
1

Active Learning and

Optimized Information Gathering

Lecture 3 – Reinforcement Learning

CS 101.2

Andreas Krause

2

Announcements
Homework 1: out tomorrow

Due Thu Jan 22

Project

Proposal due Tue Jan 27 (start soon!)

Office hours

Come to office hours before your presentation!

Andreas: Friday 12:30-2pm, 260 Jorgensen

Ryan: Wednesday 4:00-6:00pm, 109 Moore

2

3

Course outline
1. Online decision making

2. Statistical active learning

3. Combinatorial approaches

4

k-armed bandits

Each arm i gives reward Xi,t with mean µi

…

p1 p2 p3 pk

3

5

UCB 1 algorithm: Implicit exploration

…

p1 p2 p3 pk
R

e
w

a
rd x

Sample avg.
Mean µi

Upper conf.

6

…

p1 p2 p3 pk

R
e

w
a

rd

x

Sample avg.
Mean µi

Upper conf.

UCB 1 algorithm: Implicit exploration

4

7

…

p1 p2 p3 pk
R

e
w

a
rd

Sample avg.
Mean µi

Upper conf.

UCB 1 algorithm: Implicit exploration

8

Performance of UCB 1
Last lecture:

For each suboptimal arm j: E[Tj] = O(log n/∆j)

See notes on course webpage

This lecture:

What if our actions change the expected reward µi??

5

9

Searching for gold (oil, water, …)

Mean reward depends on internal state!

State changes by performing actions

Three actions:

• Left

• Right

• Dig
µDig

=.8

µDig

=.3

µDig

=0

µDig

=0 µLeft = 0

µRight = 0
x

S1 S2 S3 S4

10

Becoming rich and famous

poor,

unknown

S

A
poor,

famous A

S

rich,

famous
A

Srich,

unknown

A

S

1 (-1)

1 (-1)½ (-1)½ (-1)
½ (10)

½ (0)

1 (0)

½ (-1)

½ (-1)

½ (10)

½ (10)

½ (10)
½ (0)

6

11

Markov Decision Processes

An MDP has

A set of states S = {s1,…,sn} …

with reward function r(s,a) [random var. with mean µs = r(s,a)]

A set of actions A = {a1,…,am}

Transition probabilities

P(s’|s,a) = Prob(Next state = s’ | Action a in state s)

For now assume r and P are known!

Want to choose actions to maximize reward

Finite horizon

Discounted rewards

12

Finite horizon MDP Decision model

Reward R = 0

Start in state s

For t = 0 to n

Choose action a

Obtain reward R = R + r(s,a)

End up in state s’ according to P(s’|s,a)

Repeat with s ← s’

Corresponds to rewards in bandit problems we’ve seen

7

13

Discounted MDP Decision model

Reward R = 0

Start in state s

For t = 0 to ∞

Choose action a

Obtain discounted reward R = R + γt r(s,a)

End up in state s’ according to P(s’|s,a)

Repeat with s ← s’

This lecture: Discounted rewards

Fixed probability (1-γ) of “obliteration”

(inflation, running out of battery, …)

14

Policies

poor,

unknown

S

A
poor,

famous A

S

rich,

famous
A

Srich,

unknown

A

S

Policy: Pick one fixed action for each state

8

15

Policies: Always save?

poor,

unknown

S

poor,

famous

S

rich,

famous

Srich,

unknown

S

16

Policies: Always advertise?

poor,

unknown A
poor,

famous A

rich,

famous
A

rich,

unknown

A

9

17

Policies: How about this one?

poor,

unknown A
poor,

famous

S

rich,

famous

Srich,

unknown

S

18

Planning in MDPs
Deterministic policy π: S → A

Induces a Markov chain: S1,S2,…,St,…

with transition probabilities

P(St+1=s’ | St=s) = P(s’ | s, π(s))

Expected value J(π) = E[r(S1,π(S1))

+ γ r(S2,π(S2))

+ γ2 r(S3,π(S3))

+ …]

PU A PF

S

RF

S

RU

S

10

19

Computing the value of a policy
For fixed policy π and each state s, define value function

Vπ(s) = J(π | start in state s) = r(s,π(s)) + E[∑t γt r(St,π(St))]

Recursion:

and J(π) =

In matrix notation:

� Can compute Vππππ analytically, by matrix inversion! ☺☺☺☺

How can we find the optimal policy?

20

A simple algorithm

For every policy π compute J(π)

Pick π* = argmax J(π)

Is this a good idea??

11

21

Value functions and policies

Value function Vππππ

Vπ(s) = r(s,π(s)) +

γ∑s`P(s’|s,π(s)) Vπ(s’)

πV(s) = argmaxa r(s,a)+

γ ∑s` P(s` | s,a) V(s)

Greedy policy w.r.t. V

Policy optimal ���� greedy w.r.t. its induced value function!

Every value function induces a policy

Every policy induces a value function

22

Policy iteration
Start with a random policy π

Until converged do:

Compute value function Vπ (s)

Compute greedy policy πG w.r.t. Vπ

Set π← πG

Guaranteed to

Monotonically improve

Converge to an optimal policy π*

Often performs really well!

Not known whether it’s polynomial in |S| and |A|!

12

23

Alternative approach
For the optimal policy π* it holds (Bellman equation)

V*(s) = maxa r(s,a) + γ ∑s` P(s’ | s ,a) V*(s)

Compute V* using dynamic programming:

Vt(s) = Max. expected reward when

starting in state s and world ends

in t time steps

V0(s) =

V1(s) =

Vt+1(s) =

24

Value iteration
Initialize V0(s) = maxa r(s,a)

For t = 1 to ∞

For each s, a, let

For each s let

Break if

Then choose greedy policy w.r.t. Vt

Guaranteed to converge to εεεε-optimal policy!

13

25

Recap: Ways for solving MDPs
Policy iteration:

Start with random policy π

Compute exact value function Vπ (matrix inversion)

Select greedy policy w.r.t. Vπ and iterate

Value iteration

Solve Bellman equation using dynamic programming

Vt(s) = maxa r(s,a) + γ ∑s` P(s’ | s,a) Vt-1(s)

Linear programming

26

MDP = controlled Markov chain

State fully observed at every time step

Action At controls transition to St+1

S1 S2 S3 St

A1 A2 At-1

…

Specify P(St+1 | St,a)

14

27

POMDP = controlled HMM

Only obtain noisy observations Ot of the hidden state St

Very powerful model! ☺☺☺☺

Typically extremely intractable ����

S1 S2 S3 St

A1 A2 At-1

…

Specify P(St+1 | St,at)

P(Ot | St)

O1 O2 O3 Ot

28

Applications of MDPs
Robot path planning (noisy actions)

Elevator scheduling

Manufactoring processes

Network switching and routing

AI in computer games

…

15

29

What if the MDP is not known??

poor,

unknown
S

A
poor,

famous A

S

rich,

famous
A

Srich,

unknown

A

S

? (?)

? (?)? (?)? (?)
? (?)

? (?)

? (?)

? (?)

? (?)

? (?)

? (?)

?(?)

?(?)

30

Bandit problems as unknown MDP

Special case with only 1 state, unknown rewards

Only

state

1

2
k

…
1 (?)

1 (?)

1 (?)

16

31

Reinforcement learning
World: “You are in state s17. You can take actions a3 and a9”

Robot: “I take a3 ”

World: “You get reward -4 and are now in state s279. You can take

actions a7 and a9 ”

Robot: “I take a9 ”

World: “You get reward 27 and are now in state s279… You can take

actions a2 and a17”

…

Assumption: States change according to some (unknown) MDP!

32

Credit Assignment Problem

“Wow, I won! How the heck did I do that??”

Which actions got me to the state with high reward??

………

10APF

0SPF

0APU

0SPU

0APU

RewardActionState

PU

S

A PF A

S

RF A

S

RU
A

S

17

33

Two basic approaches
1) Model-based RL

Learn the MDP

Estimate transition probabilities P(s’ | s,a)

Estimate reward function r(s,a)

Optimize policy based on estimated MDP

Does not suffer from credit assignment problem! ☺☺☺☺

2) Model-free RL (later)

Estimate the value function directly

34

Exploration–Exploitation Tradeoff in RL

We have seen part of the state space and received a

reward of 97.

Should we

Exploit: stick with our current knowledge and build an

optimal policy for the data we’ve seen?

Explore: gather more data to avoid missing out on a

potentially large reward?

S1 S2 S3 S4

18

35

Possible approaches
Always pick a random action?

Will eventually converge to optimal policy ☺

Can take very long to find it! �

Always pick the best action according to current

knowledge?

Quickly get some reward

Can get stuck in suboptimal action! �

36

Possible approaches
εn greedy

With probability εn: Pick random action

With probability (1-εn): Pick best action

Will converge to optimal policy with probability 1 ☺

Often performs quite well ☺

Doesn’t quickly eliminate clearly suboptimal actions �

What about an analogy to UCB1 for bandit problems?

19

37

The Rmax Algorithm [Brafman & Tennenholz]

Optimism in the face of uncertainty!

If you don’t know r(s,a):

Set it to Rmax!

If you don’t know P(s’ | s,a):

Set P(s* | s,a) = 1 where s* is a “fairy tale” state:

38

Implicit Exploration Exploitation in Rmax

Three actions:

• Left

• Right

• Dig
r(1,Dig)=0

x

r(2,Dig)=0 r(3,Dig)=.8 r(4,Dig)=.3

r(i,Left) =0

r(i,Right)=0

Like UCB1:

Never know whether we’re exploring or exploiting! ☺☺☺☺

20

39

Exploration—Exploitation Lemma

Theorem: Every T timesteps, w.h.p., Rmax either

Obtains near-optimal reward, or

Visits at least one unknown state-action pair

T is related to the mixing time of the Markov chain of

the MDP induced by the optimal policy

40

The Rmax algorithm
Input: Starting state s0, discount factor γ

Initially:

Add fairy tale state s* to MDP

Set r(s,a) = Rmax for all states s and actions a

Set P(s* | s,a) = 1 for all states s and actions a

Repeat:

Solve for optimal policy π according to current model P and R

Execute policy π

For each visited state action pair s, a, update r(s,a)

Estimate transition probabilities P(s’ | s,a)

If observed “enough” transitions / rewards, recompute policy π

21

41

How much is “enough”?
How many samples do we need to accurately estimate

P(s’ | s,a) or r(s,a)??

Hoeffding-Chernoff bound (from last lecture!):

X1, …, Xn i.i.d. samples from Bernoulli distribution w. mean µ

P(|1/n ∑i Xi-µ| ≥ ε) ≤ 2 e-2n ε2

42

Performance of Rmax [Brafman & Tennenholz]

Theorem:

With probability 1-δ, Rmax will reach an ε-optimal

policy in O(|S| |A| T / (ε δ))

Proof sketch:

Theorem: Can get logarithmic regret bounds using

slight modification of Rmax (Auer et al, NIPS ’06)

22

43

Challenges of RL
Curse of dimensionality

MDP and RL polynomial in |A| and |S|

Structured domains (chess, multiagent planning, …):
|S|, |A| exponential in #agents, state variables, …

� Learning / approximating value functions (regression)

� Approximate planning using factored representations

Risk in exploration

Random exploration can be disastrous

� Learn from “safe” examples: Apprenticeship learning

44

What you need to know
MDPs

Policies

value- and Q-functions

Techniques for solving MDPs

Policy iteration

Value iteration

Reinforcement learning = learning in MDPs

Model-based / model-free RL

Different strategies for trading off exploration and

exploitation

Implicit: Rmax, like UCB1, optimism in the face of uncertainty

Explicit: εn greedy

23

45

Acknowledgments
Some material used from Andrew Moore’s MDP / RL

tutorials: http://www.cs.cmu.edu/~awm/

Presentation of Rmax based on material from

CMU 10-701 (Carlos Guestrin)

