CS 101.2 - Active Learning
Problem Set 2

Handed out: 3 Feb 2009
Due: 17 Feb 2009

1 Gaussian Processes and Bayesian Linear Regression

The regression problem involves estimating the functional dependence between an input vari-
able x in R? and an output variable y in R. We assume the relationship

M
y(x) =Y wid;(x) +e=w B(x)+e (1)
j=1

where w! ®(x) is a linear combination of M predefined nonlinear basis functions ¢;(x) with
input in R% and output in R. The observations are additively corrupted by i.i.d. noise with
normal distribution

€~ N(0,02) (2)

2

which has zero mean and variance o;.

Our goal is to estimate the weights w; given a training set consisting of pairs (x1,%1), . .., (Xn, Yn)-
We use a multivariate normal distribution as prior on the weights

w ~ N(0,%,), (3)

with zero mean and M-by-M sized covariance matrix 3.

The goal of this problem is to show that the Bayesian linear regression defined above is an
example of a Gaussian process. Recall that a Gaussian Process is a probability measure
over y(x) defined by a mean function u(x) = E[y(x)] and a covariance kernel K(x,x’) =
El(y(x) — p(x))(y(x") — pn(x))]. We can write this as

y(x) ~ GP(u(x), K (x,x)). (4)

1. Show that the Bayesian linear regression functions defined above have mean function
pu(x) =0 (5)
and covariance function
K(x,x) = ®x)"2,®x) + 02(x,x'), (6)

where 0(x,x’) =1 if x = x’ and zero otherwise.



2. Prove that the covariance function (eq. 6) is a valid kernel function. That is, prove that
it is symmetric and positive semi-definite.

3. Derive an expression for

P(y/|xl7 (XLyl)a""(xn;yn)) (7)

which is the predictive distribution of the output variable 1’ associated with test point
x’' given that we have observed a training data set (x1,y1),-- -, (Xn,¥Yn)-

4. Derive an expression for the 95-th percentile of the predictive distribution of 3’.

5. Use [1 = 22 23]T as your basis functions, X,, equal to the identity matrix, and o2 =
0.1. Implement Bayesian linear regression and run it on the following data set: (z1 =
1,y1 = 0.5), (xg = 2,y2 = 1.6),(%3 = S,yg = 1.1),(:64 = 4,y4 = 3), (a;5 = 5,y5 = 4.2).
What are the predictive distributions associated with the following test points: z’ =
{1.5,2.5,3.5,4.5,5.5}7 What is the value associated with the 95-th percentile for each
test point?

2 VC Dimension

1. Unions of intervals. Consider data x that lies in the interval [0,1]. Suppose the
hypothesis space consists of indicator functions of unions of two intervals. More specif-
ically, let the hypothesis space be parameterized by a, b, ¢, d satisfying a < b and ¢ < d
so that data points that fall in either interval [a, b] or [c, d] are classified as positive, and
data that falls outside both intervals is classified as negative. What is the VC dimension
of this hypothesis class?

2. Decision Stumps in R”. Decision stumps are a particularly simple family of binary
classifiers for data x that lies in RP. Their classification rule has parameters ¢, i, @ and
takes the form f(x;1,q,a) = ¢ *sign(x; — a). Decision stumps classify example x based
only on the value of its ¢-th coordinate. « is a threshold value in R and ¢ is either 41
or —1.

(a) Consider n non-overlapping data points lying in R”. What is the maximum number
of ways they can be classified using the decision stump family? That is, how many
different binary labelings of the n points are there in the decision stump hypothesis
space? Your result should be a function of n and D.

(b) Show that the above result implies the following about the VC dimension of decision
stumps:

VCys < 2(logy D+ 1) (8)



3 Active Learning

The purpose of this question is to design an active learning strategy for the hypothesis space
from Problem 2.1. To simplify things, assume that 0 < a < b < ¢ < d < 1. Also assume
that the parameters a, b, ¢, d are all separated by at least n > 0 and both intervals are at least
length n such that, ie., a>n,b—a>n c—b>n,d—c>n,and d <1 —1n. Hereby, nis a
constant, known to the algorithm. Suppose that the distribution over the inputs P(x) is the
uniform distribution over [0, 1].

(a) Develop an active learning scheme that only requires O(log1/elog1/0) labels to find a
hypothesis with error at most € with probability 1 — . Bound the number of labels that
your algorithm requires as a function of €, § and 7.

(b) Generalize this scheme to the hypothesis class containing of hypotheses that are indicator
functions of unions of k intervals, i.e., for each hypothesis h there exists aq,...,ag,
bi,...,bk, b —a; >n, a;41 —b; > nand a1 >0, by < 1 —mn, such that h classifies inputs
x positive if x is contained in one of the intervals [a;, b;], negative otherwise.



