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In these notes we prove logarithmic regret for the UCB 1 algorithm (based on
Auer et al, 2002).

1 Notation

• j: Index of slot machine arm (1 to k).

• n: Total number of plays we will make (known and specified in advance)

• t: Total number of plays we did so far

• Xj,t: Random variable for reward of arm j at time t. All Xj,t are possibly
continuous, but supported in the interval [0, 1] (i.e., they do not take any
values outside [0, 1]). All Xj,t are independent.

• Tj(t): Number of times arm j pulled during the first t plays. Note that Tj(t)
is a random quantity.

• µj = E[Xj,t], and µ∗ = maxj µj

• ∆j = µ∗ − µj, and ∆ = minj ∆j

• Expected regret after t plays:

Rt = E

[
tµ∗ −

∑
j

Tj(t)µj

]
=

∑
j

E[Tj(t)]∆j.

• X̄j(t) is the sample average of all rewards obtained from arm j during the
first t plays (i.e., if we’ve observed rewards x1, . . . , xm where m = Tj(t), then
X̄j(t) = 1

m
(x1 + · · ·+ xm)).
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2 The Upper Confidence Band algorithm (UCB1)

• Initially, play each arm once (hence Tj(t) ≥ 1 for all t ≥ k).

• Loop (for t = k + 1 to n)

– For each arm j compute “index”

vj = X̄j(t) + cj(t),

where cj(t) =
√

log n
Tj(t)

.

– Play the arm with j∗ = argmaxj vj.

3 Analysis

Theorem 1. If UCB1 is run with input n, then its expected regret Rn is O(K log n
∆

).

Proof. To prove Theorem 1, we will bound E[Tj(n)] for all arms j. Suppose, at some
time t, UCB1 pulls a suboptimal arm j. That means, that

X̄j(t) + cj(t) ≥ X̄∗(t) + c∗(t).

Hence, in this case,

X̄j(t) + 2cj(t)− cj(t) + (µj − µj) ≥ X̄∗(t) + c∗(t) + (µ∗ − µ∗)

⇔ X̄j(t)− (µj + cj(t))︸ ︷︷ ︸
A

+ (µj − µ∗ + 2cj(t))︸ ︷︷ ︸
B

≥ X̄∗(t)− (µ∗ − c∗(t))︸ ︷︷ ︸
−C

We can see that at least one of A, B or C must be nonnegative, i.e., at least one of
the following inequalities must hold:

X̄j(t) ≥ µj + cj(t) (1)

X̄∗(t) ≤ µ∗ − c∗(t) (2)

µ∗ ≥ µj + 2cj(t) (3)

In order to bound the probability of (1) and (2), we use the Chernoff-Hoeffding
inequality:
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Fact 1 (Chernoff-Hoeffding inequality). Let X1, . . . , Xn be independent random vari-
ables supported on [0, 1], with E[Xi] = µ. Then, for every a > 0,

P (
1

n

n∑
i=1

Xi ≥ µ + a) ≤ e−2a2n

and

P (
1

n

n∑
i=1

Xi < µ− a) ≤ e−2a2n

Hence, we can bound the probability of (1) as

P (X̄j(t) ≥ µj + cj(t)) ≤ e−2cj(t)
2Tj(t) = e

−2 log n
Tj(t)

Tj(t)
= e−2 log n = n−2.

Similarly,
P (X̄∗(t) ≤ µ∗ − c∗(t)) ≤ n−2.

Hence, (1) and (2) are very unlikely events. Now, note that whenever Tj(t) ≥ ` =
d(4 log n)/∆2

je, (3) must be false, since

µj + 2cj(t) = µj + 2

√
log n

Tj(t)
≤ µj + 2

√√√√ log n
4 log n

∆2
j

≤ µj + ∆j = µ∗

Hence, if arm j has been played at least ` = O(logn /∆2
j) times, then inequality

(3) must be false, and hence arm j is pulled with probability at most O(n−2).
Now we bound E[Tj(n)]. By using conditional expectations, we have (writing Tj

instead of Tj(n) for short)

E[Tj] = P (Tj ≤ `)︸ ︷︷ ︸
≤1

E[Tj | Tj ≤ `]︸ ︷︷ ︸
≤`

+ P (Tj ≥ `)︸ ︷︷ ︸
≤2n−2

E[Tj | Tj ≥ `]︸ ︷︷ ︸
≤n

≤ ` + 2n−1

since we have

P (Tj ≥ `) ≤ P (inequality (1) or (2) violated ) ≤ 2n−2.
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4 Some additional remarks

Note that as stated in Section 2, the total number of plays n needs to specified in
advance. By setting

ct =

√
2 log t

Tj(t)
,

we can avoid this issue. A slightly more complex analysis (of Auer et al ’02) shows
that in this case after any number of t plays it holds that

Rt = O(
k log t

∆
).
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