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Active Learning and

Optimized Information Gathering

Lecture 3 – Reinforcement Learning

CS 101.2

Andreas Krause
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Announcements
Homework 1: out tomorrow

Due Thu Jan 22

Project

Proposal due Tue Jan 27 (start soon!)

Office hours

Come to office hours before your presentation!

Andreas: Friday 12:30-2pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore
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Course outline
1. Online decision making

2. Statistical active learning

3. Combinatorial approaches
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k-armed bandits

Each arm i gives reward Xi,t with mean µi

…

p1 p2 p3 pk
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UCB 1 algorithm: Implicit exploration
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UCB 1 algorithm: Implicit exploration

8

Performance of UCB 1
Last lecture:

For each suboptimal arm j: E[Tj] = O(log n/∆j)

See notes on course webpage

This lecture: 

What if our actions change the expected reward µi??
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Searching for gold (oil, water, …)

Mean reward depends on internal state!

State changes by performing actions

Three actions:

• Left

• Right

• Dig
µDig

=.8

µDig

=.3

µDig

=0

µDig

=0 µLeft = 0

µRight = 0
x

S1 S2 S3 S4
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Becoming rich and famous
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Markov Decision Processes

An MDP has

A set of states S = {s1,…,sn} …

with reward function r(s,a)   [random var. with mean µs = r(s,a)]

A set of actions A = {a1,…,am}

Transition probabilities 

P(s’|s,a) = Prob(Next state = s’ | Action a in state s)

For now assume r and P are known!

Want to choose actions to maximize reward

Finite horizon

Discounted rewards
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Finite horizon MDP Decision model

Reward R = 0

Start in state s

For t = 0 to n

Choose action a

Obtain reward R = R + r(s,a)

End up in state s’ according to P(s’|s,a)

Repeat with s ← s’

Corresponds to rewards in bandit problems we’ve seen
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Discounted MDP Decision model

Reward R = 0

Start in state s

For t = 0 to ∞

Choose action a

Obtain discounted reward R = R +   γt r(s,a)

End up in state s’ according to P(s’|s,a)

Repeat with s ← s’

This lecture: Discounted rewards

Fixed probability (1-γ) of “obliteration”

(inflation, running out of battery, …)
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Policies

poor,

unknown

S

A
poor,

famous A

S

rich,

famous
A

Srich,

unknown

A

S

Policy: Pick one fixed action for each state
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Policies: Always save?
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Policies: Always advertise?
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Policies: How about this one?
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Planning in MDPs
Deterministic policy π: S → A

Induces a Markov chain: S1,S2,…,St,…

with transition probabilities 

P(St+1=s’ | St=s) = P(s’ | s, π(s))

Expected value J(π) = E[     r(S1,π(S1)) 

+ γ r(S2,π(S2)) 

+ γ2 r(S3,π(S3)) 

+ … ]

PU A PF

S

RF

S

RU

S
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Computing the value of a policy
For fixed policy π and each state s, define value function

Vπ(s) = J(π | start in state s) = r(s,π(s)) + E[∑t γt r(St,π(St))]

Recursion:

and  J(π) =

In matrix notation:

� Can compute Vππππ analytically, by matrix inversion! ☺☺☺☺

How can we find the optimal policy?
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A simple algorithm

For every policy π compute J(π)

Pick π* = argmax J(π)

Is this a good idea??
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Value functions and policies

Value function Vππππ

Vπ(s) = r(s,π(s)) + 

γ∑s`P(s’|s,π(s)) Vπ(s’)

πV(s) = argmaxa r(s,a)+

γ ∑s` P(s` | s,a) V(s)

Greedy policy w.r.t. V

Policy optimal ���� greedy w.r.t. its induced value function!

Every value function induces a policy

Every policy induces a value function
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Policy iteration
Start with a random policy π

Until converged do:

Compute value function Vπ (s)

Compute greedy policy πG w.r.t. Vπ

Set π← πG

Guaranteed to 

Monotonically improve 

Converge to an optimal policy π*

Often performs really well!

Not known whether it’s polynomial in |S| and |A|!
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Alternative approach
For the optimal policy π* it holds (Bellman equation)

V*(s) = maxa r(s,a) + γ ∑s` P(s’ | s ,a) V*(s)

Compute V* using dynamic programming:

Vt(s)   = Max. expected reward when

starting in state s and world ends

in t time steps

V0(s)   = 

V1(s)   = 

Vt+1(s) = 
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Value iteration
Initialize V0(s) = maxa r(s,a)

For t = 1 to ∞

For each s, a, let 

For each s let 

Break if 

Then choose greedy policy w.r.t. Vt

Guaranteed to converge to εεεε-optimal policy!
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Recap: Ways for solving MDPs
Policy iteration:

Start with random policy π

Compute exact value function Vπ (matrix inversion)

Select greedy policy w.r.t. Vπ and iterate

Value iteration

Solve Bellman equation using dynamic programming

Vt(s) = maxa r(s,a) + γ ∑s` P(s’ | s,a) Vt-1(s)

Linear programming
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MDP = controlled Markov chain

State fully observed at every time step

Action At controls transition to St+1

S1 S2 S3 St

A1 A2 At-1

…

Specify P(St+1 | St,a)
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POMDP = controlled HMM

Only obtain noisy observations Ot of the hidden state St

Very powerful model! ☺☺☺☺

Typically extremely intractable ����

S1 S2 S3 St

A1 A2 At-1

…

Specify P(St+1 | St,at)

P(Ot | St)

O1 O2 O3 Ot
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Applications of MDPs
Robot path planning (noisy actions)

Elevator scheduling

Manufactoring processes

Network switching and routing

AI in computer games

…
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What if the MDP is not known??

poor,

unknown
S

A
poor,

famous A

S

rich,

famous
A

Srich,

unknown

A

S

? (?)

? (?)? (?)? (?)
? (?)

? (?)

? (?)

? (?)

? (?)

? (?)

? (?)

?(?)

?(?)

30

Bandit problems as unknown MDP

Special case with only 1 state, unknown rewards

Only 

state

1

2
k

…
1 (?)

1 (?)

1 (?)
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Reinforcement learning
World: “You are in state s17. You can take actions a3 and a9”

Robot: “I take a3 ”

World: “You get reward -4 and are now in state s279. You can take 

actions a7 and a9 ”

Robot: “I take a9 ”

World: “You get reward 27 and are now in state s279… You can take 

actions a2 and a17”

…

Assumption: States change according to some (unknown) MDP!
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Credit Assignment Problem

“Wow, I won! How the heck did I do that??”

Which actions got me to the state with high reward??

………

10APF

0SPF

0APU

0SPU

0APU

RewardActionState
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Two basic approaches
1) Model-based RL

Learn the MDP

Estimate transition probabilities P(s’ | s,a)

Estimate reward function r(s,a)

Optimize policy based on estimated MDP 

Does not suffer from credit assignment problem! ☺☺☺☺

2) Model-free RL (later)

Estimate the value function directly

34

Exploration–Exploitation Tradeoff in RL

We have seen part of the state space and received a 

reward of 97. 

Should we

Exploit: stick with our current knowledge and build an 

optimal policy for the data we’ve seen?

Explore: gather more data to avoid missing out on a 

potentially large reward?

S1 S2 S3 S4
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Possible approaches
Always pick a random action?

Will eventually converge to optimal policy ☺

Can take very long to find it! �

Always pick the best action according to current 

knowledge?

Quickly get some reward

Can get stuck in suboptimal action! �
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Possible approaches
εn greedy

With probability εn: Pick random action

With probability (1-εn): Pick best action 

Will converge to optimal policy with probability 1 ☺

Often performs quite well ☺

Doesn’t quickly eliminate clearly suboptimal actions �

What about an analogy to UCB1 for bandit problems?
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The Rmax Algorithm [Brafman & Tennenholz]

Optimism in the face of uncertainty!

If you don’t know r(s,a):

Set it to Rmax!

If you don’t know P(s’ | s,a):

Set P(s* | s,a) = 1 where s* is a “fairy tale” state:
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Implicit Exploration Exploitation in Rmax

Three actions:

• Left

• Right

• Dig
r(1,Dig)=0

x

r(2,Dig)=0 r(3,Dig)=.8 r(4,Dig)=.3

r(i,Left) =0

r(i,Right)=0

Like UCB1: 

Never know whether we’re exploring or exploiting! ☺☺☺☺
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Exploration—Exploitation Lemma

Theorem: Every T timesteps, w.h.p., Rmax either

Obtains near-optimal reward, or

Visits at least one unknown state-action pair

T is related to the mixing time of the Markov chain of 

the MDP induced by the optimal policy
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The Rmax algorithm
Input: Starting state s0, discount factor γ

Initially:

Add fairy tale state s* to MDP

Set r(s,a) = Rmax for all states s and actions a

Set P(s* | s,a) = 1 for all states s and actions a

Repeat:

Solve for optimal policy π according to current model P and R

Execute policy π

For each visited state action pair s, a, update r(s,a)

Estimate transition probabilities P(s’ | s,a)

If observed “enough” transitions / rewards, recompute policy π
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How much is “enough”?
How many samples do we need to accurately estimate 

P(s’ | s,a) or r(s,a)??

Hoeffding-Chernoff bound (from last lecture!):

X1, …, Xn i.i.d. samples from Bernoulli distribution w. mean µ

P( |1/n ∑i Xi-µ| ≥ ε) ≤ 2 e-2n ε2
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Performance of Rmax [Brafman & Tennenholz]

Theorem:

With probability 1-δ, Rmax will reach an ε-optimal 

policy in O( |S| |A| T / (ε δ))

Proof sketch:

Theorem: Can get logarithmic regret bounds using 

slight modification of Rmax (Auer et al, NIPS ’06)
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Challenges of RL
Curse of dimensionality

MDP and RL polynomial in |A| and |S|

Structured domains (chess, multiagent planning, …): 
|S|, |A| exponential in #agents, state variables, …

� Learning / approximating value functions (regression)

� Approximate planning using factored representations

Risk in exploration

Random exploration can be disastrous

� Learn from “safe” examples: Apprenticeship learning
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What you need to know
MDPs

Policies

value- and Q-functions

Techniques for solving MDPs

Policy iteration

Value iteration

Reinforcement learning = learning in MDPs

Model-based / model-free RL

Different strategies for trading off exploration and 

exploitation

Implicit: Rmax, like UCB1, optimism in the face of uncertainty

Explicit:  εn greedy
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