Active Learning and Optimized Information Gathering

Lecture 3 – Reinforcement Learning

CS 101.2 Andreas Krause

Announcements

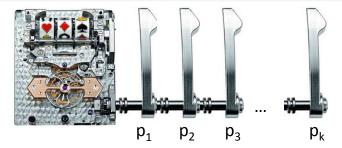
- Homework 1: out tomorrow
 - Due Thu Jan 22
- Project
 - Proposal due Tue Jan 27 (start soon!)
- Office hours
 - Come to office hours before your presentation!
 - Andreas: Friday 12:30-2pm, 260 Jorgensen
 - Ryan: Wednesday 4:00-6:00pm, 109 Moore

Course outline

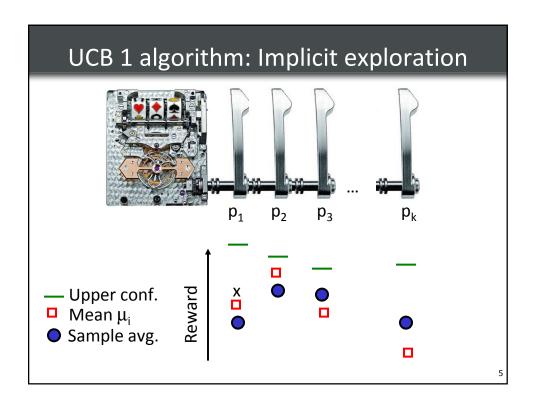
- 1. Online decision making
- 2. Statistical active learning
- 3. Combinatorial approaches

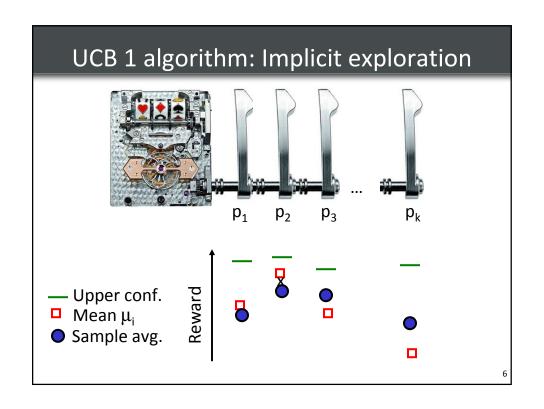
3

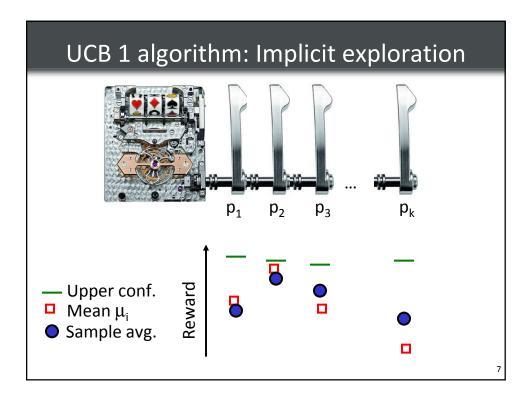
k-armed bandits



 \bullet Each arm i gives reward $\textbf{X}_{i,t}$ with mean μ_i







Performance of UCB 1

Last lecture:

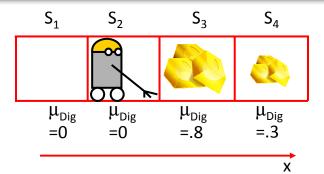
For each suboptimal arm j: $E[T_j] = O(\log n/\Delta_j)$

See notes on course webpage

This lecture:

What if our actions change the expected reward μ_i ??

Searching for gold (oil, water, ...)



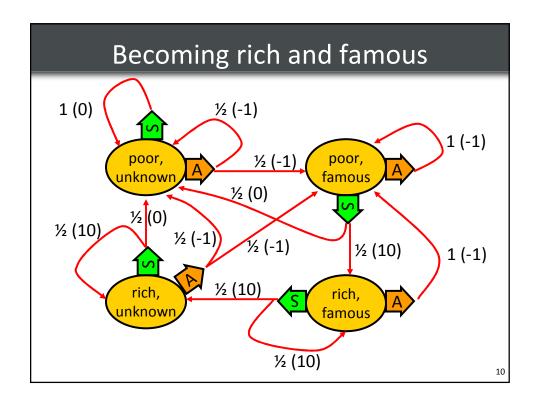
Three actions:

- Left
- Right
- Dig

$$\begin{array}{l} \mu_{\text{Left}} = 0 \\ \mu_{\text{Right}} = 0 \end{array}$$

- Mean reward depends on internal state!
- State changes by performing actions

ç



Markov Decision Processes

- An MDP has
 - A set of states $S = \{s_1, ..., s_n\}$...
 - with reward function r(s,a) [random var. with mean $\mu_s = r(s,a)$]
 - ◆ A set of actions A = {a₁,...,a_m}
 - Transition probabilities
 P(s'|s,a) = Prob(Next state = s' | Action a in state s)
- For now assume r and P are known!
- Want to choose actions to maximize reward
 - Finite horizon
 - Discounted rewards

11

Finite horizon MDP Decision model

- Reward R = 0
- Start in state s
- For t = 0 to n
 - Choose action a
 - Obtain reward R←R + r(s,a)
 - End up in state s' according to P(s'|s,a)
 - Repeat with $s \leftarrow s'$
- Corresponds to rewards in bandit problems we've seen

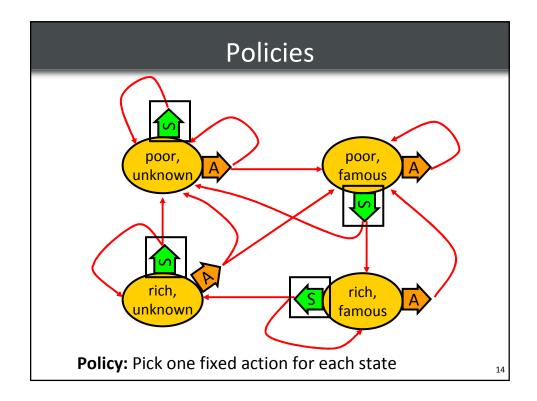
Discounted MDP Decision model

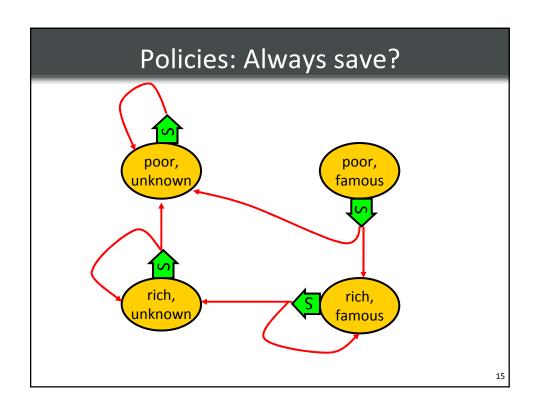
- Reward R = 0
- Start in state s
- For t = 0 to ∞
 - Choose action a

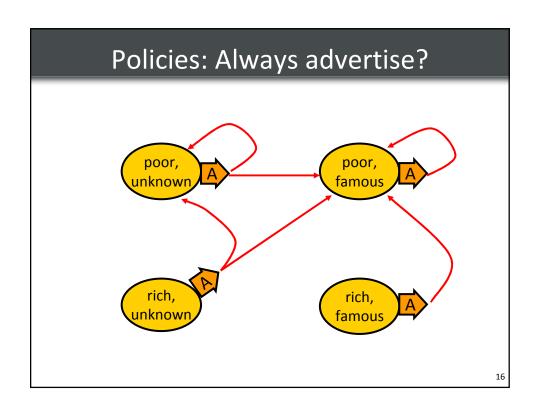
- 0=5=1
- Obtain **discounted** reward R = R + γ^t r(s,a)
- End up in state s' according to P(s' | s,a)
- Repeat with $s \leftarrow s'$

This lecture: Discounted rewards

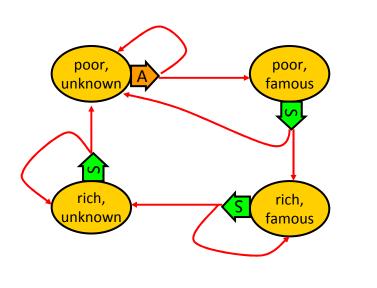
 Fixed probability (1-γ) of "obliteration" (inflation, running out of battery, ...)







Policies: How about this one?



Planning in MDPs

Deterministic policy

$$\pi{:}\:\mathsf{S}\to\mathsf{A}$$

Induces a Markov chain: with transition probabilities

$$P(S_{t+1}=s' | S_t=s) = P(s' | s, \pi(s))$$

• Expected value $J(\pi) = E[r(S_1, \pi(S_1)) + \gamma r(S_2, \pi(S_2)) + \gamma^2 r(S_3, \pi(S_3)) + ...]$

PU PF RE

Computing the value of a policy

• For fixed policy π and each state s, define value function

$$V^{\pi}(s) = J(\pi \mid \text{start in state s}) = r(s,\pi(s)) + E[\sum_t \gamma^t r(S_t,\pi(S_t))]$$

Recursion:
$$\sqrt{\Gamma(s)} = \Gamma(s, T(s)) + \chi \sum_{i} P(i)(s, T(s)) \sqrt{\Gamma(s)}$$

and
$$J(\pi) = \sqrt{T}$$
 (stook stock)

In matrix notation:
$$\sqrt{\pi} = - + \sqrt{2}$$

 \rightarrow Can compute V^{π} analytically, by matrix inversion! \odot

How can we find the optimal policy?

19

A simple algorithm

- For every policy π compute $J(\pi)$
- Pick $\pi^* = \operatorname{argmax} J(\pi)$

Is this a good idea??

Value functions and policies

Every value function induces a policy

Value function V^{π}

$$V^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s} P(s' | s,\pi(s)) V^{\pi}(s')$$

Greedy policy w.r.t. V

$$\pi_{V}(s) = \operatorname{argmax}_{a} r(s,a) + \gamma \sum_{s} P(s' \mid s,a) V(s')$$

Every policy induces a value function

Policy optimal ⇔ greedy w.r.t. its induced value function!

2

Policy iteration

- Start with a random policy π
- Until converged do:

Compute value function V_{π} (s)

Compute greedy policy π_G w.r.t. V_{π}

Set $\pi \leftarrow \pi_G$

- Guaranteed to
 - Monotonically improve
 - ullet Converge to an optimal policy π^*
- Often performs really well!
- Not known whether it's polynomial in |S| and |A|!

Alternative approach

• For the optimal policy π^* it holds (Bellman equation)

$$V^*(s) = \max_a r(s,a) + \gamma \sum_{s'} P(s' | s,a) V^*(s)$$

Compute V* using dynamic programming:

V_t(s) = Max. expected reward when starting in state s and world ends in t time steps

$$V_{0}(s) = \bigvee_{s} V(s, s)$$

$$V_{1}(s) = \bigvee_{t+1}(s) = \bigvee_{t} V(s, s)$$

$$V_{t+1}(s) = \bigvee_{t} V(s, s)$$

Value iteration

- Initialize V₀(s) = max_a r(s,a)
- For t = 1 to ∞

For each s, a, let
$$Q(s, a) = \sum_{s'} P(s'|s, a) \bigvee_{t-1} (s')$$

For each s let
$$V_{E}(s) = \max_{\alpha} \Gamma(s, \alpha) + \delta Q_{F}(s, \alpha)$$

Break if
$$\bigvee_{k} (s) - \bigvee_{k} (s) | \leq \epsilon$$

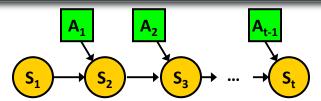
- Then choose greedy policy w.r.t. V_t
- Guaranteed to converge to ε-optimal policy!

Recap: Ways for solving MDPs

- Policy iteration:
 - Start with random policy π
 - Compute exact value function V^{π} (matrix inversion)
 - Select greedy policy w.r.t. V^{π} and iterate
- Value iteration
 - Solve Bellman equation using dynamic programming $V_t(s) = \max_a r(s,a) + \gamma \sum_{s'} P(s' \mid s,a) V_{t-1}(s)$
- Linear programming

25

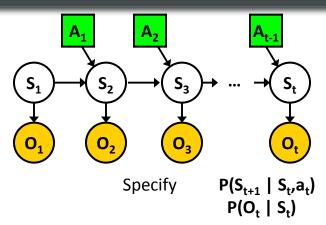
MDP = controlled Markov chain



Specify P(S_{t+1} | S_t,a)

- State fully observed at every time step
- Action A_t controls transition to S_{t+1}

POMDP = controlled HMM

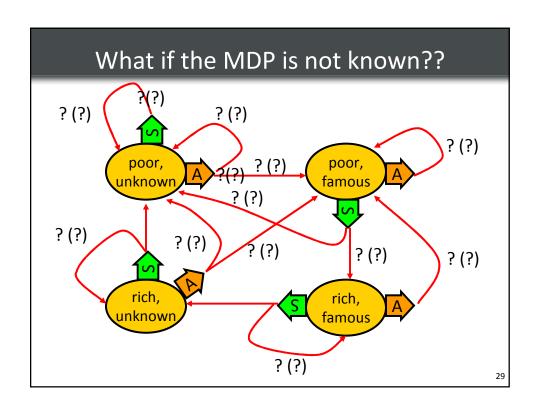


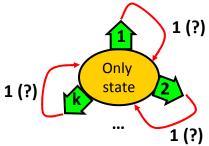
- Only obtain noisy observations O_t of the hidden state S_t
- Very powerful model!
- Typically extremely intractable ⊗

27

Applications of MDPs

- Robot path planning (noisy actions)
- Elevator scheduling
- Manufactoring processes
- Network switching and routing
- Al in computer games
- •





Special case with only 1 state, unknown rewards

Reinforcement learning

World: "You are in state s₁₇. You can take actions a₃ and a₉"

Robot: "I take a₃"

World: "You get reward -4 and are now in state s₂₇₉. You can take

actions a_7 and a_9 "

Robot: "I take a₉"

World: "You get reward 27 and are now in state s279... You can take

actions a₂ and a₁₇"

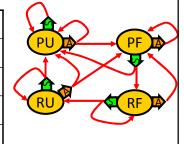
...

Assumption: States change according to some (unknown) MDP!

3:

Credit Assignment Problem

State	Action	Reward
PU	А	0
PU	S	0
PU	А	0
PF	S	0
PF	Α (10



"Wow, I won! How the heck did I do that??"
Which actions got me to the state with high reward??

Two basic approaches

- 1) Model-based RL
 - Learn the MDP
 Estimate transition probabilities P(s' | s,a)
 Estimate reward function r(s,a)
 - Optimize policy based on estimated MDP

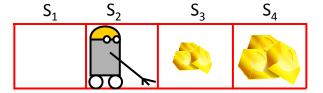
Does not suffer from credit assignment problem! ©

- 2) Model-free RL (later)
 - Estimate the value function directly

3

Exploration-Exploitation Tradeoff in RL

 We have seen part of the state space and received a reward of 97.



- Should we
 - Exploit: stick with our current knowledge and build an optimal policy for the data we've seen?
 - Explore: gather more data to avoid missing out on a potentially large reward?

Possible approaches

- Always pick a random action?
 - Will eventually converge to optimal policy ©
 - Can take very long to find it!
- Always pick the best action according to current knowledge?
 - Quickly get some reward
 - Can get stuck in suboptimal action! ⊗

35

Possible approaches

- ε_n greedy
 - With probability ε_n : Pick random action
 - With probability (1- ε_n): Pick best action
 - Will converge to optimal policy with probability 1 ☺
 - Often performs quite well ©
 - Doesn't quickly eliminate clearly suboptimal actions ⁽²⁾
- What about an analogy to UCB1 for bandit problems?

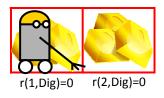
The R_{max} Algorithm [Brafman & Tennenholz]

Optimism in the face of uncertainty!

- If you don't know r(s,a):
 - Set it to R_{max}!
- If you don't know P(s' | s,a):
 - Set P(s* | s,a) = 1 where s* is a "fairy tale" state:

3

Implicit Exploration Exploitation in R_{max}



Three actions:

- Left
- Right
- Dig

r(i,Left) =0 r(i,Right)=0

Like UCB1:

Never know whether we're exploring or exploiting! ©

Χ

Exploration—Exploitation Lemma

Theorem: Every T timesteps, w.h.p., R_{max} either

- Obtains near-optimal reward, or
- Visits at least one unknown state-action pair
- T is related to the mixing time of the Markov chain of the MDP induced by the optimal policy

39

The R_{max} algorithm

Input: Starting state s_0 , discount factor γ Initially:

- Add fairy tale state s* to MDP
- Set r(s,a) = R_{max} for all states s and actions a
- Set P(s* | s,a) = 1 for all states s and actions a

Repeat:

- Solve for optimal policy π according to current model P and R
- Execute policy π
- For each visited state action pair s, a, update r(s,a)
- Estimate transition probabilities P(s' | s,a)
- If observed "enough" transitions / rewards, recompute policy π

How much is "enough"?

How many samples do we need to accurately estimate $P(s' \mid s,a)$ or r(s,a)?

Hoeffding-Chernoff bound (from last lecture!):

- X_1 , ..., X_n i.i.d. samples from Bernoulli distribution w. mean μ
- P($|1/n \sum_i X_i \mu| \ge \varepsilon$) $\le 2 e^{-2n \varepsilon^2}$

4

Theorem:

With probability 1- δ , R_{max} will reach an ϵ -optimal policy in O(|S| |A| T / (ϵ δ))

Proof sketch:

Theorem: Can get logarithmic regret bounds using slight modification of R_{max} (Auer et al, NIPS '06)

Challenges of RL

- Curse of dimensionality
 - MDP and RL polynomial in |A| and |S|
 - Structured domains (chess, multiagent planning, ...):
 |S|, |A| exponential in #agents, state variables, ...
 - → Learning / approximating value functions (regression)
 - → Approximate planning using factored representations
- Risk in exploration
 - Random exploration can be disastrous
 - → Learn from "safe" examples: Apprenticeship learning

43

What you need to know

- MDPs
 - Policies
 - value- and Q-functions
- Techniques for solving MDPs
 - Policy iteration
 - Value iteration
- Reinforcement learning = learning in MDPs
- Model-based / model-free RL
- Different strategies for trading off exploration and exploitation
 - Implicit: R_{max}, like UCB1, optimism in the face of uncertainty
 - Explicit: ε_n greedy

Acknowledgments

- Some material used from Andrew Moore's MDP / RL tutorials: http://www.cs.cmu.edu/~awm/
- Presentation of R_{max} based on material from CMU 10-701 (Carlos Guestrin)