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Overview

� This is a solution to the Bandit 
version of the previous problem 
(Kalai and Vempala’s online decision 
problems).



Overview

� “Bandit Version” of problem

� Algorithm to solve Bandit Version

� Algorithm analysis

� Improvement?



Overall Problem

� S is bounded

� Cost vectors are 
bounded

� We choose x 
vector

� Opponent chooses 
c vector
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Notation: superscripts denote iterations of the algorithm



Bandit Version

� What does this mean?

� At each step, we observe the total 
cost (xt�ct), not the cost vector (ct).

� The standard bandit setting can be 
found by specifying S appropriately.



Intuition

� Even a very smart opponent can’t do 
anything worse to us than what he’s 
already been doing (in the long 
run).

� So, if we choose x based on which 
static x would work the best for us 
in the past, it should work well for 
us for the next iteration as well.



Algorithm

� Need to minimize regret in the long 
term.

� Regret is the difference between our 
choice and the best choice.



Algorithm

� Begin by forming an “oracle”

For our purposes, we will use GEX (Geometric 

Experts Algorithm), based on the FPL algorithm 

from Kalai and Vempala.
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Oracle, cont.

� In our case, the oracle takes in the 
cost history:
� ĉ1, ĉ2, …, ĉt-1

� And outputs a distribution:
� (choice 1:1%),    (choice 2:3%),           
(choice 3:2%) … over all (infinite) 
choices in S

� Remember the intuition!



Oracle, cont.

� This distribution represents the best 
choice for x, considering all previous 
cost vectors.

� In other words, if we had to choose 
one x for all previous cost vectors, 
this would be it.

� It’s probabilistic.



Basis

� We also need a basis to span S.

� We can use an n by n matrix B.

� Each column in B is an element of S.



Algorithm

Start

Explore Exploit

Repeat

probability γ probability (1-γ)



Explore

� Randomly choose one of the basis 
vectors in B.

� Incur cost

� Store information to cost history.



Exploit

� Select xt from the most current 
distribution given by the oracle GEX

� Incur cost xt�ct

� ĉt = (0,0,…0) (n-tuple) : Store a 
“zero” in the cost history to avoid 
biasing the history.

� Some information is lost here.



Return

� After each iteration, we need to 
update some data.

� The cost history gains either a zero 
(for Exploit) or a cost vector (for 
Explore).



Example

� Consider n = 2 and 

� Cost vector sum <= 2 (for bounding 
constraint) and

� S is [(-1,-1),(1,1)].

� Possible basis is (0,1) and (1,0).



Example

� First iteration:
� Biased coin flip chooses Explore:

� Random selection chooses (0,1):

� Opponent chooses (1,1) for costs:

� Algorithm sees cost of 1.

Start

Explore Exploit

Return



Example

� Second iteration:
� Biased coin flip chooses Explore:

� Random selection chooses (1,0):

� Opponent chooses (1,1) for costs:

� Algorithm sees cost of 1.

Start

Explore

Return

Exploit



Example

� Third iteration:
� Biased coin flip chooses Exploit:

� Oracle returns random value from 
distribution (.3, .6)

� Opponent chooses (1,1) for costs:

� Algorithm sees cost of .9, stores 0
Start

Explore

Return

Exploit



Example

� Continuing. . .
� In the long run:

� Opponent chooses costs > 0, we 
choose x < 0.

� Opponent chooses costs < 0, we 
choose x > 0.

� Opponent should choose cost of 
(0,0), which then minimizes our 
regret.



Algorithm Analysis

� Proof of O(T3/4√(lnT)) regret

� First, estimates.

� Our error in our estimates of the 
cost times a specific basis vector will 
decrease as we gain more 
information through exploration.



Inequalities

� E[loss(GEX)] <= E[optimal 
performance based on estimated c 
values] + terms

� This comes from analysis in another 
paper.



Inequalities

� E[loss(algorithm)] <= 
E[loss(GEX)]+terms

� This is because the algorithm is an 
improvement on the oracle itself, 
with the choice between exploring 
and exploiting.



Inequalities

� E[optimal performance based on 
estimated c values] <= E[optimal 
performance] + terms

� This actually only holds 
probabilistically, but it’s good 
enough for the proof.



Proof

� If we combine these inequalities and 
cleverly set γ equal to T^(-1/4), we 
get:

� E[regret(algorithm)]= O(T3/4√(lnT))

� Note that γ, instead of changing with 
time, is simply coupled to T.



The Point

� As we gain more information by 
exploring,

� we get better estimates of what the 
adaptive opponent will do

� which decreases our expected 
regret,

� which ends up being bounded.



Improvement

� This algorithm has O(T3/4√(lnT))

� For an oblivious adversary, O(T2/3) is 
possible.

� For flat bandit problems, O(√T) is 
possible.

� Can this algorithm be improved? Maybe.

� Possibly the information from the exploit 
step can be better used.



Questions?


