
CS 101.2 - Active Learning
Problem Set 1

Handed out: 14 Jan 2009
Due: 29 Jan 2009

1 MDP Value Iteration Algorithm

1. Implement the value iteration algorithm given in the lecture. That is, solve Bellman’s
equation using dynamic programming. Run your algorithm on the “Becoming Rich and
Famous” MDP given in the lecture notes, using discount factor γ = 0.95. What is the
optimal policy and what are the optimal values V (s)? Plot the Cauchy sequence

max
s
|Vt(s)− Vt−1(s)| (1)

as a function of t in order to diagnose convergence.

2. Suppose that instead of optimizing the discounted reward (as discussed in the lecture)

E[
∞∑

t=0

γtr(Si, π(Si))],

we want to optimize the undiscounted reward over a finite number of T time steps:

E[
T∑

t=0

r(Si, π(Si, t))].

In contrast to the undiscounted setting, in the finite horizon setting, the optimal policy
can choose a different action for each state, dependent on the current time step. Formally,
in the finite horizon setting policies are mappings

π : S × {0, . . . , T} → A,

where π(s, t) = a means that the policy π chooses action a if it is in state s at time t.
Show how value iteration can be modified to find an optimal policy for the finite horizon
setting. Hint: As in the discounted setting, use dynamic programming to compute the
t-step value function Vt(s) which denotes the maximum expected sum of undiscounted
reward that can be accrued within the next t time steps, starting with t = 0.

2 An optimal solution for Bandit problems with priors

This problem explores a connection between the bandit problem and Markov Decision Pro-
cesses, which allows to compute optimal arm pulling strategies for certain bandit problems.

1

For simplicity we will concentrate on a two-armed problem in which the payoff at each time
n is either 1 or 0.

Recall that an MDP is defined by a set of states S, a set of actions A, the reward r(s, a)
which is a random variable dependent on the state and the action, and transition probabilities
P (s′|s, a). The possible actions are 1 and 2, indicating the arm that is pulled. We will define
the state to be s = (n1, n2;h1, h2) where hi is the accumulated reward associated with pulling
arm i, and ni is the total number of times arm i has been pulled.

In order to complete the connection, we must specify transition probabilities P (s′|s, a) for the
MDP. We will assume that arm i pays 1 with probability µi and pays 0 with probability 1−µi.
Given µi, the probability that arm i pays total reward hi after ni pulls is

p(hi|µi;ni) =
(

ni

hi

)
µhi

i (1− µi)ni−hi . (2)

However, we do not know what µi is. Rather than estimate a confidence interval for this pa-
rameter (as in the UCB algorithm), we will instead take the Bayesian approach and maintain
a probability distribution over µi which encodes our uncertainty about its value. This distri-
bution will be updated based on the rewards paid by arm i. We will place a prior distribution
over µi known as the Beta distribution with parameters α, β:

p(µi) = Beta(µi;α, β) =
1

B(α, β)
µα−1

i (1− µi)β−1 (3)

where

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx (4)

is the normalization constant known as the Beta function. The Beta distribution is defined
over the range [0, 1]. (If α = β = 1 then this is equivalent to a uniform distribution.) The
prior distribution encodes our belief about the payoff distribution µi before we’ve pulled arm
i.

1. We will use Bayes’ rule

p(µi|hi;ni) =
p(hi|µi;ni)p(µi)∫ 1

0 p(hi|µj ;ni)p(µj)dµj

(5)

to update the distribution of µi given that we’ve pulled arm i a total of ni times and
received pay off hi. Show that

p(µi|hi;ni) = Beta(α + hi, β + ni − hi). (6)

2. Now we have a distribution over µi that takes into account both our prior belief about
the payoff distributions and the evidence gained by pulling arms. In order to formulate
the MDP, we need the reward distribution for arm i conditioned on only the state. In
order to get this we marginalize out µi.

2

Show that:

p(ri = 1|hi, ni) =
∫ 1

0
p(ri = 1|µi)p(µi|hi;ni) =

hi + α

α + β + ni
(7)

(The following facts about the Beta function may be helpful: B(a, b) = Γ(a)Γ(b)
Γ(a+b) and

Γ(a + 1) = aΓ(a)).

3. Specify the transition probabilities based on the result Eq. (7). Draw a diagram to
illustrate the MDP. How many states does this MDP have, if we stop playing after T
trials?

4. Explain how the undiscounted value iteration algorithm from Problem 2.2 can be applied
to solve for an optimal policy π∗ in order to maximize the T -step undiscounted reward

E[
T∑

t=0

r(Si, π(Si, t))].

5. Sketch how the algorithm can be extended to handle K arms for K > 2. What will the
complexity of the resulting algorithm (in terms of K and T)?

3 Analysis of the εn-Greedy Policy

Consider the εn-Greedy policy for the K-armed bandit problem. The algorithm repeats the
following procedure at each time n: Play the machine with highest current average reward
j = arg maxj X̄j with probability (1 − εn). With probability εn play a random arm. Use
εn = min{1, cK

d2n
} where c > 0 and 0 < d < mini:µi<µ∗ ∆i.

Define P (In = j) as the probability that sub-optimal machine j was chosen at time n. We
will prove that

P (In = j) ≤ εn

K
+ o(

1
n

). (8)

Hint: You can prove each of the following subproblems independently of the others.

1. Show that:

P (In = j) ≤ εn

K
+ P (X̄j ≥ X̄∗). (9)

2. Now we need to bound the second term on the right hand side of eq. 9. We will use tail
bounds to do this. First, show that:

P (X̄j ≥ X̄∗) ≤P (X̄j ≥ µj +
∆j

2
) (10)

+P (X̄∗ ≤ µ∗ − ∆j

2
)

3

Hint: Prove the following:

P (A ≥ B) ≤P (A ≥ a) + P (B ≤ a) (11)

for random variables A and B defined on [0,∞) and any a > 0.

3. We can now handle each of the two terms on the right hand side of eq. 10 using the
same analysis. Focusing on the first term, we have:

P (X̄j ≥ µj +
∆j

2
) =

n∑
t=1

P (Tj = t|X̄jt ≥ µj +
∆j

2
)P (X̄jt ≥ µj +

∆j

2
), (12)

where Tj indicates the number of times arm j has been pulled and X̄jt = 1
t

∑t
i=1 Xji

is the average reward from machine j after it’s been pulled t times. Use the Chernoff-
Hoeffding bound to show that

P (X̄j ≥ µj +
∆j

2
) ≤

n∑
t=1

P (Tj = t|X̄jt ≥ µj +
∆j

2
)e

−∆2
j t

2 . (13)

The exponential terms in the sum will decay rapidly for sufficiently large values of t, but
the first exponential terms are potentially large. Our strategy is then to split the sum
into two parts and bound each sum seperately. Define the boundary value bx0c (we will
determine x0 in the next section). Show that

n∑
t=1

P (Tj = t|X̄jt ≥ µj +
∆j

2
)e

−∆2
j t

2 ≤
bx0c∑
t=1

P (Tj = t|X̄jt ≥ µj +
∆j

2
) +

2
∆2

j

e
−∆2

j bx0c
2 .

(14)

4. We will now bound P (Tj = t|X̄jt ≥ µj + ∆j

2) with P (TR
j ≤ t), which is the probability

that arm j has been pulled up to t times at random (the conditioning was dropped
since random pulls are independent of the values of the averages). The sum can then be
bounded with

bx0c∑
t=1

P (Tj = t|X̄jt ≥ µj +
∆j

2
) ≤

bx0c∑
t=1

P (TR
j ≤ t) ≤ x0P (TR

j ≤ x0). (15)

Now, we need a bound for P (TR
j ≤ x0). Because TR

j is the sum of binary random
variables, we can use the Bernstein inequality to obtain a bound. Consider random vari-
ables A1, . . . , An with range [0, 1] and

∑n
i=1 Var[Ai|Ai−1, . . . , A1] = σ2. The Bernstein

inequality is

P (
n∑

i=1

Ai ≤
n∑

i=1

E[Ai]− a) ≤ e
− a2/2

σ2+a/2 (16)

for any a ≥ 0.

Show that choosing x0 = 1
2E[TR

j] yields the following exponential bound:

P (TR
j ≤ x0) ≤ e−

x0
5 . (17)

4

5. Putting everything together we have

P (In = j) ≤ εn

K
+ 2x0e

−x0
5 +

4
∆2

j

e
−∆2

j bx0c
2 . (18)

The last thing to do is to find a lower bound for x0 in terms of n. Recall that x0 =
1

2K

∑n
t=1 εt. From the definition of the algorithm, εt = 1 when t < cK

d2 and εt = cK
d2t

otherwise. Prove the following lower bound on x0:

x0 ≥
c

d2
ln

(n− 1)d2e1/2

cK
. (19)

6. Substitute the lower bound for x0 into eq. 18 and show that this implies

P (In = j) ≤ εn

K
+ o(

1
n

). (20)

Comment on any conditions on the parameters c and d that are necessary for this result
to hold.

7. Why does this result (i.e., P (In = j) ≤ εn
K +o(1

n)) imply that the regret of the εn-Greedy
algorithm grows as O(K log n)?

5

