
Online Geometric
Optimization in the Bandit

Setting Against an
Adaptive Adversary

Originally by H. Brendan McMahan
and Avrim Blum of Carnegie Mellon
University

Presented by Daniel Obenshain for
CS 101.2 at Caltech

Overview

� This is a solution to the Bandit
version of the previous problem
(Kalai and Vempala’s online decision
problems).

Overview

� “Bandit Version” of problem

� Algorithm to solve Bandit Version

� Algorithm analysis

� Improvement?

Overall Problem

� S is bounded

� Cost vectors are
bounded

� We choose x
vector

� Opponent chooses
c vector

Rn

S

xt ct

Us Them

Notation: superscripts denote iterations of the algorithm

Bandit Version

� What does this mean?

� At each step, we observe the total
cost (xt�ct), not the cost vector (ct).

� The standard bandit setting can be
found by specifying S appropriately.

Intuition

� Even a very smart opponent can’t do
anything worse to us than what he’s
already been doing (in the long
run).

� So, if we choose x based on which
static x would work the best for us
in the past, it should work well for
us for the next iteration as well.

Algorithm

� Need to minimize regret in the long
term.

� Regret is the difference between our
choice and the best choice.

Algorithm

� Begin by forming an “oracle”

For our purposes, we will use GEX (Geometric

Experts Algorithm), based on the FPL algorithm

from Kalai and Vempala.

OracleCost
History

Best
fixed
xt

Oracle, cont.

� In our case, the oracle takes in the
cost history:
� ĉ1, ĉ2, …, ĉt-1

� And outputs a distribution:
� (choice 1:1%), (choice 2:3%),
(choice 3:2%) … over all (infinite)
choices in S

� Remember the intuition!

Oracle, cont.

� This distribution represents the best
choice for x, considering all previous
cost vectors.

� In other words, if we had to choose
one x for all previous cost vectors,
this would be it.

� It’s probabilistic.

Basis

� We also need a basis to span S.

� We can use an n by n matrix B.

� Each column in B is an element of S.

Algorithm

Start

Explore Exploit

Repeat

probability γ probability (1-γ)

Explore

� Randomly choose one of the basis
vectors in B.

� Incur cost

� Store information to cost history.

Exploit

� Select xt from the most current
distribution given by the oracle GEX

� Incur cost xt�ct

� ĉt = (0,0,…0) (n-tuple) : Store a
“zero” in the cost history to avoid
biasing the history.

� Some information is lost here.

Return

� After each iteration, we need to
update some data.

� The cost history gains either a zero
(for Exploit) or a cost vector (for
Explore).

Example

� Consider n = 2 and

� Cost vector sum <= 2 (for bounding
constraint) and

� S is [(-1,-1),(1,1)].

� Possible basis is (0,1) and (1,0).

Example

� First iteration:
� Biased coin flip chooses Explore:

� Random selection chooses (0,1):

� Opponent chooses (1,1) for costs:

� Algorithm sees cost of 1.

Start

Explore Exploit

Return

Example

� Second iteration:
� Biased coin flip chooses Explore:

� Random selection chooses (1,0):

� Opponent chooses (1,1) for costs:

� Algorithm sees cost of 1.

Start

Explore

Return

Exploit

Example

� Third iteration:
� Biased coin flip chooses Exploit:

� Oracle returns random value from
distribution (.3, .6)

� Opponent chooses (1,1) for costs:

� Algorithm sees cost of .9, stores 0
Start

Explore

Return

Exploit

Example

� Continuing. . .
� In the long run:

� Opponent chooses costs > 0, we
choose x < 0.

� Opponent chooses costs < 0, we
choose x > 0.

� Opponent should choose cost of
(0,0), which then minimizes our
regret.

Algorithm Analysis

� Proof of O(T3/4√(lnT)) regret

� First, estimates.

� Our error in our estimates of the
cost times a specific basis vector will
decrease as we gain more
information through exploration.

Inequalities

� E[loss(GEX)] <= E[optimal
performance based on estimated c
values] + terms

� This comes from analysis in another
paper.

Inequalities

� E[loss(algorithm)] <=
E[loss(GEX)]+terms

� This is because the algorithm is an
improvement on the oracle itself,
with the choice between exploring
and exploiting.

Inequalities

� E[optimal performance based on
estimated c values] <= E[optimal
performance] + terms

� This actually only holds
probabilistically, but it’s good
enough for the proof.

Proof

� If we combine these inequalities and
cleverly set γ equal to T^(-1/4), we
get:

� E[regret(algorithm)]= O(T3/4√(lnT))

� Note that γ, instead of changing with
time, is simply coupled to T.

The Point

� As we gain more information by
exploring,

� we get better estimates of what the
adaptive opponent will do

� which decreases our expected
regret,

� which ends up being bounded.

Improvement

� This algorithm has O(T3/4√(lnT))

� For an oblivious adversary, O(T2/3) is
possible.

� For flat bandit problems, O(√T) is
possible.

� Can this algorithm be improved? Maybe.

� Possibly the information from the exploit
step can be better used.

Questions?

