Active Learning and
Optimized Information Gathering

Lecture 3 — Reinforcement Learning

CS 101.2
Andreas Krause

Announcements

® Homework 1: out tomorrow
¢ Due Thu Jan 22
@ Project
® Proposal due Tue Jan 27 (start soon!)
® Office hours
@ Come to office hours before your presentation!

@ Andreas: Friday 12:30-2pm, 260 Jorgensen
¢ Ryan: Wednesday 4:00-6:00pm, 109 Moore

Course outline

1. Online decision making

2. Statistical active learning

3. Combinatorial approaches

k-armed bandits

® Each arm i gives reward X; , with mean [,

UCB 1 algorithm: Implicit exploration

N —_
— Upper conf. '?U é @ o
O Mean L, 2 @ = ®
@ Sampleavg. &
(m|

— Upper conf.
O Mean
@ Sample avg.

Reward
-
o

UCB 1 algorithm: Implicit exploration

— Upper conf. '?U 5 e
O Mean . 2 0 o Py
@ Sampleavg. &

(m|

Performance of UCB 1

Last lecture:
For each suboptimal arm j: E[T;] = O(log n/Aj)
See notes on course webpage

This lecture:
What if our actions change the expected reward p,??

Searching for gold (oil, water, ...)

Three actions:

= — e Left

¢ Dig
uDig uDig uDlg uDlg
= = =8 =.3 uLeft =0
Hgight = 0

® Mean reward depends on internal state!
® State changes by performing actions

Becoming rich and famous

1(0)

1(-1)

poor,
famous

% (10) 1(-1)

10

Markov Decision Processes

® An MDP has
¢ A set of states S={s,,...,5.} ...
¢ with reward function r(s,a) [random var. with mean p = r(s,a)]
¢ Asetof actions A={a,,....a,,}

¢ Transition probabilities
P(s’|s,a) = Prob(Next state = s’ | Action a in state s)

@ For now assume r and P are known!

@ Want to choose actions to maximize reward
@ Finite horizon
@ Discounted rewards

Finite horizon MDP Decision model

@ RewardR=0
@ Startin state s

®Fort=0ton
@ Choose action a
@ Obtain reward R*éR +r(s,a)
® End up in state s’ according to P(s’|s,a)
¢ Repeat with s <— &’

® Corresponds to rewards in bandit problems we’ve seen

Discounted MDP Decision model

® RewardR=0

@ Startin state s

®Fort=0 to|oo
¢ Choose action a O<y's|

¢ Obtain discounted reward R =R +| ¥t | r(s,a)
® End up in state s’ according to P(s’|s,a)

@ Repeat withs «+ s’

This lecture: Discounted rewards

¢ Fixed probability (1-y) of “obliteration”
(inflation, running out of battery, ...)

Policies

Policy: Pick one fixed action for each state u

Policies: Always save?

poor,
unknown

16

Policies: How about this one?
poor,
unknown

17

® Deterministic policy
@ Induces a Markov chain: 51,55, Sy
with transition probabilities

P(Si.1=S" | Si=s) = P(s’ | s, 7(s))

* Expected value J(1t) = E[r(S,,7(S;))
+7r(S,,7(S,))

+ Y2 r(S;,7(S;))
+ ...]

18

Computing the value of a policy

® For fixed policy T and each state s, define value function

= J(r | startin state s) = r(s,m(s)) + E[2, ¥t r(S,7(Sy))]

Recursion: \/ ') = M AN + Xt ? Pd'k&mﬁﬁ\/w(&)

and J(m) = V7 (ot g

In matrix notation: \/Tr =~ « 3PN
=» Can compute V= analytically, by matrix inversion! ©

How can we find the optimal policy?

A simple algorithm

® For every policy T compute J(T)

* Pick ©* = argmax J(m) brac by \S !

1A

Is this a good idea??

10

Value functions and policies

Every value function induces a policy

N

Value function V* Greedy policy w.r.t. V
V™(s) = r(s,m(s)) + T,(s) = argmax, r(s,a)+
Y2 P(s"|s,m(s)) VX(s') Y2 P(s” | s,@) V(s)

\/

Every policy induces a value function

Policy optimal & greedy w.r.t. its induced value function!

Policy iteration

@ Start with a random policy &

@ Until converged do:
Compute value function V_ (s)
Compute greedy policy T w.r.t. V,
Set T < Tg

® Guaranteed to

® Monotonically improve

¢ Converge to an optimal policy T
® Often performs really well!

® Not known whether it’s polynomial in |S| and |A]!

Alternative approach

® For the optimal policy 7" it holds (Bellman equation)

V*(s) = max, r(s,a) + Y2 P(s’ | s,a) V*(s)

® Compute V* using dynamic programming:
Vi(s) = Max. expected reward when

starting in state s and world ends
in t time steps

Vols) = /\/"‘f\\X AT
Vils) = g r ORI PG oy V(51
Vials) = \)T@‘\)

Value iteration

@ Initialize V,(s) = max, r(s,a)
@ Fort=1to oo

For eachs, a, let Qf{s,uj =S PGl V)
SI —I1

Foreachslet |/ (s) = Moy T & +8 QW(E A

Breakif o IV, —]{HQ}} < C

® Then choose greedy policy w.r.t. V,

® Guaranteed to converge to g-optimal policy!

12

Recap: Ways for solving MDPs

® Policy iteration:
@ Start with random policy &
¢ Compute exact value function V*(matrix inversion)
@ Select greedy policy w.r.t. V* and iterate

@ Value iteration

¢ Solve Bellman equation using dynamic programming
V,(s) = max, r(s,a) + Y2 P(s’ | 5,a) V,4(s)

@ Linear programming

25

MDP = controlled Markov chain

E—()—

Specify P(S,,; | S,,a)

@ State fully observed at every time step
® Action A, controls transition to S,

26

13

POMDP = controlled HMM

OnOnO2R0

Specify P(Ses1 | Spay)
P(O, | S,)

® Only obtain noisy observations O, of the hidden state S,
¢ Very powerful model! ©
¢ Typically extremely intractable ®)7

Applications of MDPs

® Robot path planning (noisy actions)

® Elevator scheduling

® Manufactoring processes

® Network switching and routing
@ Al in computer games

‘ LX)

14

What if the MDP is not known??

2 (?)

Bandit problems as unknown MDP

1(?)

e

1(?)

Special case with only 1 state, unknown rewards

15

Reinforcement learning

World: “You are in state s,,. You can take actions a; and a,”

Robot: “l take a;”

World: “You get reward -4 and are now in state s,,. You can take
actions a; and ay”

Robot: “I take ag”

H 4
actions a, and a,,

Assumption: States change according to some (unknown) MDP!

World: “You get reward 27 and are now in state 523?9 You can take

State Action Reward
PU A 0

PU S 0

PU A 0

PF S 0

PF A (10)

“Wow, | won! How the heck did | do that??”
Which actions got me to the state with high reward??

Credit Assignment Problem
(4

32

16

Two basic approaches

1) Model-based RL
® Learn the MDP
Estimate transition probabilities P(s’ | s,a)

Estimate reward function r(s,a)
@ Optimize policy based on estimated MDP

Does not suffer from credit assignment problem! ©

2) Model-free RL (later)
@ Estimate the value function directly

Exploration—Exploitation Tradeoff in RL

@ We have seen part of the state space and received a
reward of 97.

S

wn
N

(V2]
w

S,

\
5 -

@ Should we

@ Exploit: stick with our current knowledge and build an
optimal policy for the data we’ve seen?

¢ Explore: gather more data to avoid missing out on a
potentially large reward?

17

Possible approaches

® Always pick a random action?
¢ Will eventually converge to optimal policy ©
@ Can take very long to find it! ®

® Always pick the best action according to current
knowledge?
@ Quickly get some reward
@ Can get stuck in suboptimal action! ®

Possible approaches

¢ g greedy
¢ With probability € : Pick random action
¢ With probability (1-¢,): Pick best action

¢ Will converge to optimal policy with probability 1 ©
¢ Often performs quite well ©
@ Doesn’t quickly eliminate clearly suboptimal actions ®

® What about an analogy to UCB1 for bandit problems?

The Rmax Algorithm [Brafman & Tennenholz]

Optimism in the face of uncertainty!

® |f you don’t know r(s,a):
¢ SetittoR,,,!

® |f you don’t know P(s’ | s,a):

® Set P(s* | s,a) = 1 where s* is a “fairy tale” state:
P—($¥ =
D(SINES N
ESHRIESERN

Implicit Exploration Exploitation in R,

Three actions:

a8 o Left
t e Right
e Dig
r(1,Dig)=0 r(2,Dig)=0
, r(i,Left) =0
X r(i,Right)=0

Like UCB1:
Never know whether we’re exploring or exploiting! ©

Exploration—Exploitation Lemma

Theorem: Every T timesteps, w.h.p., R
@ Obtains near-optimal reward, or

either

maXx

@ Visits at least one unknown state-action pair

® Tis related to the mixing time of the Markov chain of
the MDP induced by the optimal policy

The R, ., algorithm

Input: Starting state s, discount factor y

Initially:
¢ Add fairy tale state s* to MDP
@ Setr(s,a)=R
® Set P(s” | s,a) = 1 for all states s and actions a

for all states s and actions a

max

Repeat:
@ Solve for optimal policy ® according to current model P and R
@ Execute policy 7
® For each visited state action pair s, a, update r(s,a)
¢ Estimate transition probabilities P(s’ | s,a)
¢ |f observed “enough” transitions / rewards, recompute policy T

20

How much is “enough”?

How many samples do we need to accurately estimate
P(s’ | s,a) orr(s,a)??

Hoeffding-Chernoff bound (from last lecture!):

® Xy, ..., X, i.i.d. samples from Bernoulli distribution w. mean p
*P(1I/nT Xp| 2€) <22

Performance of R

TR [Brafman & Tennenholz]

Theorem:

With probability 1-9, R, will reach an g-optimal
policy in O(|S| |A| T/ (€ d))

Proof sketch:
B ramp T Fivo Stops
_ g,,/,j <ot Ny, o
— Ac:cLuA'Qg fd"‘d’f‘z{ P(SJJQ.DKS ! V\C‘rnﬂb

Theorem: Can get logarithmic regret bounds using
slight modification of R__ (Auer et al, NIPS '06)

max

21

Challenges of RL

@ Curse of dimensionality
° MDP and RL polynomial in |A| and |S]|

¢ Structured domains (chess, multiagent planning, ...):
|S|, |A| exponential in #agents, state variables, ...

=>» Learning / approximating value functions (regression)
=>» Approximate planning using factored representations

® Risk in exploration
@ Random exploration can be disastrous
=> Learn from “safe” examples: Apprenticeship learning

What you need to know

* MDPs
@ Policies

¢ value- and Q-functions
® Techniques for solving MDPs
@ Policy iteration
¢ Value iteration
® Reinforcement learning = learning in MDPs
® Model-based / model-free RL
¢ Different strategies for trading off exploration and
exploitation

¢ Implicit: R, like UCB1, optimism in the face of uncertainty
¢ Explicit: €, greedy

Acknowledgments

@ Some material used from Andrew Moore’s MDP / RL
tutorials: http://www.cs.cmu.edu/~awm/

® Presentation of R ., based on material from
CMU 10-701 (Carlos Guestrin)

45

23

