CS 101.2 - Active Learning Problem Set 2

Handed out: 3 Feb 2009 Due: 17 Feb 2009

1 Gaussian Processes and Bayesian Linear Regression

The regression problem involves estimating the functional dependence between an input variable \mathbf{x} in \mathbb{R}^d and an output variable y in \mathbb{R} . We assume the relationship

$$y(\mathbf{x}) = \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) + \epsilon = \mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + \epsilon, \tag{1}$$

where $\mathbf{w}^T \mathbf{\Phi}(\mathbf{x})$ is a linear combination of M predefined nonlinear basis functions $\phi_j(\mathbf{x})$ with input in \mathbb{R}^d and output in \mathbb{R} . The observations are additively corrupted by i.i.d. noise with normal distribution

$$\epsilon \sim N(0, \sigma_n^2) \tag{2}$$

which has zero mean and variance σ_n^2 .

Our goal is to estimate the weights w_j given a training set consisting of pairs $(\mathbf{x_1}, y_1), \dots, (\mathbf{x_n}, y_n)$. We use a multivariate normal distribution as prior on the weights

$$\mathbf{w} \sim N(0, \mathbf{\Sigma}_w),\tag{3}$$

with zero mean and M-by-M sized covariance matrix Σ_w .

The goal of this problem is to show that the Bayesian linear regression defined above is an example of a Gaussian process. Recall that a Gaussian Process is a probability measure over $y(\mathbf{x})$ defined by a mean function $\mu(\mathbf{x}) = E[y(\mathbf{x})]$ and a covariance kernel $K(\mathbf{x}, \mathbf{x}') = E[(y(\mathbf{x}) - \mu(\mathbf{x}))(y(\mathbf{x}') - \mu(\mathbf{x}'))]$. We can write this as

$$y(\mathbf{x}) \sim GP(\mu(\mathbf{x}), K(\mathbf{x}, \mathbf{x}')).$$
 (4)

1. Show that the Bayesian linear regression functions defined above have mean function

$$\mu(\mathbf{x}) = 0 \tag{5}$$

and covariance function

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{\Phi}(\mathbf{x})^T \mathbf{\Sigma}_w \mathbf{\Phi}(\mathbf{x}') + \sigma_n^2 \delta(\mathbf{x}, \mathbf{x}'), \tag{6}$$

where $\delta(\mathbf{x}, \mathbf{x}') = 1$ if $\mathbf{x} = \mathbf{x}'$ and zero otherwise.

- 2. Prove that the covariance function (eq. 6) is a valid kernel function. That is, prove that it is symmetric and positive semi-definite.
- 3. Derive an expression for

$$P(y'|\mathbf{x}', (\mathbf{x_1}, y_1), \dots, (\mathbf{x_n}, y_n)) \tag{7}$$

which is the predictive distribution of the output variable y' associated with test point \mathbf{x}' given that we have observed a training data set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$.

- 4. Derive an expression for the 95-th percentile of the predictive distribution of y'.
- 5. Use $[1 \ x \ x^2 \ x^3]^T$ as your basis functions, Σ_w equal to the identity matrix, and $\sigma_n^2 = 0.1$. Implement Bayesian linear regression and run it on the following data set: $(x_1 = 1, y_1 = 0.5), (x_2 = 2, y_2 = 1.6), (x_3 = 3, y_3 = 1.1), (x_4 = 4, y_4 = 3), (x_5 = 5, y_5 = 4.2)$. What are the predictive distributions associated with the following test points: $x' = \{1.5, 2.5, 3.5, 4.5, 5.5\}$? What is the value associated with the 95-th percentile for each test point?

2 VC Dimension

- 1. Unions of intervals. Consider data x that lies in the interval [0,1]. Suppose the hypothesis space consists of indicator functions of unions of two intervals. More specifically, let the hypothesis space be parameterized by a, b, c, d satisfying a < b and c < d so that data points that fall in either interval [a, b] or [c, d] are classified as positive, and data that falls outside both intervals is classified as negative. What is the VC dimension of this hypothesis class?
- 2. **Decision Stumps in** \mathbb{R}^D . Decision stumps are a particularly simple family of binary classifiers for data \mathbf{x} that lies in \mathbb{R}^D . Their classification rule has parameters q, i, α and takes the form $f(\mathbf{x}; i, q, \alpha) = q * \operatorname{sign}(\mathbf{x}_i \alpha)$. Decision stumps classify example \mathbf{x} based only on the value of its i-th coordinate. α is a threshold value in \mathbb{R} and q is either +1 or -1.
 - (a) Consider n non-overlapping data points lying in \mathbb{R}^D . What is the maximum number of ways they can be classified using the decision stump family? That is, how many different binary labelings of the n points are there in the decision stump hypothesis space? Your result should be a function of n and D.
 - (b) Show that the above result implies the following about the VC dimension of decision stumps:

$$VC_{ds} < 2(\log_2 D + 1) \tag{8}$$

3 Active Learning

The purpose of this question is to design an active learning strategy for the hypothesis space from Problem 2.1. To simplify things, assume that 0 < a < b < c < d < 1. Also assume that the parameters a, b, c, d are all separated by at least $\eta > 0$ and both intervals are at least length η such that, i.e., $a > \eta$, $b - a > \eta$, $c - b > \eta$, $d - c > \eta$, and $d < 1 - \eta$. Hereby, η is a constant, known to the algorithm. Suppose that the distribution over the inputs P(x) is the uniform distribution over [0, 1].

- (a) Develop an active learning scheme that only requires $O(\log 1/\varepsilon \log 1/\delta)$ labels to find a hypothesis with error at most ε with probability 1δ . Bound the number of labels that your algorithm requires as a function of ϵ , δ and η .
- (b) Generalize this scheme to the hypothesis class containing of hypotheses that are indicator functions of unions of k intervals, i.e., for each hypothesis h there exists a_1, \ldots, a_k , b_1, \ldots, b_k , $b_i a_i > \eta$, $a_{i+1} b_i > \eta$ and $a_1 > \eta$, $b_k < 1 \eta$, such that h classifies inputs x positive if x is contained in one of the intervals $[a_i, b_i]$, negative otherwise.