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1 Value of Information

Consider the medical diagnosis problem discussed in lecture. Let Bernoulli random variable
Y equal 1 if our patient is sick, or 0 if our patient is healthy. We wish to choose some course
of action for the patient, which will be indicated by variable A. We can encode the patient’s
welfare using a utility function U(a, y) that maps the possible actions and patient status to
a real number (positive numbers indicate a good outcome, and negative numbers indicate a
bad outcome).

We can not observe Y directly, so we will make our decision based on medical tests whose
results are given by random variables X1, . . . , Xn indexed by the set V = {1, . . . , n}. We
must determine which set of tests to perform in order to obtain a good outcome for the
patient. Let XB be the random vector of the variables indexed by a subset of indices B ⊆ V ,
which correspond to the outcomes of the tests specified by B, and let P (XB) denote the joint
distribution of that random vector.

One way to evaluate a set of tests is the Value of Information criterion:

V OI(B) = ExB max
a

{
Ey

[
U(a, y) | xB

]}
=

∑
xB

P (xB) max
a

∑
y

P (y | xB)U(a, y), (1)

which captures the expected utility that results from choosing an action based on the outcome
of test XB. In this problem, we will explore the properties of this criterion.

1. The value of observing XB = xB is defined as

Value(XB = xB) = max
a

{
Ey[U(a, y)|xB]

}
, (2)

and can be written as

max
a

{
p′U(a, 1) + (1− p′)U(a, 0)

}
(3)

where p′ = P (Y = 1|XB = xB). Prove that Value(XB = xB) is a convex function of p′.

2. Recall Jensen’s inequality

EF (x) ≥ F (Ex), (4)
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which holds for any convex function F (x). Use this along with the result from the above
subproblem to prove that the value of information set function is monotonic. That is, if
A ⊆ B then

V OI(A) ≤ V OI(B). (5)

3. As a simple example, let’s assume that there are only two possible experiments: X1

and X2. We will use the joint distribution P (X1, X2, Y ) specified on page 16 of the
Bayesian Experimental Design lecture notes (with ε = 0): For either experiment, Xi = Y
with probability 0.5. Otherwise Xi is uniformly chosen from {0, 1}. There are three
possible actions, and you will use the utility function given on the same slide. Compute
V OI({1}), V OI({2}), and V OI({1, 2}).

4. Show that the above example implies that Value of Information is in general not a
submodular set function.

2 Submodularity of Entropy

Let X1, . . . , Xn be random variables that take values in some finite set X and are indexed by
the set V = {1, . . . , n}. Let XA be the random vector of the variables indexed by a subset of
indices A ⊆ V . That is, if A = {i1, i2, . . . , im} then XA = [Xi1 , Xi2 , . . . , Xim ]. The entropy of
the random vector is defined as

H(XA) = −
∑

x∈Xm

P (XA = x) log P (XA = x), (6)

where

P (XA = x) = P (Xi1 = x1, . . . , Xim = xm) (7)

is the joint distribution of the random vector XA.

The conditional entropy of random vector XA given XB (where A = {i1, . . . , im} and B =
{j1, . . . , jl} are disjoint subsets of indices) is defined as

H(XA|XB) = −
∑

x∈Xm

∑
y∈X l

P (XA = x,XB = y) log P (XA = x|XB = y), (8)

where

P (XA = x|XB = y) = P (Xi1 = x1, . . . , Xim = xm|Xj1 = y1, . . . , Xjl
= yl) (9)

is the conditional distribution of XA given XB.

1. Prove the chain rule for entropy:

H(XA∪B) = H(XA) + H(XB|XA), (10)

assuming that A and B are disjoint subsets of indices.
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2. Prove that “information never hurts”:

H(XA|XB) ≤ H(XA), (11)

which means that knowing the values of additional random variables XB never increases
the uncertainty about XA. You can prove this in two steps. First show that

H(XA|XB)−H(XA) =
∑

x∈Xm

∑
y∈X l

P (XA = x,XB = y) log
P (XA = x)P (XB = y)
P (XA = x,XB = y)

.

(12)

Then use Jensen’s inequality (this time for concave functions) to show that∑
x∈Xm

∑
y∈X l

P (XA = x,XB = y) log
P (XA = x)P (XB = y)
P (XA = x,XB = y)

≤ 0 (13)

3. Use the properties proved in subproblems 1 and 2 to show that entropy is monotonic,
i.e., if A ⊆ B, then H(XA) ≤ H(XB).

4. Use the properties proved in subproblems 1 and 2 to show that entropy has the dimin-
ishing returns property:

H(XA∪{s})−H(XA) ≥ H(XB∪{s})−H(XB) (14)

when A ⊆ B and s /∈ B is a single index. Therefore, entropy is a submodular set
function.
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