Active Learning and Optimized Information Gathering Lecture 3 – Reinforcement Learning CS 101.2 Andreas Krause #### **Announcements** - Homework 1: out tomorrow - Due Thu Jan 22 - Project - Proposal due Tue Jan 27 (start soon!) - Office hours - Come to office hours before your presentation! - Andreas: Friday 12:30-2pm, 260 Jorgensen - Ryan: Wednesday 4:00-6:00pm, 109 Moore # Course outline - 1. Online decision making - 2. Statistical active learning - 3. Combinatorial approaches 3 ### k-armed bandits \bullet Each arm i gives reward $\textbf{X}_{i,t}$ with mean μ_i #### Performance of UCB 1 #### **Last lecture:** For each suboptimal arm j: $E[T_j] = O(\log n/\Delta_j)$ See notes on course webpage #### This lecture: What if our actions change the expected reward μ_i ?? # Searching for gold (oil, water, ...) Three actions: - Left - Right - Dig $$\begin{array}{l} \mu_{\text{Left}} = 0 \\ \mu_{\text{Right}} = 0 \end{array}$$ - Mean reward depends on internal state! - State changes by performing actions ç #### **Markov Decision Processes** - An MDP has - A set of states $S = \{s_1, ..., s_n\}$... - with reward function r(s,a) [random var. with mean $\mu_s = r(s,a)$] - ◆ A set of actions A = {a₁,...,a_m} - Transition probabilities P(s'|s,a) = Prob(Next state = s' | Action a in state s) - For now assume r and P are known! - Want to choose actions to maximize reward - Finite horizon - Discounted rewards 11 #### Finite horizon MDP Decision model - Reward R = 0 - Start in state s - For t = 0 to n - Choose action a - Obtain reward R←R + r(s,a) - End up in state s' according to P(s'|s,a) - Repeat with $s \leftarrow s'$ - Corresponds to rewards in bandit problems we've seen #### Discounted MDP Decision model - Reward R = 0 - Start in state s - For t = 0 to ∞ - Choose action a - 0=5=1 - Obtain **discounted** reward R = R + γ^t r(s,a) - End up in state s' according to P(s' | s,a) - Repeat with $s \leftarrow s'$ #### This lecture: Discounted rewards Fixed probability (1-γ) of "obliteration" (inflation, running out of battery, ...) ### Policies: How about this one? ### Planning in MDPs Deterministic policy $$\pi{:}\:\mathsf{S}\to\mathsf{A}$$ Induces a Markov chain: with transition probabilities $$P(S_{t+1}=s' | S_t=s) = P(s' | s, \pi(s))$$ • Expected value $J(\pi) = E[r(S_1, \pi(S_1)) + \gamma r(S_2, \pi(S_2)) + \gamma^2 r(S_3, \pi(S_3)) + ...]$ PU PF RE #### Computing the value of a policy • For fixed policy π and each state s, define value function $$V^{\pi}(s) = J(\pi \mid \text{start in state s}) = r(s,\pi(s)) + E[\sum_t \gamma^t r(S_t,\pi(S_t))]$$ Recursion: $$\sqrt{\Gamma(s)} = \Gamma(s, T(s)) + \chi \sum_{i} P(i)(s, T(s)) \sqrt{\Gamma(s)}$$ and $$J(\pi) = \sqrt{T}$$ (stook stock) In matrix notation: $$\sqrt{\pi} = - + \sqrt{2}$$ \rightarrow Can compute V^{π} analytically, by matrix inversion! \odot How can we find the optimal policy? 19 # A simple algorithm - For every policy π compute $J(\pi)$ - Pick $\pi^* = \operatorname{argmax} J(\pi)$ Is this a good idea?? ### Value functions and policies Every value function induces a policy #### Value function V^{π} $$V^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s} P(s' | s,\pi(s)) V^{\pi}(s')$$ #### Greedy policy w.r.t. V $$\pi_{V}(s) = \operatorname{argmax}_{a} r(s,a) + \gamma \sum_{s} P(s' \mid s,a) V(s')$$ Every policy induces a value function Policy optimal ⇔ greedy w.r.t. its induced value function! 2 #### Policy iteration - Start with a random policy π - Until converged do: Compute value function V_{π} (s) Compute greedy policy π_G w.r.t. V_{π} Set $\pi \leftarrow \pi_G$ - Guaranteed to - Monotonically improve - ullet Converge to an optimal policy π^* - Often performs really well! - Not known whether it's polynomial in |S| and |A|! #### Alternative approach • For the optimal policy π^* it holds (Bellman equation) $$V^*(s) = \max_a r(s,a) + \gamma \sum_{s'} P(s' | s,a) V^*(s)$$ Compute V* using dynamic programming: V_t(s) = Max. expected reward when starting in state s and world ends in t time steps $$V_{0}(s) = \bigvee_{s} V(s, s)$$ $$V_{1}(s) = \bigvee_{t+1}(s) = \bigvee_{t} V(s, s)$$ $$V_{t+1}(s) = \bigvee_{t} V(s, s)$$ #### Value iteration - Initialize V₀(s) = max_a r(s,a) - For t = 1 to ∞ For each s, a, let $$Q(s, a) = \sum_{s'} P(s'|s, a) \bigvee_{t-1} (s')$$ For each s let $$V_{E}(s) = \max_{\alpha} \Gamma(s, \alpha) + \delta Q_{F}(s, \alpha)$$ Break if $$\bigvee_{k} (s) - \bigvee_{k} (s) | \leq \epsilon$$ - Then choose greedy policy w.r.t. V_t - Guaranteed to converge to ε-optimal policy! # Recap: Ways for solving MDPs - Policy iteration: - Start with random policy π - Compute exact value function V^{π} (matrix inversion) - Select greedy policy w.r.t. V^{π} and iterate - Value iteration - Solve Bellman equation using dynamic programming $V_t(s) = \max_a r(s,a) + \gamma \sum_{s'} P(s' \mid s,a) V_{t-1}(s)$ - Linear programming 25 #### MDP = controlled Markov chain Specify P(S_{t+1} | S_t,a) - State fully observed at every time step - Action A_t controls transition to S_{t+1} # POMDP = controlled HMM - Only obtain noisy observations O_t of the hidden state S_t - Very powerful model! - Typically extremely intractable ⊗ 27 ### Applications of MDPs - Robot path planning (noisy actions) - Elevator scheduling - Manufactoring processes - Network switching and routing - Al in computer games - • Special case with only 1 state, unknown rewards # Reinforcement learning World: "You are in state s₁₇. You can take actions a₃ and a₉" Robot: "I take a₃" World: "You get reward -4 and are now in state s₂₇₉. You can take actions a_7 and a_9 " Robot: "I take a₉" World: "You get reward 27 and are now in state s279... You can take actions a₂ and a₁₇" ... Assumption: States change according to some (unknown) MDP! 3: ### Credit Assignment Problem | State | Action | Reward | |-------|--------|--------| | PU | А | 0 | | PU | S | 0 | | PU | А | 0 | | PF | S | 0 | | PF | Α (| 10 | | | | | "Wow, I won! How the heck did I do that??" Which actions got me to the state with high reward?? # Two basic approaches - 1) Model-based RL - Learn the MDP Estimate transition probabilities P(s' | s,a) Estimate reward function r(s,a) - Optimize policy based on estimated MDP Does not suffer from credit assignment problem! © - 2) Model-free RL (later) - Estimate the value function directly 3 #### Exploration-Exploitation Tradeoff in RL We have seen part of the state space and received a reward of 97. - Should we - Exploit: stick with our current knowledge and build an optimal policy for the data we've seen? - Explore: gather more data to avoid missing out on a potentially large reward? # Possible approaches - Always pick a random action? - Will eventually converge to optimal policy © - Can take very long to find it! - Always pick the best action according to current knowledge? - Quickly get some reward - Can get stuck in suboptimal action! ⊗ 35 ### Possible approaches - ε_n greedy - With probability ε_n : Pick random action - With probability (1- ε_n): Pick best action - Will converge to optimal policy with probability 1 ☺ - Often performs quite well © - Doesn't quickly eliminate clearly suboptimal actions ⁽²⁾ - What about an analogy to UCB1 for bandit problems? ### The R_{max} Algorithm [Brafman & Tennenholz] #### Optimism in the face of uncertainty! - If you don't know r(s,a): - Set it to R_{max}! - If you don't know P(s' | s,a): - Set P(s* | s,a) = 1 where s* is a "fairy tale" state: 3 # Implicit Exploration Exploitation in R_{max} Three actions: - Left - Right - Dig r(i,Left) =0 r(i,Right)=0 #### **Like UCB1:** Never know whether we're exploring or exploiting! © Χ ### Exploration—Exploitation Lemma **Theorem**: Every T timesteps, w.h.p., R_{max} either - Obtains near-optimal reward, or - Visits at least one unknown state-action pair - T is related to the mixing time of the Markov chain of the MDP induced by the optimal policy 39 # The R_{max} algorithm Input: Starting state s_0 , discount factor γ Initially: - Add fairy tale state s* to MDP - Set r(s,a) = R_{max} for all states s and actions a - Set P(s* | s,a) = 1 for all states s and actions a #### Repeat: - Solve for optimal policy π according to current model P and R - Execute policy π - For each visited state action pair s, a, update r(s,a) - Estimate transition probabilities P(s' | s,a) - If observed "enough" transitions / rewards, recompute policy π #### How much is "enough"? How many samples do we need to accurately estimate $P(s' \mid s,a)$ or r(s,a)? #### Hoeffding-Chernoff bound (from last lecture!): - X_1 , ..., X_n i.i.d. samples from Bernoulli distribution w. mean μ - P($|1/n \sum_i X_i \mu| \ge \varepsilon$) $\le 2 e^{-2n \varepsilon^2}$ 4 # #### Theorem: With probability 1- δ , R_{max} will reach an ϵ -optimal policy in O(|S| |A| T / (ϵ δ)) #### **Proof sketch:** **Theorem:** Can get logarithmic regret bounds using slight modification of R_{max} (Auer et al, NIPS '06) ### Challenges of RL - Curse of dimensionality - MDP and RL polynomial in |A| and |S| - Structured domains (chess, multiagent planning, ...): |S|, |A| exponential in #agents, state variables, ... - → Learning / approximating value functions (regression) - → Approximate planning using factored representations - Risk in exploration - Random exploration can be disastrous - → Learn from "safe" examples: Apprenticeship learning 43 #### What you need to know - MDPs - Policies - value- and Q-functions - Techniques for solving MDPs - Policy iteration - Value iteration - Reinforcement learning = learning in MDPs - Model-based / model-free RL - Different strategies for trading off exploration and exploitation - Implicit: R_{max}, like UCB1, optimism in the face of uncertainty - Explicit: ε_n greedy # Acknowledgments - Some material used from Andrew Moore's MDP / RL tutorials: http://www.cs.cmu.edu/~awm/ - Presentation of R_{max} based on material from CMU 10-701 (Carlos Guestrin)