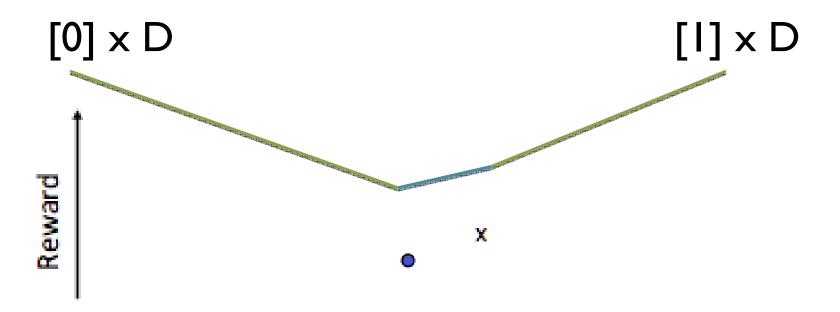
Stumbling Around

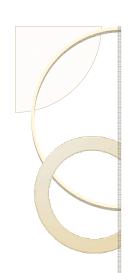
Not discrete arms, but a continuum...



Stumbling Around

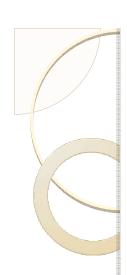
New points affect their neighbors





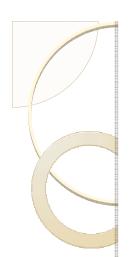
Adjustments Needed

- We can also sharpen our estimates from nearby measurements
- Retain "optimism in the face of the unknown"
- General idea gotten...but how do we actually do it?



The Algorithm!

- Split the arm-space into regions
- Every time you pick an arm from a region, divide into more precise regions
- Keep track of how good every region is through results of itself and its children.



- To remember regions, use a "Tree of Coverings"
- A node in the tree with height h and row-index i is represented as $P_{h,i}$ or just (h,i)
 - The children of $P_{h,i}$ are $P_{h+1,2i-1}$ and $P_{h+1,2i}$
 - The whole arm-space $X = P_{0,1}$
- The children of a node cover their parent

- We always choose a leaf node, then add its children to the tree.
- Each node has a "score" we pick a new leaf by going down the tree, going to the side with the greater score.
- Score:

 $B_{h,i}(n) = \min\{U_{h,i}(n), \max_{children}[B_{child}]\}$ where $U_{h,i}(n)$ is the upper confidence bound for the tree node (h,i)

- One more caveat For any node (h,i), the diameter (determined by d, the dissimilarity function) of the smallest circle that bounds the node is less than $V_I \rho^h$ for some parameters $V_I \rho^h$
- A little more formally,

```
U_{h,i}(n) = \mu_{h,i}(n) + \text{Chernoff} + v_l \rho^h

(Chernoff = sqrt[(2 ln n) / N_{h,i}(n)]
```

• Score:

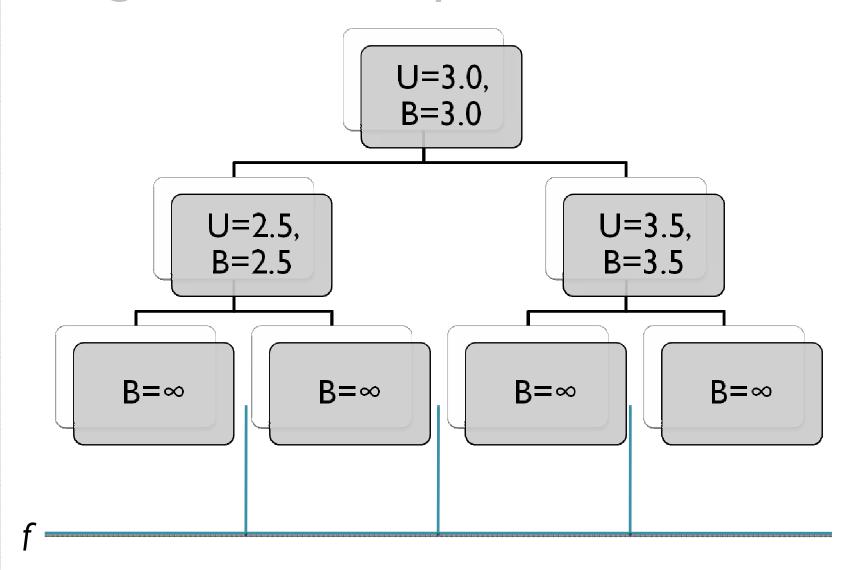
$$B_{h,i}(n) = \min\{U_{h,i}(n), \max_{children}[B_{child}]\}$$

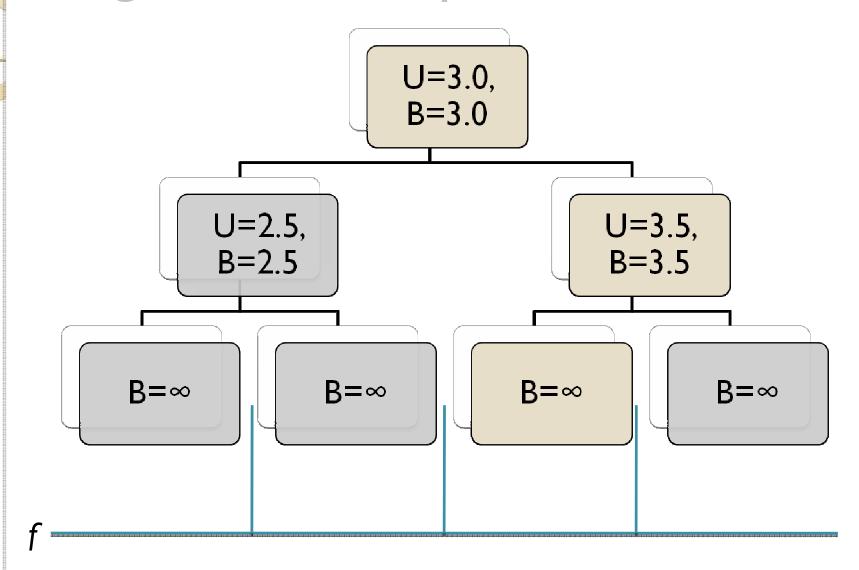
• What if you have no children?

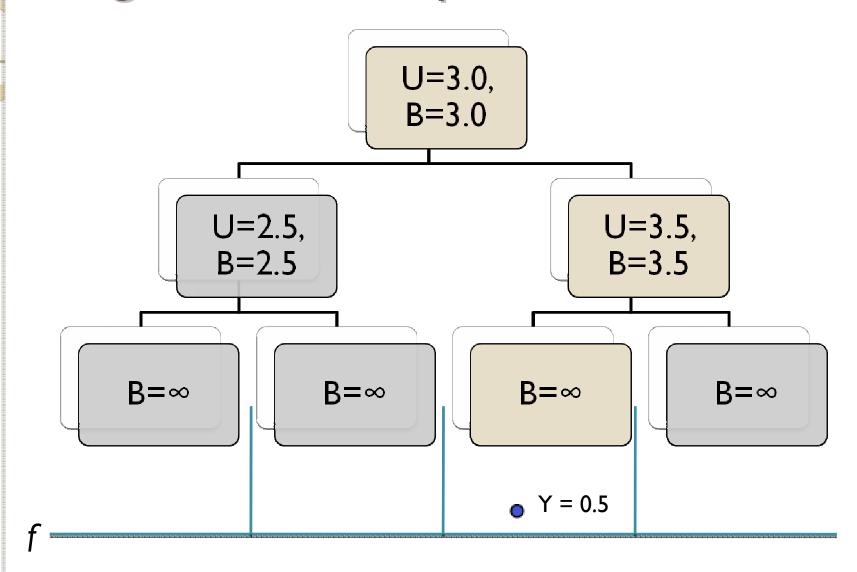
• Score:

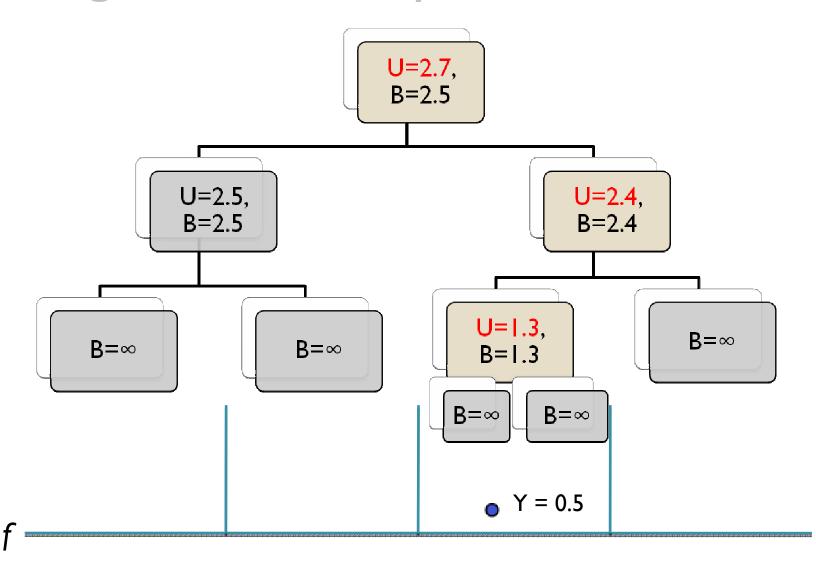
$$B_{h,i}(n) = \min\{U_{h,i}(n), \max_{children}[B_{child}]\}$$

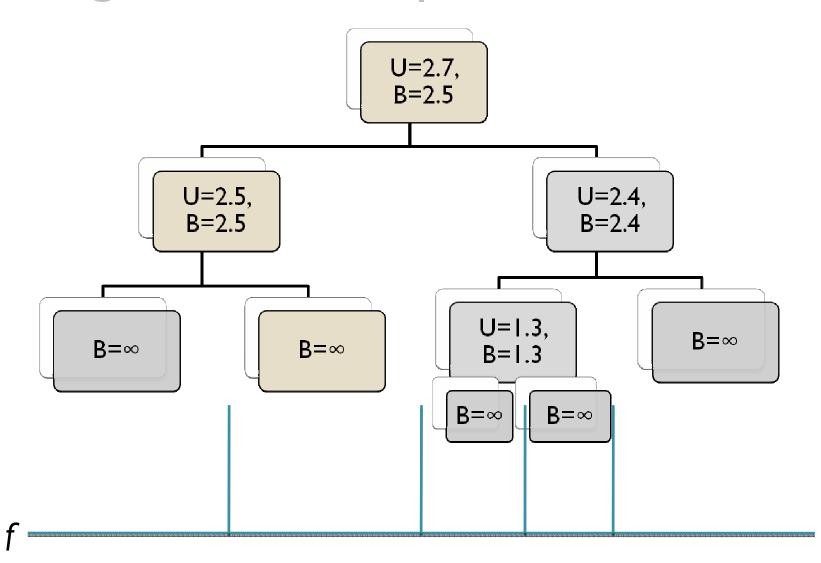
- What if you haven't been picked yet?
- Optimism in the face of uncertainty!
 - Set B to infinity

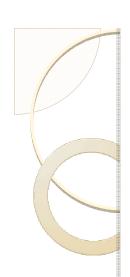






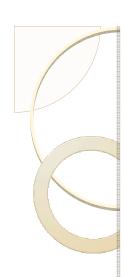






Observations

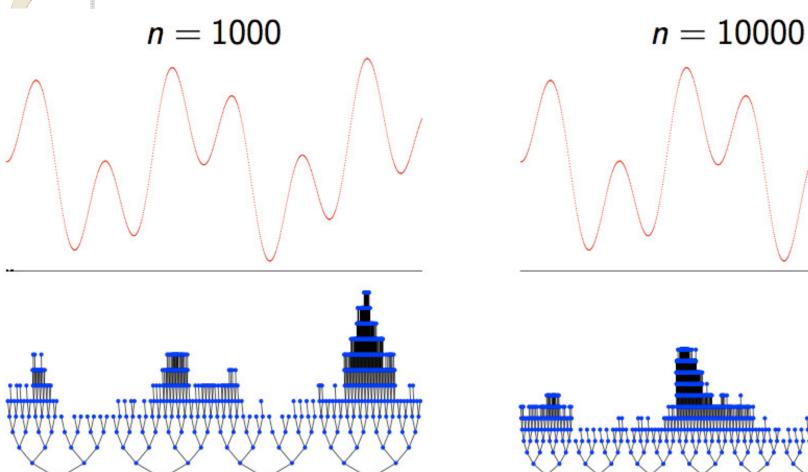
- Exploration comes from the pessimism of the B-score and the optimism of the unknown
- Exploitation comes from the optimism of the B-score and fast elimination of bad parts of the function



Numerical Results

 The following is taken from another talk by the author, Sébastien Bubeck

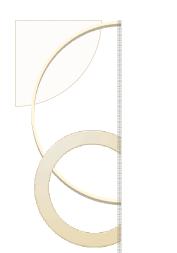
Numerical Results





Regret Analysis

- Not going to go through all the math
 - If want, read the paper...
- Pretty similar to regret analysis of UCB_I
 - Number of times a bad arm is chosen is proportional to log(n) and inverse to difference to best arm
 - Add a lot of mess from the Lipschitzness
 - Actually, we only require "weak-Lipschitz", which is a sort of one-sided Lipschitz near the best arms

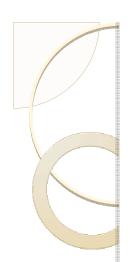


Regret Analysis

- Main result:
- $E(R_n) \le C(d') n^{(d'+1)/(d'+2)} (\ln n)^{1/(d'+2)}$
 - C is some constant
 - d' is any number greater than d, and in most cases, can be equal to d

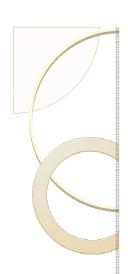
Regret Analysis

- $E(R_n) \le C(d') n^{(d'+1)/(d'+2)} (\ln n)^{1/(d'+2)}$
- For high d, we get closer and closer to linear...
 - "The Curse of Dimensionality"
- This is proven to be tight! Tight!



Dissimilarity Functions

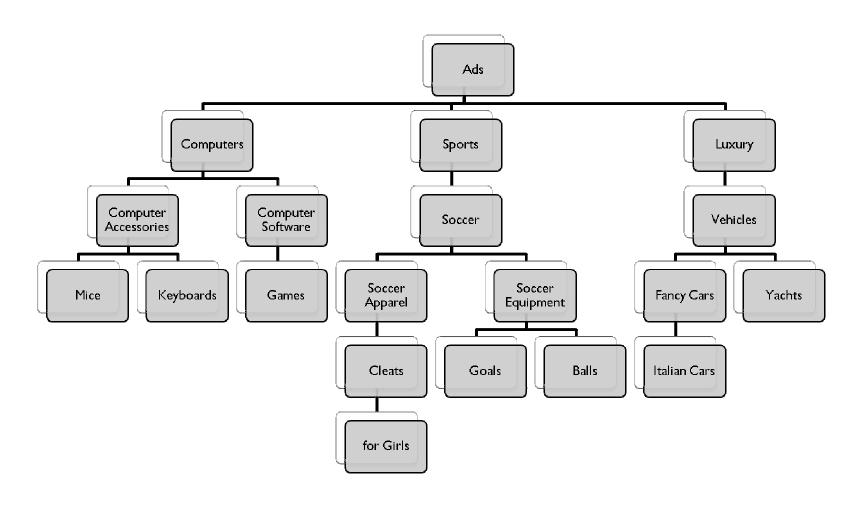
- We've just been using straight distance
- d can be any metric
 - $\circ d(x,y) = 0 \text{ iff } x = y$
 - d must be symmetric
 - Triangle inequality
- With creative dissimilarity functions, this is surprisingly powerful!



Powerful Dissimilarities

- Suppose we go back to the example of online ads
- Ads sell all sorts of products (not quite infinite, but still more than we'd want to try individually!
- Can't we get information from knowing that some ads are related?

Online Product Sales



Online Product Sales

- Dissimilarity function should measure how, well, dissimilar two ads are.
- Can take the tree, weight the edges as, say, 1/h, and compute distance
- Can now use the hierarchical algorithm!
- New dissimilarity functions add a lot of mileage...