
Fast generalized DFTs for all finite groups

Chris Umans
Computing & Mathematical Sciences

California Institute of Technology
umans@cs.caltech.edu

Abstract—For any finite group G, we give an arithmetic
algorithm to compute generalized Discrete Fourier Transforms
(DFTs) with respect to G, using O(|G|ω/2+ε) operations, for
any ε > 0. Here, ω is the exponent of matrix multiplication.

Keywords-Discrete Fourier Transform, finite group, algo-
rithm

I. INTRODUCTION

For a finite group G, let Irr(G) denote a complete set of
irreducible representations of G. A generalized DFT with
respect to G is a map from a group algebra element α ∈
C[G] (which is a vector of |G| complex numbers), to the
following linear combination of irreducible representations:∑

g∈G
αg

⊕
ρ∈Irr(G)

ρ(g).

This is the fundamental linear operation that maps the stan-
dard basis for the group algebra C[G] to the Fourier basis of
irreducible representations of group G. It has applications in
data analysis [1], machine learning [2], optimization [3], as a
component in other algorithms (including fast operations on
polynomials and in the Cohn-Umans matrix multiplication
algorithms), and as the basis for quantum algorithms for
problems entailing a Hidden Subgroup Problem [4].

This paper gives algorithms that compute generalized
DFTs with respect to any finite group G, and any chosen
bases for the ρ. We typically speak of the complexity of
computing a generalized DFT map in the (non-uniform)
arithmetic circuit model and do not concern ourselves with
finding the irreducible representations. The trivial algorithm
thus requires O(|G|2) operations, since one can simply sum
up |G| block-diagonal matrices, each with |G| entries in the
blocks.

Fast algorithms for the DFT with respect to cyclic groups
are well-known and are attributed to Cooley and Tukey in
1965 [5], although the ideas likely date to Gauss. Beth in
1984 [6], together with Clausen [7], initiated the study of
generalized DFTs, the “generalized” terminology signalling
that the underlying group may be any group. A central goal
since that time has been to obtain fast algorithms for gen-
eralized DFTs with respect to arbitrary underlying groups.
One may hope for “nearly-linear” time algorithms, meaning

Supported by NSF grant CCF-1815607 and a Simons Foundation Inves-
tigator grant.

that they use a number of operations that is upper-bounded
by cε|G|1+ε for universal constants cε and arbitrary ε > 0.
Such “exponent one” algorithms are known for certain
families of groups: abelian groups, supersolvable groups [8],
and symmetric and alternating groups [7]. Algorithms for
generalized DFTs manipulate matrices, so it is not surprising
that they often require a number of operations that depends
on ω, the exponent of matrix multiplication. Thus we view
algorithms that achieve exponent one conditioned on ω = 2
as being “nearly as good” as unconditional exponent one
algorithms. Such algorithms are known for solvable groups
[6], [9], and with the recent breakthrough of [10], for linear
groups; these algorithms achieve exponent ω/2.

In this paper we realize the main goal of the area,
obtaining exponent ω/2 for all finite groups G. The previous
best exponent that applies to all finite groups was obtained
by [10]; it depends in a somewhat complicated way on ω,
but it is at best

√
2 (when ω = 2); our exponent beats the

one obtained by [10] for every ω between 2 and 3. Before
[10], the best known exponent was 1+ω/4 (which is at best
3/2 when ω = 2), and this dates back to the original work
of Beth and Clausen.

A. Past and related work

A good description of past work in this area can be found
in Section 13.5 of [11]. The first algorithm generalizing
beyond the abelian case is due to Beth in 1984 [6]; this
algorithm is described in Section III-A in a form often
credited jointly to Beth and Clausen. Three other milestones
are the O(|G| log |G|) algorithm for supersolvable groups
due to Baum [8], the O(|G| log3 |G|) algorithm for the
symmetric group due to Clausen [7] (see also [12] for
a recent improvement), and the O(|G|ω/2+ε) algorithms
for linear groups obtained by Hsu and Umans, which are
described in Section III-B. Wreath products were studied
by Rockmore [13] who obtained exponent one algorithms
in certain cases.

In the 1990s, Maslen, Rockmore, and coauthors devel-
oped the so-called “separation of variables” approach [14],
which relies on non-trivial decompositions along chains of
subgroups via Bratteli diagrams and detailed knowledge of
the representation theory of the underlying groups. There
is a rather large body of literature on this approach and it
has been applied to a wide variety of group algebras and

more general algebraic objects. For a fuller description of
this approach and the results obtained, the reader is referred
to the surveys [4], [15], and the most recent paper in this
line of work [16].

II. PRELIMINARIES

Throughout this paper we will use the phrase

“generalized DFTs w. r. t. G can be computed
using O(|G|α+ε) operations, for all ε > 0”

where G is a finite group and α ≥ 1 is a real number.
We mean by this that there are universal constants cε
independent of the group G under consideration so that for
each ε > 0, the operation count is at most cε|G|α+ε. Such an
algorithm will be referred to as an “exponent α” algorithm.
This comports with the precise definition of the exponent of
matrix multiplication, ω: that there are universal constants
bε for which n× n matrix multiplication can be performed
using at most bεnω+ε operations, for each ε > 0. Indeed
we will often report our algorithms’ operation counts in
terms of ω. In such cases matrix multiplication is always
used as a black box, so, for example, an operation count of
O(|G|ω/2) should be interpreted to mean: if one uses a fast
matrix multiplication algorithm with exponent α (which may
range from 2 to 3), then the operation count is O(|G|α/2).
In particular, in real implementations, one might well use
standard matrix multiplication and plug in 3 for ω in the
operation count bound.

We use Irr(G) to denote the complete set of irreducible
representations of G being used for the DFT at hand. In
the presentation to follow, we assume the underlying field is
C; however our algorithms work over any field Fpk whose
characteristic p does not divide the order of the group,
and for which k is sufficiently large for Fpk to represent
a complete set of irreducibles.

We use In to denote the n × n identity matrix. The
following is an important general observation (see, e.g.,
Lemma 4.3.1 in [17]):

Proposition 1. If A is an n1 × n2 matrix, B is an n2 × n3

matrix, and C is an n3 × n4 matrix, then the entries of the
product matrix ABC are exactly the entries of the vector
obtained by multiplying A⊗CT (which is an n1n4 × n2n3

matrix) by B viewed as an n2n3-vector, which is denoted
vec(B).

A. Basic representation theory

A representation of group G is a homomorphism ρ from
G into the group of invertible d×d matrices. Representation
ρ naturally specifies an action of G on Cd; representation ρ is
thus said to have dimension dim(ρ) = d. A representation is
irreducible if the action on Cd has no G-invariant subspace.
Two representations of the same dimension d, ρ1 and ρ2,
are equivalent (written ρ1

∼= ρ2) if they are the same up

to a change of basis; i.e., ρ1(g) = Tρ2(g)T
−1 for some

invertible d×d matrix T . The classical Maschke’s Theorem
implies that every representation ρ0 of G breaks up into
the direct sum of irreducible representations; i.e. there is an
invertible matrix T and a multiset S ⊆ Irr(G), for which

Tρ0(g)T
−1 =

⊕
ρ∈S

ρ(g).

Given a subgroup H ⊆ G one can obtain from any
representation ρ ∈ Irr(G) a representation ResGH(ρ) (the
restriction of ρ to H), which is a representation of H , simply
by restricting the domain of ρ to H . One can also obtain
from any representation σ ∈ Irr(H), a representation of G
called the induced representation IndGH(ρ), which has di-
mension dim(σ)|G|/|H|. We will not need to work directly
with induced representations, but we will use a fundamental
fact called Frobenius reciprocity. Given ρ ∈ Irr(G) and
σ ∈ Irr(H), Frobenius reciprocity states that the number
of times σ appears in the restriction ResGH(ρ) equals the
number of times ρ appears in the induced representation
IndGH(σ).

A basic fact is that
∑
ρ∈Irr(G) dim(ρ)2 = |G|, which

implies that for all ρ ∈ Irr(G), we have dim(ρ) ≤ |G|1/2.
This can be used to prove the following inequality, which
we use repeatedly:

Proposition 2. For any real number α ≥ 2, we have∑
ρ∈Irr(G)

dim(ρ)α ≤ |G|α/2.

Proof: Set ρmax to be an irrep of largest dimension. We
have∑
ρ∈Irr(G)

dim(ρ)α ≤ dim(ρmax)
α−2

∑
ρ∈Irr(G)

dim(ρ)2

= dim(ρmax)
α−2|G| ≤ |G|α/2,

where the last inequality used the fact that dim(ρmax) ≤
|G|1/2.

B. Basic Clifford theory

Clifford theory describes the way the irreducible repre-
sentations of a group H break up when restricted to a
normal subgroup N , which is a particularly well-structured
and well-understood scenario.

Elements of H act on the set Irr(N) as follows:

(h · λ)(n) = λ(hnh−1),

for λ ∈ Irr(N). Let O1, . . . ,O` be the orbits of this H-
action on Irr(N). Clifford theory states for each σ ∈ Irr(H),
there is a positive integer eσ and an index iσ for which the
restriction ResHN (σ) is equivalent to

eσ
⊕
λ∈Oiσ

λ.

In particular, this implies that all λ ∈ Irr(N) that occur in
the restriction have the same dimension, dσ , and multiplicity,
eσ , and that dim(σ) = dσeσ|Oiσ |.

We can also define the following subsets, which partition
Irr(H):

S` = {σ ∈ Irr(H) : the irreps in O` occur in σ}
= {σ ∈ Irr(H) : iσ = `}.

We will need the following proposition:

Proposition 3. For a finite group H and normal subgroup
N , and sets S` as defined above, the following holds for
each `: ∑

σ∈S`

dim(σ)eσ/dσ = |H/N |.

Proof: Fix λ ∈ O`, and note that the induced represen-
tation IndHN (λ) has dimension dim(λ)|H/N |. Let mσ,λ be
the number of times σ ∈ Irr(H) occurs in IndHN (λ). Then
we have ∑

σ∈Irr(H)

dim(σ)mσ,λ = dim(λ)|H/N |.

By Frobenius reciprocity, mσ,λ equals the number times λ
occurs in ResHN (σ). Thus the summand dim(σ)mσ,λ equals
dim(σ)eσ , whenever mσ,λ 6= 0 (and zero otherwise). The
proposition follows.

C. Generalized DFTs and inverse generalized DFTs

We assume by default that we are computing generalized
DFTs with respect to an arbitrary chosen basis for each ρ ∈
Irr(G). Sometimes we need to refer to the special basis in
the following definition:

Definition 4. Let H be a subgroup of G. An H-adapted
basis is a basis for each ρ ∈ Irr(G), so that the restriction
of ρ to H respects the direct sum decomposition into irreps
of H .

In concrete terms, this implies that for each ρ ∈ Irr(G),
while for general g ∈ G, ρ(g) is a dim(ρ)×dim(ρ) matrix,
for g ∈ H , ρ(g) is a block-diagonal matrix with block sizes
coming from the set {dim(σ) : σ ∈ Irr(H)}. An H-adapted
basis always exists.

A general trick that we will rely on is that if one can
compute generalized DFTs with respect to G for an input
α supported on a subset S ⊆ G, then with an additional
multiplicative factor of roughly |G|/|S|, one can compute
generalized DFTs with respect to G.

Theorem 5. Fix a finite group G and a subset S ⊆ G,
and suppose a generalized DFT with respect to G can be
computed in m operations, for inputs α supported on S.
Then generalized DFTs with respect to G can be computed
using

O(m+ |G|ω/2+ε) · |G| log |G|
|S|

operations, for any ε > 0.

Proof: First observe that by multiplying by
⊕ρ∈Irr(G)ρ(g) we can compute a generalized DFT
supported on Sg, for an additive extra cost of∑

ρ∈Irr(G)

O(dim(ρ)ω+ε)

operations, for all ε > 0, and by applying Proposition 2
with α = ω+ ε this is at most O(|G|ω/2+ε). A probabalistic
argument shows that |G| log |G|/|S| different translations g
of S suffice to cover G, so we need only repeat the DFT
supported on Sg translated by each such g, and sum the
resulting DFTs.

The inverse generalized DFT maps a collection of matri-
ces Mσ ∈ Cdim(σ)×dim(σ), one for each σ ∈ Irr(G), to the
vector α for which∑

g∈G
αg

⊕
σ∈Irr(G)

ρ(G) =
⊕

σ∈Irr(G)

Mσ.

In the arithmetic circuit model, the inverse DFT can be
computed efficiently if the DFT can:

Theorem 6 (Baum, Clausen; Cor. 13.40 in [11]). Fix a
generalized DFT with respect to finite group G and suppose
it can be computed in m operations. Then the inverse DFT
with respect to G (and the same basis), can be computed in
at most m+ |G| operations.

D. Main technical ideas

Here we highlight three key technical ideas that go into
the main result.

1) Structure in an H-DFT when H has a normal sub-
group: In general, an H-DFT∑

h∈H

αh
⊕

σ∈Irr(H)

σ(h)

is a block-diagonal matrix with
∑
σ∈Irr(H) dim(σ)2 = |H|

non-zero entries, or “degrees of freedom”. If H has a
subgroup N with coset representatives X , the H-DFT can
be equivalently written

∑
n∈N


∑
x∈X

αxn
⊕

σ∈Irr(H)

σ(x)

︸ ︷︷ ︸
Mn

 ·
⊕

σ∈Irr(H)

σ(n).

We show in Theorem 11 that if N is normal, then matrix
Mn can be taken to have special structure well beyond the
block-diagonal structure of an H-DFT: various entries can
be made to repeat in a prescribed pattern, in the same way
for all n. Then, just as we describe a block-diagonal matrix
as having a number of “degrees of freedom” equal to the
number of entries in the blocks, we can describe the Mn

as having a number of “degrees of freedom” equal to the

number of free entries, and in the structure we uncover in
this paper, this number is the information-theoretic optimal,
|H|/|N |. This structure is accessible in the sense that it can
be efficiently obtained from an H-DFT, by performing a
number of inverse N -DFTs, and it is the key to overcoming
the bottleneck in the previous best result [10].

2) Efficient matrix multiplication for certain block-
structured matrices: In order to make use of the above
structured matrices in our recursive algorithm, we need to be
able to multiply them with a vector efficiently. The following
situation arises: we have a matrix with several “big” blocks
along the diagonal, with each big block itself being a block-
diagonal matrix. The big blocks have the same number of
entries but incompatible structure, and the entries in each big
block are repeated in each other big block, in a pattern we
can choose. For example, two of the big blocks might look
like the block-diagonal matrices in the top row of Figure 2.
It is straightforward to multiply such a matrix with a vector
in time proportional to the number of free entries times the
number of big blocks. We devise a way to multiply such a
matrix with a vector in time proportional to only the number
of free entries, paying only a logarithmic price as overhead
(see Section III-C1 and Lemma 14).

3) Triple subgroup structure in every finite group: One
of the challenges in designing an algorithm computing
generalized DFTs with respect to an arbitrary finite group G
is that the algorithm can only exploit structure that can be
found in every finite group. Beyond the Sylow Theorems,
there is very little to work with. Past work made use of Lev’s
Theorem, which states that every finite group (other than
a cyclic group) has a moderately large subgroup, and [10]
made use of the Classification Theorem to prove that every
finite group (other than a p-group) has two proper subgroups
H and K whose product HK nearly covers the entire
group. However H∩K may be quite large, which limits the
usefulness of this decomposition. Our main structural result
on groups (Theorem 16) strengthens the decomposition of
[10] to prove that every finite group has a normal subgroup
N (possibly trivial) for which G/N is either cyclic of prime
order, or has proper subgroups H,K with H∩K = {1} and
whose product HK nearly covers the entire quotient group.
In other words, after quotient-ing by a normal subgroup,
every group is either cyclic of prime order, or “almost” a
so-called Zappa-Szép product. This structural result seems
natural and potentially useful beyond the application in this
paper.

III. GENERAL STRATEGY: REDUCTION TO SUBGROUPS

One way to organize the main algorithmic ideas in the
quest for a fast DFT for all finite groups is according to the
subgroup structure they exploit. The algorithms themselves
are recursive, with the main content of the algorithm being
the reduction to smaller instances: DFTs over subgroups of
the original group. When aiming for generalized DFTs for

all finite groups, such a reduction is paired with a group-
theoretic structural result, which guarantees the existence of
certain subgroups that are used by the reduction.

In the exposition below, it is helpful to assume that ω = 2
and seek an “exponent 1” algorithm under this assumption
(in general, the exponent achieved will be a function of ω,
and in our main result this function is ω/2). By the term
overhead we mean the extra multiplicative factor in the
operation count of the reduction, beyond the nearly-linear
operation count that would be necessary for an exponent 1
algorithm.

A. The single subgroup reduction

The seminal Beth-Clausen algorithm reduces computing
a DFT over a group G to computing several DFTs over
a subgroup H of G. We call this the “single subgroup
reduction”. Roughly speaking, the overhead in this reduction
is proportional to the index of H in G. The companion
structural result is Lev’s Theorem [18], which shows that
every finite group G (except cyclic of prime order which can
be handled separately) has a subgroup of order at least

√
G

(and this is tight, hence the overhead is
√
|G| in the worst

case). As noted in the introduction, this reduction together
with Lev’s Theorem implies exponent 3/2 (assuming ω = 2)
for all finite groups.

Here is a more detailed description, together with results
we will need later. Let H be a subgroup of G and let X
be a set of distinct coset representatives. We first compute
several H-DFTs, one for each x ∈ X:

sx =
∑
h∈H

αhx
⊕

σ∈Irr(H)

σ(h)

and by using an H-adapted basis (Definition 4), we can lift
each sx to

sx =
∑
h∈H

αhx
⊕

ρ∈Irr(G)

ρ(h)

by just copying entries (which is free of cost in the arithmetic
model). Then to complete the DFT we need to compute∑

x∈X
sx

⊕
ρ∈Irr(G)

ρ(x).

The ρ(x) factors in the equation are often called “twiddle
factors” when G is abelian. Generically, this final compu-
tation requires an overhead proportional to |X| = [G : H],
even when just considering the outermost summation. See
Corollary 4 in [19] for the details to complete this sketch,
yielding the following:

Theorem 7 (single subgroup reduction). Let G be a finite
group and let H be a subgroup. Then we can compute a
generalized DFT with respect to G at a cost of [G : H]
many H-DFTs plus O([G : H]|G|ω/2+ε) operations, for all
ε > 0.

In the special case that H is normal in G and G/H
is cyclic of prime order, the overhead of [G : H] can be
avoided, by using knowledge about the way representations
σ ∈ Irr(H) extend to ρ ∈ Irr(G). This insight is the basis
for the Beth-Clausen algorithm for solvable groups. We need
it here to handle the case of G/H cyclic of prime order,
which is the single exceptional case not handled by our main
reduction. The following theorem can be inferred from the
proof of Theorem 7.7 in Clausen and Baum’s monograph
[9]:

Theorem 8 (Clausen, Baum [9]). Let H be a normal
subgroup of G with prime index p. We can compute a
generalized DFT with respect to G and an H-adapted basis,
at a cost of p many H-DFTs plus

O(p log p) ·
∑

σ∈Irr(H)

dim(σ)ω+ε

operations, for all ε > 0.

For our purposes the following slightly coarser bound suf-
fices, which accommodates an arbitary basis change (hence
obviating the need for an H-adapted basis):

Corollary 9. Let H be a normal subgroup of G with
prime index p. Generalized DFTs with respect to G can be
computed at a cost of p many H-DFTs plus O(|G|ω/2+ε)
operations, for all ε > 0.

Proof: Applying Proposition 2 to Theorem 8 with α =
ω+ε yields an operation count of O(p log p)|H|ω+ε/2, which
is at most O(|G|ω/2+ε). Performing an arbitary basis change
costs ∑

ρ∈Irr(G)

O(dim(ρ)ω+ε)

operations which is again at most O(|G|ω/2+ε) by Proposi-
tion 2.

B. The double subgroup reduction

Recently, Hsu and Umans proposed a “double subgroup
reduction” [10] which reduces computing a DFT over a
group G to computing several DFTs over two subgroups,
H and K. This reduction is especially effective for linear
groups (see [10]). Roughly speaking, the overhead in this
reduction is proportional to |G|/|HK| and |H ∩ K|. The
companion structural result shows that every finite group
G (except p-groups which can be handled separately) has
two proper subgroups H and K for which |G|/|HK| is
negligible. However, |H ∩K| might still be large, which is
the one thing standing in the way of deriving an “exponent
ω/2” algorithm from this reduction.

To illustrate the bottleneck in this reduction, we describe
it in more detail. Let H,K be subgroups of G and assume
|G|/|HK| is negligible. We first compute an intermediate

representation ∑
g=hk∈HK

αg
⊕

σ∈Irr(H)
τ∈Irr(K)

σ(h)⊗ τ(k)

in two steps (and then lift it to a G-DFT). The first of the two
steps is to compute at most [G : H] many H-DFTs, yielding,
for each k ∈ K ′ ⊆ K (where K ′ is a set of distinct coset
representatives of H in G):

sk =
∑
h∈H

αhk
⊕

σ∈Irr(H)

σ(h).

The second step is as follows: for each entry of the block-
diagonal matrix sk, we use this entry (as k varies) as the
data for a K-DFT. There are

∑
σ∈Irr(H) dim(σ)2 = |H| such

entries in general. Thus the second step entails |H| many K-
DFTs, and this represents the key bottleneck. Note that when
|G|/|HK| is negligible, |H||K| is approximately |G||H ∩
K|, and this explains the overhead of roughly |H∩K| which
prevents obtaining an “exponent ω/2” algorithm from this
reduction. For completeness we record the main theorem of
[19] here:

Theorem 10 (Theorem 12 in [19]). Let G be a finite
group and let H,K be subgroups. Then we can compute
generalized DFTs with respect to G at the cost of |H| many
K-DFTS, |K| many H-DFTs, plus

O(|G|ω/2+ε + (|H||K|)ω/2+ε)

operations, all repeated O(|G| log |G|
|HK|) times, for all ε > 0.

Our main innovation, described in the next section, is a
way to overcome the bottleneck. When H ∩ K = N is a
normal subgroup of G, we are able to rewrite each sk as a
sum of |N | matrices with special structure: effectively, there
are only |H/N | many non-zero “entries” for which we need
to compute a K-DFT, and as we will show, this exactly
removes the overhead factor.

C. The triple subgroup reduction

In this section we give our main new result. We devise
a “triple subgroup reduction” which reduces computing a
DFT over G to computing several DFTs over two subgroups,
H and K, and several inverse DFTs over the intersection
N = H ∩K, when N is normal in G. Roughly speaking,
the overhead is proportional to |G|/|HK|. The companion
structural result (Theorem 16) shows that for every finite
group G, if N is a maximal normal subgroup in G then
(except for the case of |G/N | cyclic of prime order, which
can be handled separately) there exist two proper subgroups
H and K with H ∩ K = N , such that |G|/|HK| is
negligible. This is the key to the claimed exponent ω/2
algorithm.

Let H be a group with normal subgroup N . The main
technical theorem shows how to rewrite the output of an

∑
n∈N

Mσ1
n [5, 2] · Jσ1

Mσ2
n [1, 1] · Jσ2

·
σ1(n)

σ2(n)

λ1(n)

λ2(n)

λ3(n)

λ4(n)

λ5(n)

=

Mσ1

Mσ2

Figure 1. Illustration of the proof of Theorem 11. In this example Irr(H) = {σ1, σ2}, Irr(N) = {λ1, λ2, λ3, λ4, λ5}; the orbits are O1 = {λ1, λ2, λ3}
and O2 = {λ4, λ5}; S1 = {σ1} and S2 = {σ2}; and the multiplicities are eσ1 = 2 and eσ2 = 1. In the figure, we highlight the parts of the matrices
that give rise to the system of equations solved with a single inverse N -DFT, corresponding to the value a = f1(σ1, 5, 2) = f2(σ2, 1, 1). This inverse
N -DFT with the highlighted blocks of Mσ1 and Mσ2 as input data yields the scalars Mσ1

n [5, 2] =Mσ2
n [1, 1] that satisfy the simultaneous equations.

H-DFT as the sum of |N | matrices each of which only
has “|H/N | degrees of freedom”. In the following theorem
we adopt the notation introduced in Section II-B; as a
reminder: dσ is the dimension of the N -irreps occurring
in the restriction ResHN (σ), eσ is the multiplicity, and O`
are the orbits of the H-action on Irr(N), which are used to
define the sets S` which partition Irr(H).

Theorem 11. Let H be a group and N a normal subgroup.
For every

M =
⊕

σ∈Irr(H)

Mσ ∈
⊕

σ∈Irr(H)

Cdim(σ)×dim(σ),

the following holds with respect to an N -adapted basis:
there exist matrices Mσ

n ∈ Cdim(σ)/dσ×eσ for which∑
n∈N

(Mσ
n ⊗ Jσ) · σ(n) =Mσ,

where Jσ is the dσ × dim(σ)/eσ matrix (Idσ |Idσ | · · · |Idσ).
Moreover, given injective functions f` from {(σ, i, j) : σ ∈
S`, i ∈ [dim(σ)/dσ], j ∈ [eσ]} to [r], the Mσ

n can be taken
to satisfy

f`(σ, i, j) = f`′(σ
′, i′, j′) ⇒ ∀n Mσ

n [i, j] =Mσ′

n [i′, j′],

and these matrices Mσ
n can be obtained from M by com-

puting r inverse N -DFTs.

One should think of the functions f` as labeling the entries
of the Mσ

n matrices for the σ in a given S`. This labeling is
then used to ensure that entries of Mσ

n with σ ∈ S` and the
entries of Mσ′

n with σ′ ∈ S`′ are equal, if they have the same
labels. In Section III-C1 we will show how to choose this
labeling so that the final “lifting” step of our algorithm can
be efficiently computed. For now, we note that Proposition
3 implies that there exist labelings f` with r = |H/N |, and
indeed our actual choice of f` in Section III-C1 will have
r = O(|H/N | log |H/N |), which is not much larger.

Proof: Fix σ ∈ Irr(H), and recall that there is a unique
S` containing σ. Since we are using an N -adapted basis,

σ(n) has the form

Ieσ ⊗
⊕
λ∈O`

λ(n),

and thus∑
n∈N

(Mσ
n ⊗ Jσ) · σ(n)

=
∑
n∈N

Mσ
n ⊗ (λ1(n)|λ2(n)| · · · |λ|O`|(n)) (1)

where λ1, . . . , λ|O`| is an enumeration of O`. Since these
are pairwise inequivalent irreps, the span of

{(λ1(n)|λ2(n)| · · · |λ|O`|(n)) : n ∈ N}

is the full matrix algebra Cdσ×dim(σ)/eσ . Hence we can
choose the Mσ

n so that expression (1) equals an arbitrary
Mσ ∈ Cdim(σ)×dim(σ).

In particular, for each σ, the (i, j) entries of the Mσ
n

should satisfy

∑
n∈N

Mσ
n [i, j]


λ1(n)
λ2(n)
...
λv(n)

 =


Mσ[i, jv]
Mσ[i, jv + 1]
...
Mσ[i, jv + v − 1]

 (2)

where v = |O`| and Mσ occurring on the right-hand-side is
blocked into dσ × dσ submatrices and indexed accordingly.
Thus the values of a given entry of Mσ

n as n ranges over
N , can be found in an inverse N -DFT with the appropriate
blocks of Mσ as input data.

Observe however that in general, O` is a proper subset
of Irr(H), and hence the aforementioned inverse N -DFT is
underdetermined; for example Equation (2) remains satisfied
if we require

∑
n∈N M

σ
n [i, j]λ(n) = 0 for all λ ∈ Irr(H) \

O`.
Indeed, we can simultaneously solve Equation (2) with

respect to several σ ∈ Irr(H) via a single inverse N -DFT,
provided the associated orbits Oiσ are different. To prove

the “moreover” part of the theorem statement, then, we set
up the following system of equations, for a given a ∈ [r]: for
each ` for which f`(σ, i, j) = a we simultaneously require
that Equation (2) holds with respect to σ, i, j (and note
these are determined by a since f` is injective). Since the
S` partition Irr(H), selecting at most one σ from each S`
results in a system that mentions each λ ∈ Irr(N) at most
once. Hence a single inverse N -DFT solves this system of
equations. See Figure 1. We do this once for each a ∈ [r],
to produce the matrices Mσ

n from the original M , using r
inverse N -DFTs.

1) Choosing the labelings f`: To make use of Theorem
11, we need to define injective functions f` from

{(σ, i, j) : σ ∈ S`, i ∈ [dim(σ)/dσ], j ∈ [eσ]}

to [r]. We identify the domain of f` with the entries of
a block-diagonal matrix, with rectangular blocks of size
dim(σ)/dσ × eσ , as σ ranges over S`. Recall that by
Proposition 3, the total number of entries in these blocks
is |H/N |.

We will describe functions f` associating the entries of a
block-diagonal matrix of this format (which depends on `)
with a target block-diagonal matrix whose format is fixed
as follows:

2 · |H/N | blocks of size 1× 1
d2 · |H/N |/4e blocks of size 2× 2
d2 · |H/N |/16e blocks of size 4× 4

...⌈
2 · |H/N |/22i

⌉
blocks of size 2i × 2i

...
2 blocks of size

(
2dlog2 |H/N |e

)2
Note that the number of entries of this target matrix is
O(|H/N | log |H/N |), and this will be our r. The association
specifying the map f` is quite simple: we take one column
at a time of the source block-diagonal matrix, and if it has
height w, we associate it, top-aligned, with the next-available
column among the blocks of size 2i×2i, for the i such that
2i/2 < w ≤ 2i. See Figure 2. Since there can be at most
|H/N |/w < 2|H/N |/2i columns of height w in the source
matrix (which has |H/N | entries in total), and the target
block-diagonal matrix has at least 2 · |H/N |/2i columns of
height 2i, this association is possible.

We will use these mappings when applying Theorem 11
to facilitate an efficient “lift” from an intermediate represen-
tation to the final G-DFT. The key benefit of the mappings is
that they allow us to combine several matrix-vector products
with incompatible matrix formats into one, as illustrated in
Figure 2. In order to be able to speak precisely about this
combined object, we make the following definition:

Definition 12 (parent matrix). Given a partition of Irr(H)
into sets S`, matrices Aσ with dimensions dim(σ)/dσ ×

eσ (one for each σ ∈ Irr(H)), and functions f` as above,
satisfying

f`(σ, i, j) = f`′(σ
′, i′, j′) ⇒ Aσ[i, j] = Aσ

′
[i′, j′],

define the parent matrix of the Aσ to be the matrix with
the format of the target matrix above, and with entry (x, y)
equal to the value of Aσ[i, j] if there exists ` for which
f`(σ, i, j) = (x, y), and zero otherwise.

See Figure 3 for an example parent matrix.
2) Computing the intermediate representation: We are at

the point now where we can compute the intermediate repre-
sentation, which we then lift to the final G-DFT in Lemma
14, making critical use of the just-described labelings f`.
The setup is as follows: H and K are proper subgroups of
group G, and H ∩ K = N is normal in G. Let X be a
system of distinct coset representatives of N in H and let
Y be a system of distinct coset representatives of N in K.
Thus H = XN and K = NY . Note that HK = XNY
with uniqueness of expression.

When applying the triple subgroup reduction in our final
result, it will happen that

|G|
|HK|

=
|G||N |
|H||K|

is negligible, and notice that in this case, if H-DFTs, K-
DFTs, and N -DFTS have nearly-linear algorithms, then
indeed the cost of applying the next lemma is nearly-linear
in |G| as desired.

Lemma 13. With |Y | many H-DFTs, O(|H/N | log |H/N |)·
|Y | many inverse N -DFTs, and O(|H/N | log |H/N |) many
K-DFTs, we can compute, from α ∈ C[G] supported on
HK, the following expression:∑

n∈N

∑
y∈Y

⊕
τ∈Irr(K)

Pn,y ⊗ τ(ny)T (3)

where Pn,y is the parent matrix of the matrices {Mσ
n,y : σ ∈

Irr(H)}, and for each σ, y, the Mσ
n,y satisfy (with respect to

an N -adapted basis for Irr(H)):∑
n∈N

(Mσ
n,y ⊗ Jσ)σ(n) =

∑
h∈H

αhyσ(h). (4)

where Jσ is the dim(σ)/eσ × dσ matrix (Idσ |Idσ | · · · |Idσ)
as in Theorem 11.

Expression (3) arises in Equation (9) in the next section
after manipulating the expression for a G-DFT supported
on HK = HY , and it is the “input” to Lemma 14 which
efficiently lifts it to a G-DFT.

Proof: First, compute for each y ∈ Y and σ ∈ Irr(H)
the matrices

Mσ
y =

∑
h∈H

αhyσ(h),

·

x1

x2

x3

x′4
x′′4

=

y1

y2

y3

y4 (= y′4 + y′′4)

11

22

33

44 55

·
u1

u2

u3

= v1

v2

v3

66 77

88

99

11

66

22

77

88

33

99
44

55

·

x1

x2
u1

u2

x3

x′4

u3

x′′4

=

y1
y2

v1
v2

y3 y′4 v3

y′′4

Figure 2. Example illustrating how the f` functions are defined and used. The numbered columns of the block-diagonal matrix in the upper-left are
associated to the columns of the target block-diagonal matrix on the bottom-left in the manner described in Section III-C1. The numbered columns of the
block-diagonal matrix in the upper-right are also associated by the same procedure, and the figure shows these two associations superimposed on each
other. We see that the two matrix-vector multiplications at the top can be combined into the single matrix product on the bottom, provided that similarly
labeled entries of the two source matrices are guaranteed to contain identical values. Unlabeled cells of the middle-bottom matrix contain zeros. Note that
in the bottom-right matrix each segment of the original vectors y and v may be padded up to twice its original length (but not more), and it may be
repeated up to twice and summed (as y′4 and y′′4 are) if the columns of the associated block are mapped to two different blocks in the target matrix. More
than two repetitions are not possible because the source blocks all have at most as many columns as rows.

using |Y | different H-DFTs. Next, apply Theorem 11, once
for each y, to the matrices⊕

σ∈Irr(H)

Mσ
y ∈

⊕
σ∈Irr(H)

Cdim(σ)×dim(σ),

together with the labelings f` from Section III-C1, to obtain
matrices Mσ

n,y ∈ Cdim(σ)/dσ×eσ for which∑
n∈N

(Mσ
n,y ⊗ Jσ)σ(n) =Mσ

y ,

at a cost of O(|H/N | log |H/N |) · |Y | many inverse N -
DFTs. Note that these Mσ

n,y satisfy Equation (4). Let Pn,y
be the parent matrix of the matrices {Mσ

n,y : σ ∈ Irr(H)}.
For each (i, j), the vector β with β[ny] = Pn,y[i, j] is

an element of C[K] and we perfom a K-DFT on it; this
entails computing at most O(|H/N | log |H/N |) different K-
DFTs because this is the number of entries in the blocks of
the block-diagonal matrices Pn,y . At this point we hold, in
the aggregate, all of the entries of Expression (3) in the
statement of the lemma, and the proof is complete.

3) Lifting to a G-DFT: In this section we show how to
efficiently lift the intermediate representation, Expression (3)
computed via Lemma 13, to a G-DFT. We continue with the
notation of the previous section.

Let Irr∗(H) denote the multiset of irreps of H that occur
in the restrictions of the irreps of G to H (with the correct
multiplicities), and similarly let Irr∗(K) denote the multiset
of irreps of K that occur in the restrictions of the irreps of
G to K. Let S and T be the change of basis matrices that
satisfy:

S

 ⊕
σ∈Irr∗(H)

σ(h)

S−1 =
⊕

ρ∈Irr(G)

ρ(h) ∀h ∈ H

T

 ⊕
τ∈Irr∗(K)

τ(k)

T−1 =
⊕

ρ∈Irr(G)

ρ(k) ∀k ∈ K.

We further specify that S should be with respect to an N -
adapted basis for Irr(H).

a

b
c

d
e

f
g

h

i
j

k

l
m

Aσ

a

b
c

d

e

f
g

n

p

q

r

h

i

j

k

l
m

parent of {Aσ, Aσ′}

a

b
c

d

e

f
g

n
p

q

r

h

i

Aσ
′

Figure 3. An example parent matrix. Unlabeled entries are zero. Empty blocks in the parent matrix are not pictured.

Notice that for n ∈ N = H ∩K, we have:

S

 ⊕
σ∈Irr∗(H)

σ(n)

S−1 = T

 ⊕
τ∈Irr∗(K)

τ(n)

T−1,

or equivalently

 ⊕
σ∈Irr∗(H)

σ(n)

S−1T = S−1T

 ⊕
τ∈Irr∗(K)

τ(n)

 , (5)

a fact we will use shortly.

A G-DFT with input α supported on HY = HK is the
expression:

∑
h∈H
y∈Y

αhy
⊕

ρ∈Irr(G)

ρ(hy)

=
∑
y∈Y

∑
h∈H

αhy
⊕

ρ∈Irr(G)

ρ(h)

 ·
 ⊕
ρ∈Irr(G)

ρ(y)


=
∑
y∈Y

S

∑
h∈H

αhy
⊕

σ∈Irr∗(H)

σ(h)

S−1T

 ⊕
τ∈Irr∗(K)

τ(y)

T−1

Now for each y ∈ Y , the left-most parenthesized expression
is an H-DFT, with certain blocks repeated. Set R = S−1T .
By Equation (4) in the statement of Lemma 13, each such
expression can be rewritten in terms of matrices Mσ

n,y ,

yielding:∑
h∈H
y∈Y

αhy
⊕

ρ∈Irr(G)

ρ(hy) =

∑
y∈Y
n∈N

S

 ⊕
σ∈Irr∗(H)

(Mσ
n,y ⊗ Jσ)σ(n)

R
 ⊕
τ∈Irr∗(K)

τ(y)

T−1

=
∑
y∈Y
n∈N

S

 ⊕
σ∈Irr∗(H)

(Mσ
n,y ⊗ Jσ)

R
 ⊕
τ∈Irr∗(K)

τ(ny)


︸ ︷︷ ︸

(∗)

T−1

(6)

where the last line invoked Equation (5) to move σ(n) past
R = S−1T .

We now focus on Expression (∗). By Proposition 1 we
can express Expression (∗) as ⊕

σ∈Irr∗(H)
τ∈Irr∗(K)

(
(Mσ

n,y ⊗ Jσ)⊗ τ(ny)T
) · vec(R) = vec(∗).

(7)
We next apply two types of simplifications to the block-
diagonal matrix on the left. In each, we observe that equal-
ities among blocks allow us to simplify that block-diagonal
matrix, at the expense of arranging portions of vec(R) and
vec(∗) into block-diagonal matrices and summing certain
entries. The first such observation is that computing(

A
A

)
·
(
x1

x2

)
=

(
y1

y2

)
is equivalent to computing A·(x1|x2) = (y1|y2). The second

observation is that computing

(A|A) ·
(
x1

x2

)
= y

is equivalent to computing A · (x1 + x2) = y.
Using the first observation we can thus simplify Equation

(7) to: ⊕
σ∈Irr(H)
τ∈Irr(K)

(
(Mσ

n,y ⊗ Jσ)⊗ τ(ny)T
) ·X0 = Y0,

where X0 is a block-diagonal matrix whose entries coincide
with the entries of R. Next, we notice that

Jσ = Idσ ⊗ (1, 1, . . . 1).

The first observation then allows us to simplify Equation (7)
futher to: ⊕

σ∈Irr(H)
τ∈Irr(K)

(
(Mσ

n,y ⊗ (1, 1, . . . 1))⊗ τ(ny)T
) ·X1 = Y1

where again the entries of X1 coincide with the entries of
R, and the second observation allows us to simplify to: ⊕

σ∈Irr(H)
τ∈Irr(K)

Mσ
n,y ⊗ τ(ny)T

 ·X2 = Y2, (8)

where now X2 is a block-diagonal matrix whose entries are
sums of entries of R.

As in the statement of Lemma 13, for each n, y, let Pn,y
be the parent matrix of the matrices {Mσ

n,y : σ ∈ Irr(H)}.
We can rewrite Equation (8) as ⊕

τ∈Irr(K)

Pn,y ⊗ τ(ny)T
 ·X3 = Y3, (9)

where X3 is again a block-diagonal matrix whose entries
are sums of entries of R.

The square blocks of the block-diagonal matrix ⊕
τ∈Irr(K)

Pn,y ⊗ τ(ny)T


have dimensions ai with the property that∑
i

a2
i = O(|H/N | log |H/N |) · |K|,

using our earlier accounting for the block sizes of a parent
matrix, together with the fact that

∑
τ∈Irr(K) dim(τ)2 = |K|.

Each ai × ai block is multiplied by an ai × wi block of
X3, to yield an ai × wi block of the product matrix Y3.
We now argue that the wi satisfy

∑
i aiwi ≤ 4|G|. Each

of the two transformations applied to obtain block-diagonal
matrices Y0, Y1 and then Y2 preserve the number of entries
of the result matrix; these matrices therefore have |G| entries
in the blocks since Y0 does. The final transformation results
in a block-diagonal matrix Y3 which may have more entries
than |G|, but this number can be larger by only a factor of
four, as illustrated in Figure 2. This is because each column
of a block of Y2 may need to be padded to at most twice its
original length, and repeated up to two times (and no more,
because the blocks of the Mσ

n,y have no more columns than
rows, and thus can spill over at most two blocks in the
parent matrix). Thus the number of entries in the blocks of
Y3 which equals

∑
i aiwi, is at most 4|G| as stated.

We conclude that the block-matrix multiplication in Equa-
tion (9) can be performed efficiently as summarized in the
following lemma.

Lemma 14. The map from∑
n∈N

∑
y∈Y

⊕
τ∈Irr(K)

Pn,y ⊗ τ(ny)T

as computed from input α supported on HY = HK in
Lemma 13, to a G-DFT, can be computed at a cost of
O(|G|ω/2+ε) operations, for all ε > 0.

Proof: We describe how to map a summand⊕
τ∈Irr(K) Pn,y⊗ τ(ny)T to the corresponding summand of

Expression (6). This map will be linear and will not depend
on n, y, so we apply it once to the entire sum computed by
Lemma 13, to obtain Expression (6), which is the promised
G-DFT.

We need to perform matrix multiplications of
format 〈ai, ai, wi〉, and we know that

∑
i a

2
i =

O(|H/N | log |H/N |) · |K| = L and
∑
i aiwi ≤ 4|G|.

The cost of such a multiplication is at most
max(O(aω+ε

i), O(aω−1+ε
i wi)) for all ε > 0. Replacing the

maximum with a sum, and letting amax = maxi ai, we
obtain an upper bound on the number of operations of∑

i

O(aω+ε
i) +O(aω−1+ε

i wi)

= O(aω−2+ε
max)

∑
i

a2
i + aiwi

≤ L(ω−2+ε)/2 · (L+ 4|G|). (10)

We need to pre-multiply by S and post-multiply by T−1 to
obtain a summand of Expression (6). Both S and T−1 are
block-diagonal with one block for each ρ ∈ Irr(G), with
dimension dim(ρ). Thus the cost of this final pre- and post-
multiplication is ∑

ρ∈Irr(G)

O(dim(ρ)ω+ε)

which is at most O(|G|ω/2+ε) by Proposition 2 with α =
ω+ε. The theorem follows from the fact that |H||K|/|N | ≤

|G|, and thus Expression (10) is also upper-bounded by
O(|G|ω/2+ε) (absorbing logarithmic terms into |G|ε/2).

We now have the main theorem putting together the entire
triple subgroup reduction:

Theorem 15 (triple subgroup reduction). Let G be a finite
group and let H,K be proper subgroups with N = H ∩K
normal in G. Then we can compute generalized DFTs with
respect to G at the cost of
• |K|/|N | many H-DFTs,

• O(|H||K| log |H/N |/|N |2) many inverse N -DFTs,

• O(|H/N | log |H/N |) many K-DFTs,
plus O(|G|ω/2+ε) operations, all repeated
O(|G| log |G|/|HK|) many times, for all ε > 0.

Proof: By Lemma 13 we can compute the intermediate
representation of a G-DFT supported on HK, and applying
the map of Lemma 14 to this intermediate representation
yields a G-DFT supported on HK. By Theorem 5 we can
compute a general G-DFT at the cost of repeating these two
steps O(|G| log |G|/|HK|) many times.

4) Triple subgroup structure in finite groups: Our main
structural theorem on finite groups is the following

Theorem 16. There exists a monotone increasing function
f(x) ≤ 2c

√
log x log log x for a universal constant c ≥ 1, such

that, for every nontrivial finite group G one of the following
holds

1) G has a (possibly trivial) normal subgroup N and
G/N is cyclic of prime order, or

2) G has a (possibly trivial) normal subgroup N and
G/N has proper subgroups X,Y with X ∩ Y = {1}
and for which |X||N ||Y | ≥ |G|/f(G).

To connect this theorem to our usage in the previous
sections, think of H as being the subgroup XN and K
as being the subgroup NY , where X and Y are lifts of X
and Y , respectively, from G/N to G.

Proof: Let N be a maximal normal subgroup of G.
Then G/N is simple. If it is cyclic of prime order, then we
are done. Otherwise we have the following cases, by the
Classification Theorem:

1) G/N is an alternating group An for n ≥ 5. In this
case, let X be the subgroup of G/N isomorphic to
An−1 and Y the trivial subgroup of G/N .

2) G/N is a finite group of Lie Type. In this case, we
refer to Table 4, and we have the following descrip-
tion from Carter [21]. For Chevalley and exceptional
Chevalley groups, we have that there are subgroups B
and U−w (for each w in the associated Weyl group W)
so that elements of G/N can be expressed uniquely
as bnwuw, where b ∈ B, nw is a lift of w ∈ W
to G, and uw ∈ U−w (see Corollary 8.4.4 in Carter

[21]). Uniqueness implies that the conjugate subgroup
nwU

−
w n
−1
w has trivial intersection with B; also, by an

averaging argument, there exists w ∈ W for which
|BnwU−w n−1

w | ≥ |G/N |/|W |. We take X = B
and Y = nwU

−
w n
−1
w . For twisted Chevalley groups,

we have an identical situation (see Corollary 13.5.3
in Carter [21]), with subgroup B replaced by B1

and subgroup U−w replaced by (U−w)1 (in Carter’s
notation). Again by an averaging argument there exists
w ∈ W for which |B1nw(U

−
w)1n−1

w | ≥ |G/N |/|W |,
and subgroups B1 and nw(U−w)1n−1

w have trivial inter-
section; so we take them as our X and Y , respectively.
Finally we verify from Table 4 that in all cases we
have f(|G/N |) ≥ |W |. Thus

|X||N ||Y | ≥ |N ||G/N |/|W |
≥ |N ||G/N |/f(|G/N |) ≥ |G|/f(|G|)

where we used the fact that f is increasing.
3) G/N is a one of the 26 sporadic groups or the Tits

group. In this case, we can take X = Y = {1}, by
choosing c in the definition of f(x) sufficiently large.

5) Putting it together: Using the structural theorem and
the new triple-subgroup reduction recursively, we obtain our
final result:

Theorem 17 (main). For any finite group G, there is
an arithmetic algorithm computing generalized DFTs with
respect to G, using O(|G|ω/2+ε) operations, for any ε > 0.

Proof: Fix an arbitrary ε > 0. Consider the following
recursive algorithm to compute a G-DFT. If G is trivial then
computing a G-DFT is as well. If G has a proper subgroup
H of order larger than |G|1−ε/2 then we apply Theorem 7 to
compute a G-DFT via several H-DFTs. Otherwise, applying
Theorem 16, we obtain a (possibly trivial) normal subgroup
N , and two proper subgroups of G, H and K, with N =
H∩K. If G/N is cyclic of prime order, we apply Corollary
9 to compute a G-DFT via several N -DFTs. Otherwise, we
apply Theorem 15 to compute a G-DFT via several H-DFTs,
K-DFTS, and inverse N -DFTs.

Let T (n) denote an upper bound on the operation count
of this recursive algorithm for any group of order n. We will
prove by induction on n, that there is a universal constant
Cε for which

T (n) ≤ Cεnω/2+ε log n.

In the case that we apply Theorem 7, the cost is the
cost of [G : H] many H-DFTs plus A0[G : H]|G|ω/2+ε/2

operations (where A0 is the constant hidden in the big-oh),
and by induction this is at most:

Cε[G : H]|H|ω/2+ε log |H|+A0[G : H]|G|ω/2+ε/2

≤ Cε|G|ω/2+ε(log |G| − 1) +A0|G|ω/2+ε

Name Family |W | |G|
Chevalley A`(q) (`+ 1)! qΘ(`2)

B`(q) 2``! qΘ(`2)

C`(q) 2``! qΘ(`2)

D`(q) 2`−1`! qΘ(`2)

Exceptional E6(q) O(1) qΘ(1)

Chevalley E7(q) O(1) qΘ(1)

E8(q) O(1) qΘ(1)

F4(q) O(1) qΘ(1)

G2(q) O(1) qΘ(1)

Steinberg 2A`(q
2) 2d`/2ed`/2e! qΘ(`2)

2D`(q
2) 2`−1(`− 1)! qΘ(`2)

2E6(q
2) O(1) qΘ(1)

3D4(q
3) O(1) qΘ(1)

Suzuki 2B2(q), q = 22n+1 O(1) qΘ(1)

Ree 2F4(q), q = 32n+1 O(1) qΘ(1)

2G2(q), q = 32n+1 O(1) qΘ(1)

Figure 4. Families of finite groups G of Lie type, together with the size of their associated Weyl group W . These include all simple finite groups other
than cyclic groups, the alternating groups, the 26 sporadic groups, and the Tits group. See [18], [20], [21] for sources. The Suzuki, Steinberg and Ree
families are also called the twisted Chevalley groups.

which is indeed less than Cε|G|ω/2+ε log |G| provided Cε ≥
A0.

In the case that we apply Corollary 9, our cost is p many
N -DFTs, plus A1|G|ω/2+ε operations, which by induction
is at most

Cεp(|G|/p)ω/2+ε log(|G|/p) +A1|G|ω/2+ε

≤ Cε|G|ω/2+ε(log |G| − 1) +A1|G|ω/2+ε,

which is indeed less than Cε|G|ω/2+ε log |G| provided Cε ≥
A1.

Finally, in the case that we apply Theorem 15, let A2

be the maximum of the constants hidden in the big-ohs in
the statement of the Theorem (applied with ε/2). Note that
by selecting Cε sufficiently large, we may assume that G is
sufficiently large, so that two inequalities hold:

A2|H/N | log |H/N | ≤
|H/N |ω/2+ε

4A2f(|G|) log |G|
(11)

|K/N | ≤ |K/N |ω/2+ε

4A2f(|G|) log |G|
(12)

and this is possible because Theorem 16 implies that
|H/N | (resp. |K/N |) are at least |G|ε/2/f(|G|), as
otherwise |K| (resp. |H|) would exceed |G|1−ε/2. Our cost
is |K/N | many H-DFTs, A2|H||K|/|N |2 log |H/N |
many inverse N -DFTs, A2|H/N | log |H/N | many
K-DFTs, plus A2|G|ω/2+ε/2 operations, all repeated
A2|G| log |G|/|HK| ≤ A2f(|G|) log |G| times. By

induction, this is at most(
Cε|K/N ||H|ω/2+ε log |H|

+ CεA2|H||K|/|N |2 log |H/N ||N |ω/2+ε log |N |
+ CεA2|H/N | log |H/N ||K|ω/2+ε log |K|

+A2|G|ω/2+ε/2
)
·A2f(|G|) log |G|

Now, using Inequalities (11-12), the first three summands
are each at most

Cε|G|ω/2+ε log |G|
4A2f(|G|) log |G|

as is the fourth summand provided |G| is sufficiently large.
Thus the entire expression is at most Cε|G|ω/2+ε log |G|, as
required. This completes the proof.

IV. OPEN PROBLEMS

Is there a proof of Theorem 16 that does not need the
Classification Theorem? A second question is whether the
dependence on ω can be removed. Alternatively, can one
show that a running time that depends on ω is necessary by
showing that an exponent-one DFT for a certain family of
groups would imply ω = 2?

ACKNOWLEDGEMENTS

We thank Jonah Blasiak, Tom Church, and Henry Cohn
for useful discussions during an AIM SQuaRE meeting, and
Chloe Hsu for her helpful comments on an earlier version
of this paper. We thank the FOCS referees for their careful
reading and suggestions.

REFERENCES

[1] D. Rockmore, “Some applications of generalized FFTs,” in
Proceedings of the 1995 DIMACS Workshop on Groups and
Computation. June, 1997, pp. 329–369.

[2] I. R. Kondor, Group theoretical methods in machine learning.
Columbia University, 2008.

[3] R. Kondor, “A Fourier space algorithm for solving quadratic
assignment problems,” in Proceedings of the twenty-first an-
nual ACM-SIAM symposium on Discrete algorithms. SIAM,
2010, pp. 1017–1028.

[4] D. K. Maslen and D. N. Rockmore, “Generalized FFTs – a
survey of some recent results,” in Groups and Computation
II, vol. 28. American Mathematical Soc., 1997, pp. 183–287.

[5] J. W. Cooley and J. W. Tukey, “An algorithm for the ma-
chine calculation of complex Fourier series,” Mathematics of
Computation, vol. 19, no. 90, pp. 297–301, 1965.

[6] T. Beth, Verfahren der schnellen Fourier-Transformation.
Teubner, 1984.

[7] M. Clausen, “Fast generalized Fourier transforms,” Theoreti-
cal Computer Science, vol. 67, no. 1, pp. 55–63, 1989.

[8] U. Baum, “Existence and efficient construction of fast Fourier
transforms on supersolvable groups,” computational complex-
ity, vol. 1, no. 3, pp. 235–256, Sep 1991.

[9] M. Clausen and U. Baum, Fast Fourier transforms. Wis-
senschaftsverlag, 1993.

[10] C. C. Hsu and C. Umans, “A fast generalized DFT for
finite groups of Lie type,” in Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
A. Czumaj, Ed. SIAM, 2018, pp. 1047–1059.

[11] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic
Complexity Theory, ser. Grundlehren der mathematischen
Wissenschaften. Springer-Verlag, 1997, vol. 315.

[12] D. K. Maslen, “The efficient computation of Fourier trans-
forms on the symmetric group,” Math. Comput., vol. 67, no.
223, pp. 1121–1147, 1998.

[13] D. N. Rockmore, “Fast Fourier transforms for wreath prod-
ucts,” Applied and Computational Harmonic Analysis, vol. 2,
no. 3, pp. 279 – 292, 1995.

[14] D. Maslen and D. Rockmore, “Separation of variables and
the computation of Fourier transforms on finite groups, I,”
Journal of the American Mathematical Society, vol. 10, no. 1,
pp. 169–214, 1997.

[15] D. N. Rockmore, “Recent progress and applications in group
FFTs,” in Signals, Systems and Computers, 2002. Conference
Record of the Thirty-Sixth Asilomar Conference on, vol. 1.
IEEE, 2002, pp. 773–777.

[16] D. Maslen, D. N. Rockmore, and S. Wolff, “The efficient
computation of Fourier transforms on semisimple algebras,”
Journal of Fourier Analysis and Applications, vol. 5, no. 24,
pp. 1377–1400, 2018.

[17] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis.
Cambridge University Press, 1991.

[18] A. Lev, “On large subgroups of finite groups,” Journal of
Algebra, vol. 152, no. 2, pp. 434–438, 1992.

[19] C. C. Hsu and C. Umans, “A new algorithm for fast general-
ized DFTs,” CoRR, vol. abs/1707.00349v3, 2018, full version
of [10].

[20] Wikipedia, “List of finite simple groups — Wikipedia, the
free encyclopedia,” 2017, [Online; accessed 30-June-2017].

[21] R. W. Carter, Simple groups of Lie type. John Wiley & Sons,
1989, vol. 22.

