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Abstract

We obtain randomized algorithms for factoring degreen univariate polynomials overFq that use
O(n1.5+o(1) + n1+o(1) log q) field operations, when the characteristic is at mostno(1). Whenlog q < n,
this is asymptotically faster than the best previous algorithms (von zur Gathen & Shoup (1992) and
Kaltofen & Shoup (1998)); forlog q ≥ n, it matches the asymptotic running time of the best known
algorithms.

The improvements come from a new algorithm for modular composition of degreen univariate
polynomials, which is the asymptotic bottleneck in fast algorithms for factoring polynomials over finite
fields. The best previous algorithms for modular composition useO(n(ω+1)/2) field operations, where
ω is the exponent of matrix multiplication (Brent & Kung (1978)), with a slight improvement in the
exponent achieved by employing fast rectangular matrix multiplication (Huang & Pan (1997)).

We show that modular composition and multipoint evaluation of multivariate polynomials are essen-
tially equivalent in the sense that an algorithm for one achieving exponentα implies an algorithm for the
other with exponentα + o(1), and vice versa. We then give a new algorithm that requiresO(n1+o(1))
field operations when the characteristic is at mostno(1), which is optimal up to lower order terms.

Our algorithms do not rely on fast matrix multiplication, in contrast to all previous subquadratic
algorithms for these problems. The main operations are fast univariate polynomial arithmetic, multipoint
evaluation, and interpolation, and consequently the algorithms could be feasible in practice.
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1 Introduction

Polynomial factorization is one of the central problems in computer algebra. Milestones in the development
of polynomial-time algorithms for factoring inFq[X] are the algorithms of Berlekamp [Ber70], Cantor &
Zassenhaus [CZ81], von zur Gathen & Shoup [vzGS92] and Kaltofen & Shoup [KS98]. See the surveys
[vzGP01, Kal03, vzG06]. Presently, there are practical algorithms that factor degreen polynomials overFq

in Õ(n2 + n log q) operations, and sub-quadratic algorithms that rely on fast matrix multiplication [KS98].
Efficient algorithms for factoring polynomials over other domains (e.g.Q, Z, algebraic number fields) and
for factoring multivariate polynomials in turn depend on factoring inFq[X].

The bottleneck in most modern factoring algorithms (including the asymptotically fastest ones) turns
out to be the computation of the “Frobenius power” polynomials,Xqi

, modulo the degree-n polynomial
to be factored, for variousi between1 andn. Wheni = n, a repeated-squaring approach requiresn log q
modular multiplications of degreen polynomials. A clever improvement based on the so-called “polynomial
representation of the Frobenius map” (an idea attributed to Kaltofen) was exploited in this context by von
zur Gathen & Shoup [vzGS92]: first computeXq mod f(X) by repeated squaring, thencomposethat
polynomial with itself modulof(X) to get

(Xq)q mod f(X) = Xq2
mod f(X).

Repeating the compositionlog n times computesXqn
mod f(X) with only log q modular multiplications

andlog n modular compositions overall. There are sub-quadratic algorithms for modular composition, and
so this approach is asymptotically superior to the straightforward repeated-squaring algorithm. The same
idea can also be applied to other problems that arise in polynomial factorization, like computing the norm
and trace maps,Xqn+qn−1+···+q+1 andXqn

+ Xqn−1
+ · · ·+ Xq + X, with similar speedups.

Thus the modular composition problem emerges as a crucial component of the fastest factoring al-
gorithms (as well as other problems, such as irreducibility testing and constructing irreducible polyno-
mials [Sho94], and manipulating normal bases of finite fields [KS98]). Indeed, if we could compute
f(g(X)) mod h(X) for degreen polynomialsf, g, h ∈ Fq[X] in nα operations, then there are algorithms
for factoring degreen polynomial overFq usingO(nα+0.5+o(1)+n1+o(1) log q) operations. For comparison,
the currently fastest algorithms take eitherÕ(n2 + n log q) [vzGS92] or Õ(n1.815 log q) [KS98] operations
(also, see the more precise accounting and detailed comparisons in Figure 1 of [KS98]).

1.1 Modular composition of polynomials

Using Horner’s rule and fast modular polynomial arithmetic, a modular composition can be computed in
Õ(n2) operations; one could hope for̃O(n) operations. The only asymptotic improvement over the straight-
forward algorithm is the algorithm of Brent & Kung [BK78], with a slight improvement by Huang & Pan
[HP98]. The first takes̃O(n1.5 +n(ω+1)/2) operations, whereω is the exponent of square matrix multiplica-
tion (the best upper bound is currentlyω < 2.376 [CW90]), and the second takes̃O(n1.5+nω2/2) operations
whereω2 is the exponent ofn×n by n×n2 matrix multiplication, for which Huang & Pan proved an upper
bound slightly better than2.376 + 1. Devising an improved algorithm for modular composition has been
mentioned as an important open problem in [Sho94], [KS98], and [vzGG99].

In this paper, we consider a slight generalization of modular composition, in which we are given a
multivariate polynomialf(X1, X2, . . . , Xm) ∈ Fq[X1, X2, . . . , Xm] andm univariate polynomials

g1(X), . . . , gm(X) ∈ Fq[X]
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together with the modulush(X) ∈ Fq[X]. We wish to compute

f(g1(X), . . . , gm(X)) mod h(X).

The relevant case will always have the individual degrees off bounded byd, and thegi andh polynomials
of degree at mostN = dm. Here the straightforward algorithm takes̃O(N2) operations, and we note that
the Brent & Kung “baby-steps/giant-steps” approach generalizes to this case, giving an algorithm that takes
Õ(N1/5 + Nω2/2) operations.

Our insight is that this modular composition problem and themultipoint evaluation problem for multi-
variate polynomialsare essentially equivalent in the sense that an algorithm for one achieving exponentα
implies an algorithm for the other with exponentα + o(1), and vice versa. Recall that one can evaluate a
degreen univariatepolynomial atn evaluations points inO(n log2 n) operations, for an amortized cost of
only O(log2 n) operations per evaluation. However, nothing similar is known for multivariate polynomials.
The only improvement over the straightforward algorithm is by Nüsken & Ziegler [NZ04], who show how
to evaluate bivariate polynomial with individual degreesd atd2 points inÕ(dω2/2+1) operations; their algo-
rithm generalizes to them-variate case where it takes̃O(d(ω2/2)(m−1)+1) operations. Unfortunately, this is
not enough to yield an improved algorithm for modular composition via the aforementioned equivalence.

As one can see from the proliferation ofω’s andω2’s in the preceding discussion, all of the non-trivial
algorithms for modular composition and multipoint evaluation of multivariate polynomials rely on fast ma-
trix multiplication. As a result, they are currently unlikely to be practical1 and the same can be said for
the asymptotically fastest algorithms for polynomial factorization that use them as subroutines. In addition,
notice that the Brent & Kung algorithm for modular composition cannot achieve an exponent better than
1.5, even if we had optimal fast matrix multiplication algorithms.

1.2 A new algorithm in small characteristic

Our main technical contribution is a completely new algorithm for multipoint evaluation of multivariate
polynomials, and using the above equivalence, for modular composition,in small characteristic. Our al-
gorithm uses an asymptotically optimal number of operations (up to lower order terms), and in partic-
ular, solves the modular composition problem relevant for degreen polynomial factorization overFq in
O(n1+o(1)) operations, when the characteristic is at mostno(1). We immediately obtain polynomial fac-
torization algorithms for small characteristic, with running timeO(n1.5+o(1) + n1+o(1) log q), and similar
improvements to the fastest known algorithms for a number of other problems (see Section5). Applications
aside, our results represent the first new algorithmic ideas for modular composition since the algorithm of
Brent & Kung in 1978 (as the Huang & Pan improvement is really an improved upper bound on the matrix
multiplication step; the actual algorithm remains the same).

Another important feature of our algorithm is that it doesnot rely on fast matrix multiplication. The
main operations are standard fast univariate polynomial arithmetic operations, and multipoint evaluation
and interpolation of univariate polynomials. All of these problem have algorithms that are asymptotically
optimal up to lower order terms, and that are very reasonable in practice. In all of the settings we have
mentioned where modular composition is the crucial subroutine, the other parts of the algorithms are again
these standard fast and practical operations, so the algorithms derived from our new algorithm could be
feasible in practice.

1However, real implementations successfully use classical matrix multiplication, or even Strassen’s algorithm, and find that even
then the dominant operations on instances arising in practice are operations on polynomials, as opposed to matrix multiplication
[ABS06, p. 25-26].
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1.3 Techniques

The reductions between modular composition and multipoint evaluation of multivariate polynomials are
not difficult, even though it appears that at least one direction of this equivalence – the one needed for
our main result – was not known before (the other direction, reducing multipoint evaluation of multivariate
polynomials to modular composition, is just beneath the surface of the results in [NZ04]).

Our algorithm for multipoint evaluation of multivariate polynomials is more involved (and we are only
able to make it work in small characteristic), although it utilizes a very natural idea. The idea is to reduce
to multipoint evaluation of aunivariatepolynomialover an extension field. Suppose we have a multivariate
polynomialf(X0, X1, . . . , Xm−1) with individual degreesd−1, with coefficients inFq. A related univariate
polynomialf∗ is obtained by theKronecker substitution:

f∗(Z) = f(Z, Zd, Zd2
, . . . , Zdm−1

).

A tempting approach is to describe some (efficiently computable) mapping from evaluation pointsα =
(α1, · · · , αm) ∈ Fm

q intended forf to evaluation points̄α in an extension field, intended forf∗, with the
property thatf(α) can be easily recovered fromf∗(ᾱ). Then we could perform multipoint evaluation off
by mapping all of the evaluation points to their counterparts in the extension field, and then invoking a fast
univariatemultipoint evaluation algorithm to evaluatef∗ at these points.

We are able to make something very close to this strategy work. To do so we need to (1) definef∗ by
raising to successive powers of a parameterh ≈ dm2 instead ofd, (2) carefully construct the extension field,
and (3) arrange forh to be a power of the characteristic (this is why we need small characteristic) so that we
can exploit properties of the Frobenius endomorphism.

A technical requirement of our algorithm is that it needs an element of multiplicative orderh− 1 in Fq.
If Fq does not contain the subfieldFh, such an element does not even exist. As a result, we need to first
extendFq to guarantee such an element. This complication is not needed in settings where an order-(h− 1)
element is already available.

1.4 Related work

The special case of modular composition in whichm = 1 and the modulush(X) is Xd has an algorithm
attributed to Brent & Kung that uses̃O(n1.5) operations (see Exercise 12.4 in [vzGG99]), and a different
algorithm by Bernstein [Ber98] that is faster in small characteristic. This special case is not useful for
polynomial factoring (and other applications), because in these applicationsh(X) ends up being the input
polynomial, and modular composition is used as a means of determining its (initially unknown) structure.

The problem of factoring a degreen polynomial in small characteristic has been considered before
by Kaltofen & Shoup [KS97]. Their algorithm is advantageous whenq = pk is quite large (i.e., when
k ≈ n1+α, for constantα > 0). Its running time is expressed in terms of the running time for modular
composition, and so we obtain improvements there as well; see Section5.

The inspiration for our new algorithm for multivariate multipoint evaluation is two recent works in
coding theory: a new variant of Reed-Solomon codes discovered by Parvaresh & Vardy [PV05] and a
particular instantiation of these codes used by Guruswami & Rudra [GR06]. The analysis of the decoding
algorithm in [PV05] uses the Kronecker substitution to obtain a univariate polynomial from a multivariate
polynomial that carries information about the received word. This univariate polynomial is then viewed over
an extension field, just as in this work. In [GR06], they utilize a particular extension field with the property
that raising a polynomial (that is a canonical representative of a residue class in the extension field) to a
Frobenius power is the same as shifting the polynomial by a generator of the field. We use the same trick to
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“store” the coordinates of an intended evaluation point in a single extension ring element, and then “access”
them by raising to successive Frobenius powers.

1.5 Outline

In Section2 we give some preliminary definitions and conventions, and formally define the modular compo-
sition and multipoint evaluation problem for multivariate polynomials. In Section3 we give the reductions
showing that these two problems are essentially equivalent. Section4 contains the main technical result –
the new algorithm for multipoint evaluation of multivariate polynomials in small characteristic. Section5
describes the resulting improvements in polynomial factorization algorithms, and some other applications.
In this section we also reformulate the algorithm of [KS98] in order to highlight a self-contained open
problem, whose resolution would lead to anO(n1+o(1) log q) polynomial factorization algorithm.

2 Preliminaries

We have already discussed the Kronecker substitution, which can be viewed as a transformation that de-
creases the number of variables at the expense of increasing the degree. We now define a map that is (in a
sense made precise following the definition) the “inverse” of the Kronecker substitution – it increases the
number of variables while decreasing the degree:

Definition 2.1. The mapψh,` fromFq[X0, X1, . . . , Xm−1] to Fq[Y0,0, . . . , Ym−1,`−1] is defined as follows.
GivenXa, write a in baseh: a =

∑
j≥0 ajh

j and define the monomial

Ma(Y0, . . . , Y`−1)
def= Y a0

0 Y a1
1 · · ·Y a`−1

`−1 .

The mapψh,` sendsXa
i to Ma(Yi,0, . . . , Yi,`−1) and extends multilinearly toFq[X0, X1, . . . , Xm−1].

Note thatψh,`(f) can be computed in linear time in the size off , assumingf is presented explicitly by
its coefficients. Also note thatψh,` is injective on the set of polynomials with individual degrees at most
h` − 1. For such a polynomialf , if g = ψh,`(f), then

f(X0, . . . , Xm−1) = g(Xh0

0 , Xh1

0 , . . . , Xh`−1

0 , · · · , Xh0

m−1, X
h1

m−1, . . . , X
h`−1

m−1).

In this sense,ψh,` is the inverse of the Kronecker substitution.
The problems we are interested in are formally defined below:

Problem 1 (MULTIVARIATE MULTIPOINT EVALUATION ). Givenf(X0, . . . , Xm−1) in Fq[X0, . . . , Xm−1]
with individual degrees at mostd − 1, and evaluation pointsα0, . . . , αdm−1 in Fm

q , outputf(αi) for i =
0, 1, 2, . . . , dm − 1.

DefiningN
def= dm, the straightforward algorithm takesΩ(N2) field operations. One may hope for an

algorithm that uses onlyO(N) field operations.

Problem 2 (MODULAR COMPOSITION). Givenf(X0, . . . , Xm−1) in Fq[X0, . . . , Xm−1] with individual
degrees at mostd − 1, and polynomialsg0(X), . . . , gm−1(X) andh(X), all in Fq[X] and with degree at
mostdm − 1, outputf(g0(X), . . . , gm−1(X)) mod h(X).

5



Operation Input Output Operations
Multiplication f(X), g(X) of degreen f(X) · g(X) M(n) = O(n log n)
Remainder f(X), g(X) of degreeO(n) f(X) mod g(X) O(M(n))
Evaluation f(X) of degreen; α1, · · · , αn f(αi), i = 1, . . . n O(M(n) log n)
Interpolation α0, · · · , αn, β0, · · · , βn f(X) of degreen, f(αi) = βi O(M(n) log n)

Figure 1:Operation counts for standard operations on univariate polynomials over a commutative ring. For
interpolation, we additionally require thatαi − αj is a unit, fori 6= j.

We note that the term “modular composition” more commonly refers to the special case of this problem

in which m = 1. Again definingN
def= dm, the straightforward algorithm takesΩ(N2) field operations.

One may hope for an algorithm that uses onlyO(N) field operations.
For both problems, we sometimes refer to the problem “with parametersd, m” if we need to specify the

individual degrees and number of variables explicitly.
Figure1 gives the running time for standard operations on univariate polynomials that we use in the

remainder of the paper. See, e.g. [vzGG99]. In this paper polynomials are always represented explicitly
by a list of their coefficients. We useM(n) throughout the paper as the number of operations sufficient to
multiply two univariate polynomials of degreen (and we assumeM(O(n)) = O(M(n))). Thus, when we
construct an extension field (or ring) by adjoining an indeterminateX and mod-ing out by a polynomial
of degreen, arithmetic operations in the extension field (or ring) takeO(M(n)) operations in the base
field, since they entail the addition or multiplication of degreen − 1 polynomials followed by a remainder
operation involving degreeO(n) polynomials.

We use the “soft-oh” notatioñO to suppress polylogarithmic factors. When the argument involves
several variables, we explicitly record the quantity whose polylog factors we are suppressing by putting it in
the subscript, like this:̃On(nm2).

3 The reductions

In this section we give the reductions showing (essentially) thatMULTIVARIATE MULTIPOINT EVALUATION

andMODULAR COMPOSITIONare equivalent. We first reduceMODULAR COMPOSITIONto MULTIVARIATE

MULTIPOINT EVALUATION (this is the direction that we use in order to give our improved algorithm for
MODULAR COMPOSITION).

Theorem 3.1. Givenf(X0, . . . , Xm−1) in Fq[X0, . . . , Xm−1] with individual degrees at mostd − 1, and
polynomialsg0(X), . . . , gm−1(X) and h(X), all in Fq[X] and with degree at mostdm − 1, there is, for
everyd0 < d, an algorithm that outputsf(g0(X), . . . , gm−1(X)) mod h(X) in

Õdm((dm + T (d0, `m))d0)

field operations, wherè= dlogd0
de, andT (d0,m0) is the number of field operations to solveMULTIVARI -

ATE MULTIPOINT EVALUATION with parametersd0,m0.

Proof. SetN = dm. We perform the following steps:

1. Computef ′ = ψd0,`(f).

2. Computegi,j(X) def= gi(X)dj
0 mod h(X) for all i, andj = 0, 1, . . . , `− 1.
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3. SetR = Nm`d0, and selectR distinct field elementsβ0, . . . , βR−1 (if q < R, then we need to
work in an extension field containing at leastR elements, but this only affects the operation count by

logarithmic factors). Computeαi,j,k
def= gi,j(βk) for all i, j, k using fast multipoint evaluation.

4. Computef ′(α0,0,k, . . . , αm−1,`−1,k) for k = 0, . . . , R− 1.

5. Interpolate to recoverf ′(g0,0(X), . . . , gm−1,`−1(X)) (which is a univariate polynomial of degree less
thanR) from these evaluations. Output the result moduloh(X).

Correctness follows from the observation that

f ′(g0,0(X), . . . , gm−1,`−1(X)) ≡ f(g0(X), . . . , gm−1(X)) (mod h(X)).

The first step takesO(N) time. For eachgi, the second step takesO(M(N) log(dj
0)) operations to

computeg
dj
0

i by repeated squaring, and this happens forj = 0, 1, 2, . . . , ` − 1, giving an upper bound of at
mostO(M(N)`2 log d0) operations to compute the required powers. This happens for eachgi for a total of
O(M(N)`2 log d0m) operations.

The third step takesO(M(R)(log R)`m) operations using fast univariate polynomial evaluation. The
fourth step invokes fast multivariate polynomial evaluation at a cost ofT (d0,m`)m`d0 operations (each
invocation of fast multivariate polynomial evaluation can computedm`

0 ≥ dm = N evaluations, and we need
to repeat thism`d0 times to obtain allR evaluations). The final step requiresO(M(R) log R) operations.
Note that both of thelog R terms can be removed if the field supports an FFT and theβ’s are chosen
accordingly.

Corollary 3.2. Fix parametersd,m. For everyε > 0, if MULTIVARIATE MULTIPOINT EVALUATION with
parametersd0 = dε andm0 = m/ε can be solved iñOd

m0
0

((dm0
0 )α) operations for some constantα > 1,

thenMODULAR COMPOSITIONwith parametersd,m can be solved iñOdm((dm)α+ε) operations.

Now, we reduceMULTIVARIATE MULTIPOINT EVALUATION to MODULAR COMPOSITION, which demon-
strates the equivalence of the two problems.

Theorem 3.3. Givenf(X0, . . . , Xm−1) in Fq[X0, . . . , Xm−1] with individual degrees at mostd − 1, and
evaluation pointsα0, . . . , αdm−1 in Fm

q , there is an algorithm that outputsf(αi) for i = 0, 1, . . . , dm − 1,
in

Õdm(dm + T (d,m))

field operations, whereT (d,m) is the number of field operations to solveMODULAR COMPOSITION with
parametersd,m.

Proof. SetN = dm. We perform the following steps:

1. Select distinct field elementsβ0, . . . , βN−1 (if q < N , then we need to work in an extension field
containing at leastN elements, but this only affects the operation count by logarithmic factors). Find
gi ∈ Fq[X] for whichgi(βk) = (αk)i for all i, k using fast univariate polynomial interpolation.

2. Produce the univariate polynomialh(X) def=
∏

k(X−βk), and then computef(g0(X) . . . , gm−1(X))
moduloh(X).

3. Evaluate this univariate polynomial atβ0, . . . , βN−1 using fast polynomial evaluation, and output
these evaluations.
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Correctness follows from the observation that

f(g1(X), . . . , gm(X))(βk) = f(αk)

and the same holds when taking the left-hand-side polynomial moduloh(X) sinceh vanishes on the evalu-
ation pointsβk.

The first step takesO(M(N) log N) operations for each interpolation, and there arem such interpola-
tions. The second step requiresO(M(N) log N) time to computeh(X), and then it invokes fast modular
composition at a cost ofT (d,m) operations. The final step requiresO(M(N)) operations. Note that both
of thelog N terms can be removed if the field supports an FFT and theβ’s are chosen accordingly.

Corollary 3.4. Fix parametersd,m. If MODULAR COMPOSITIONwith parametersd andm can be solved
in Õdm((dm)α) operations for some constantα > 1, thenMULTIVARIATE MULTIPOINT EVALUATION with
parametersd,m can be solved iñOdm((dm)α) operations.

4 An optimal algorithm in small characteristic

In this section we describe our main algorithm – forMULTIVARIATE MULTIPOINT EVALUATION – which
leads to a new algorithm forMODULAR COMPOSITION via Theorem3.1. These algorithms work in small
characteristic, and give operation counts that are optimal up to lower order terms.

As described in Section1.3, our algorithm operates by reducing multipoint evaluation of the targetmulti-
variatepolynomialf to multipoint evaluation of a relatedunivariatepolynomialf∗ obtained by substituting
h-th powers of a single variable for them different variables off (the “Kronecker substitution”). The given
m-variate polynomialf will have coefficients in a fieldFq and the parameterh will be a power of the charac-
teristic. We will actually viewf as a polynomial with coefficients in an extensionring R = Fq[W ]/P (W )
for some polynomialP (not necessarily irreducible overFq). The reason for this complication is that the
algorithm needs a special elementη that satisfies two properties:

1. the multiplicative order ofη is h− 1, and

2. ηi − ηj is invertible for alli, j ∈ {0, 1, 2, . . . , m− 1}, with i 6= j.

We will constructR so that we can easily get our hands on such aη. If an element of orderh− 1 is already
available inFq, then it automatically satisfies the second property becauseFq is a field, and there is no need
to pass to the extension ringR.

We now describe in detail how to construct the extension ringR, and findη. Fix parametersd andm,
and a fieldFq with characteristicp. Let h = pc be the smallest integer power ofp that is larger thanm2d.
Construct the ringR = Fq[W ]/P (W ), whereP (W ) is a degreec polynomial with coefficients inFp, that
is irreducible overFp. Notice thatFp[W ]/P (W ) ⊆ R and also thatFq ⊆ R, and that these embeddings
are easy to compute. Chooseη to be a primitive element of the fieldFp[W ]/P (W ). This η clearly has
multiplicative orderh − 1, and because the elementsηi for i = 0, 1, . . . , m − 1 are distinct elements of a
field, the second property above is also satisfied. Figure2 depicts the construction ofR.

Given them-variate polynomialf overR, we want to be able to evaluate it at many points inFm
q ⊆ Rm.

Our strategy will be to lift the evaluation points to elements of an extension ringS, evaluate a related
univariate polynomialf∗ at those points, and then project back to an element ofR. We choose the ringS to

be the extension ringR[Z]/E(Z), whereE(Z) def= Zh−1 − η. Refer to Figure2.
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S = R[Z]/E(Z)

R = Fq[W ]/P (W )

Fq Fp[W ]/P (W )
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Figure 2:Containment diagram. Our input polynomial will be overFq, but we view it as a polynomial over
the extension ringR. We will end up evaluating a related polynomial at elements of the further extensionS.

Let σ be (a power of) the Frobenius endomorphism fromR to R, given byx 7→ xh. The “lift” map
φ : Fm

q → S is defined as follows: givenα = (α0, . . . , αm−1) ∈ Fm
q ⊆ Rm, φ(α) is the (residue class

whose canonical representative is the) degreem− 1 polynomialgα(Z) ∈ R[Z] which has

gα

(
ηi

)
= σ−i(αi) for i = 0, 1, 2 . . . ,m− 1. (1)

Note thatgα is well defined because althoughσi is only anendomorphismof R (under which certain ele-
ments may have no preimage), we only demand preimages of elements ofFq ⊆ R, andσi is anautomor-
phismwhen restricted toFq.

The “project” mapπ : S → R that recovers the evaluation of the original multivariate polynomialf
from an evaluation of the univariate polynomialf∗ is defined as follows: given an element ofS whose
canonical representative is the degree< h− 1 polynomialg(Z) ∈ R[Z], π(g) is the evaluationg(1).

Our main lemma shows how to recover the evaluation of them-variate polynomialf at a pointα ∈
Fm

q ⊆ Rm, from the evaluation of the univariate polynomialf∗ at an element of the extension ringS.

Lemma 4.1. Letf(X0, X1, . . . , Xm−1) be a polynomial inFq[X0, X1, . . . , Xm−1] with individual degrees
d − 1, and supposeFq has characteristicp. Defineh,R, E, S, φ, π as above, and define the univariate
polynomialf∗(Y ) ∈ S[Y ] by:

f∗(Y ) def= f(Y, Y h, Y h2
, . . . , Y hm−1

).

For everyα ∈ Fm
q ⊆ Rm, the following identity holds:π(f∗(φ(α))) = f(α).

Proof. Fix φ(α), which is an element ofR[Z]/E(Z). Let gα(Z) ∈ R[Z] be its (degreem − 1) canonical
representative, and denote byσi(gα) the polynomial obtained by applyingσi to the coefficients ofgα. Then
we have:

(gα(Z))hi
= σi(gα)(Zhi

)

= σi(gα)(Zhi−1Z)

≡ σi(gα)(η(hi−1)/(h−1)Z) (mod E(Z))
= σi(gα)(ηiZ),
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where the last equality used the fact thatη has orderh − 1 and so it is fixed underσ. For convenience, let
us denote byg(i)

α (Z) the polynomial(gα(Z))hi
mod E(Z). A crucial point that we will use shortly is that

deg(g(i)
α ) = deg(gα). The above equation implies that

g(i)
α (1) = σi(gα)

(
ηi

)
= σi

(
gα

(
σ−iηi

))
= σi

(
gα

(
ηi

))
= σi(σ−iαi) = αi, (2)

where the third equality again used the fact thatη is fixed underσ, and the fourth equality used Eq. (1).
When we evaluate the polynomialf∗ at the element ofS whose canonical representative isgα we get

the element ofS whose canonical representative is:

f(g(0)
α (Z), g(1)

α (Z), . . . , g(m−1)
α (Z)) mod E(Z).

Now f is a polynomial with total degree at mostdm, and eachg(i)
α is a polynomial of degree at mostm− 1.

Therefore, sinceE has degree at leastdm2 > dm(m− 1), this polynomial is just

f(g(0)
α (Z), g(1)

α (Z), . . . , g(m−1)
α (Z)),

and evaluating at1 gives (using Eq. (2)):

f(g(0)
α (1), g(1)

α (1), . . . , g(m−1)
α (1)) = f(α0, α1, . . . , αm−1)

as claimed.

The next theorem applies the strategy we have developed above to theMULTIVARIATE MULTIPOINT

EVALUATION problem. It achieves an optimal operation count (up to lower order terms) when the charac-
teristic p = do(1), and whenm is not too small and not too large (to be precise, we needω(1) ≤ m ≤
do(1)/ log m). When used via Theorem3.1for the case of main interest (modular composition of univariate
polynomials) we are able to choose the parametersd andm of the invokedMULTIVARIATE MULTIPOINT

EVALUATION instance to satisfy these constraints.

Theorem 4.2. Givenf(X0, . . . , Xm−1) in Fq[X0, . . . , Xm−1] with individual degrees at mostd − 1, and
evaluation pointsα0, . . . , αdm−1 in Fm

q , there is an algorithm that outputsf(αi) for i = 0, 1, 2, . . . , dm−1,
in

Õdm(dm(m2p)mpoly(d, p))

field operations.

Proof. SetN = dm. We perform the following steps:

1. Chooseh = pc to be the smallest power ofp that is at leastm2d. Find a degreec irreducible polyno-
mial P (W ) overFp, and a primitive elementη of Fp[W ]/P (W ). Define the ringR = Fq[W ]/P (W ),
and the ringS = R[Z]/E(Z), whereE(Z) = Zh−1 − η, as above.

2. Fori = 0, 1, 2, . . . , N−1, compute the canonical representative ofφ(αi): the degreem−1 polynomial
gαi(Z) ∈ R[Z].

3. Produce the univariate polynomialf∗(Y ) = f(Y, Y h, Y h2
, . . . , Y hm−1

) overS.

4. Evaluatef∗ at the pointsgαi(Z), and for each evaluation applyπ to recoverf(αi).
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Step 1 requires constructing the fieldFh and finding a primitive element. This can be done by brute
force in time poly(h), although much better algorithms are available.

Each polynomialgαi computed in Step 2 requires the following operations (recall Eq.1): first, we need
to computeσ−j(αi)j for j = 0, 1, . . . , m − 1. A single field operation gives us(αi)−1

j , and then using re-
peated squaring we can applyσj using at mostO(log(hm)) Fq-operations. The overall cost of doing this for
all i is O(Nm2 log h). Next, we performN polynomial interpolations inR, each costingO(M(m) log m)
operations inR, or O(M(m) log mM(c)) operations inFq. Note that for every two interpolation points
ηi, ηj , the differenceηi− ηj is a unit inR (sinceη is an element ofFp(W )/P (W ) which is a field). This is
required for the interpolation step. The total cost for Step 2 is

O(N(m2 log h + M(m) log mM(c)))

Fq-operations.
Step 4 is a univariate multiple evaluation problem. We haveN elements ofS, and a univariate poly-

nomial f∗ over S, of degree at mostdmhm (and this quantity is greater thanN ). Using fast multipoint
evaluation then, this step requiresO(M(dmhm) log(dmhm)) operations inS, or

O(M(dmhm) log(dmhm)M(h)M(c))

Fq-operations. Recalling thath ≤ dm2p, and that poly(m) factors are polylogarithmic in the main size
measuredm (and so are suppressed by the soft-oh notation) the claimed bound follows.

Corollary 4.3. TheMODULAR COMPOSITIONproblem with parametersd, 1 can be solved in

O(d1+o(1))

operations, provided the characteristicp = do(1).

Proof. It is sufficient to be able to choose, for anyε > 0, the parameterd0 ≤ dε so thatm0
def= (log d)/(log d0)

satisfies:m2m0
0 ≤ dε andpm0 ≤ dε. We then apply Theorem3.1. For sufficiently larged (and using the

assumption thatp ≤ do(1)) these demands are met by choosingd0 = max{(log d)2/ε, p1/ε}.

5 Applications

In this section we describe some improved algorithms that arise as a consequence of our new algorithm for
modular composition. Of primary interest is univariate polynomial factorization, so we begin with that. In
this section, we letC(n) denote the number of operations sufficient to perform a modular composition with
parametersn, 1. As shown in the previous section, in small characteristic, we now haveC(n) = O(n1+o(1)).

5.1 Polynomial factorization

There are three stages in variants of the Cantor-Zassenhaus algorithm for factoring a degreen univariate
polynomial overFq: square-free factorization, distinct-degree factorization, and equal-degree factorization
(see [vzGG99] for a thorough presentation).

The first stage, square-free factorization, can be performed inO(n1+o(1) + n log q) operations, using an
algorithm attributed by [KS98] to Yun. The second stage, distinct-degree factorization, has a deterministic
algorithm due to Kaltofen & Shoup [KS98] that takes

O(C(n)n0.5+o(1) + M(n) log q).
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The third stage, equal-degree factorization, has a randomized algorithm due to von zur Gathen & Shoup
[vzGS92] that takes an expected numberO(M(n) log n + C(n) log n + M(n) log q) operations.

Notice that with our improvements (i.e.,C(n) = O(n1+o(1))) in small characteristic, the first and
third stages useO(n1+o(1) + n1+o(1) log q) operations and the second stage improves toO(n1.5+o(1) +
n1+o(1) log q). The second stage remains the barrier to an “exponent 1” algorithm, so we describe the
algorithm of Kaltofen & Shoup in enough detail here (and in a manner differing somewhat from the original)
to highlight a self-contained open problem whose resolution would improve its efficiency toO(n1+o(1) +
n1+o(1) log q) operations. We will also see the critical role played by modular composition in this algorithm.

The problem we are trying to solve is:

Problem 3 (DISTINCT-DEGREE FACTORIZATION). Given a monic, squarefree polynomialf ∈ Fq[X] of de-
green, outputf1, f2, . . . , fn ∈ Fq[X] wherefi is either 1 or the product of degreei irreducible polynomials,
andf1f2 · · · fn = f .

The crucial (standard) algebraic fact used in these algorithms is:

Proposition 5.1. The polynomialsi(X) def= (Xqi − X) ∈ Fq[X] is the product of all monic irreducible
polynomials overFq whose degree dividesi.

Therefore, computinggcd(si(X), f(X)) splits off those irreducible factors off whose degrees divide
i. In preparing the polynomialsi(X) for this purpose, we are free to compute it modulof(X).

The main step in the algorithm for distinct-degree factorization will be to split the input polynomial
f into two non-constant polynomialsf1f2 · · · fm andfm+1fm+2 · · · fn for somem ∈ {1, 2, . . . , n}. One
could do this by computinggcd(si(X), f(X)) for i = 1, 2, . . . , n and stopping at the first non-trivial gcd,
but in the worst case, a non-trivial split will not be found untili ≈ n/2 which spoils any chance of a
subquadratic algorithm. Instead, we will perform a “binary search:” we begin withm = n/2, and if this
does not yield a non-trivial split, we proceed to eitherm = n/4 or m = 3n/4 depending on whether
f1f2 · · · fn/2 equalsf or 1, and so on.

For this purpose we need to be able to solve the following sub-problem, which gives us the polynomials
needed for the “splits” in the above binary-search strategy (and note that for our intended application we do
not care if thesi(X) factors are repeated, which explains theai’s below):

Problem 4. Given a monic, squarefree polynomialf ∈ Fq[X] of degreen, a positive integerm, and the
polynomialXq mod f(X), compute the polynomial

s1(X)a1 · s2(X)a2 · · · · · sm(X)am mod f(X) =
m∏

i=1

(Xqi −X)ai mod f(X)

for any positive integersai.

Now, it is easy to see that this problem can be solved inO((C(n) + M(n))m) operations: withm
successive modular compositions withXq, we can obtainXqi

mod f(X) for i = 1, 2, . . . , m, and thenm
further polynomial additions and multiplications modulof suffice to compute

∏m
i=1(X

qi −X) mod f(X).
Kaltofen & Shoup describe a clever algorithm that reduces the exponent onm from 1 to 0.5:

Lemma 5.2 (implicit in [KS98]). Problem4can be solved inO(C(n)
√

m+M(n)
√

m log
√

m) operations.
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Proof. First, computeXqi
for i = 0, 1, 2, . . . ,

√
m− 1; and thenXqj

√
m

for j = 1, 2, . . . ,
√

m, all modulo
f(X). This requiresO(C(n)

√
m) operations (since we are givenXq mod f(X) to begin with). Form the

degree
√

m polynomialP (Z) over the ringFq[X]/f(X) defined as:

P (Z) def=

√
m−1∏

i=0

(Z −Xqi
) mod f(X).

This requiresO(
√

m log
√

m) operations in the ring, orO(M(n)
√

m log
√

m) operations inFq. Finally,

evaluateP (Z) at the elementsXqj
√

m
mod f(X) for j = 1, 2, . . . ,

√
m, and take the product of these

evaluations modulof(X), yielding:

√
m∏

j=1

√
m−1∏

i=0

(Xqj
√

m −Xqi
) mod f(X)

which equals: √
m∏

j=1

√
m−1∏

i=0

(Xqj
√

m−i −X)qi
mod f(X),

which is a polynomial of the desired form (theai are various powers ofq). Using fast multipoint evaluation
this final step entailsO(M(

√
m) log

√
m) operations in the ring, orO(M(n)M(

√
m) log

√
m) operations

in Fq.

We consider it a very interesting open problem to devise an algorithm for Problem4 that takes only
O(n1+o(1)mo(1)) operations (under the assumption thatC(n) = O(n1+o(1))).

Using Problem4 as a subroutine, it is not hard to describe a fast algorithm forDISTINCT-DEGREE

FACTORIZATION:

Theorem 5.3. If Problem4 can be solved inO(nαmβ) operations (withα > 1), then there is an algorithm
for DISTINCT-DEGREE FACTORIZATIONthat usesÕ(nα+β + M(n) log q) operations.

Proof. We first prepare the polynomialXq mod f(X) needed as input to Problem4, at a cost ofO(M(n) log q)
operations.

Now, in addition to the input of a squarefreef(X) ∈ Fq[X] of degreen, we assume we are given a
range within which we know all of the degrees of the irreducible factors off lie. Initially, this is just1 . . . n.

If the range consists of only a single integer, then we can outputf(X) itself and halt. Otherwise, set
m to the midpoint of this range, and compute a polynomial as specified in Problem4; call this polynomial
S(X). Computegcd(S(X), f(X)). If this gcd isf(X), then we reduce the range to the first half and
recurse; if this gcd is a constant polynomial, then we reduce the range to the second half and recurse; if this
gcd is a non-trivial polynomialflower(X), then we computefupper(X) = f(X)/flower(X), and these
two polynomials represent a successful “split.” Notice thatdeg(flower) + deg(fupper) = deg(f). We now
recurse onflower (with the range reduced to the first half) andfupper(with the range reduced to the second
half).

We now analyze the operation count of this recursive algorithm when factoring a degreen input poly-
nomial. Notice that we never setm larger thann throughout the entire algorithm, so we will pessimistically
assume it is alwaysn to simplify the analysis.
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Let T (n′, r) denote the operation count of the procedure, when called with a polynomial of degreen′

and range of sizer. If r = 1, the cost is zero. Otherwise, the procedure solves Problem4 at a cost of at most
c1n

′αnβ, and the other operations before the recursive call (a gcd, and possibly a polynomial division) cost
at mostc2n

′ log2 n′ for some constantsc1, c2. Setc = c1 + c2.
We will prove that for allT (n′, r) with n′, r ≤ n,

T (n′, r) ≤ cn′α log2 n′nβ log r,

by induction onr. The base case, whenr = 1, is clear. In general we have that

T (n′, r) ≤ c1n
′αnβ + c2n

′ log2 n′ + max
1<i<n′

{
T (n′, r/2)
T (i, r/2) + T (n′ − i, r/2)

where the two lines in the inequality correspond to the cases that result in recursive calls. In the first case
we have:

c1n
′αnβ + c2n

′ log2 n′ + T (n′, r/2)

≤ c1n
′αnβ + c2n

′ log2 n′ + cn′α log2 n′nβ(log r − 1) ≤ cn′α log2 n′nβ log r

as required. In the second case, we have:

c1n
′αnβ + c2n

′ log2 n′ + T (i, r/2) + T (n′ − i, r/2)

≤ c1n
′αnβ + c2n

′ log2 n′ + c[iα log2 i + (n′ − i)α log2(n′ − i)]nβ(log r − 1)

≤ c1n
′αnβ + c2n

′ log2 n′ + c[n′α log2 n′]nβ(log r − 1) ≤ cn′α log2 n′nβ log r

as required. The claimed upper bound in the theorem follows by consideringT (n, n).

We now see how our new modular composition algorithm yields the fastest univariate factorization
algorithm in small characteristic:

Theorem 5.4.There is an algorithm that returns the irreducible factors of a degreen polynomialf ∈ Fq[X]
and usesO(n1.5+o(1) + n1+o(1) log q) operations, if the characteristic is at mostno(1).

Proof. As noted the first and third phases already fall within this bound. Plugging Corollary4.3into Lemma
5.2 yields an algorithm for Problem4 usingO(n1+o(1)m0.5+o(1)) operations. Theorem5.3 then yields the
claimed result.

5.2 Other problems

Modular composition is a core operation in a variety of algebraic algorithms. We briefly outline improve-
ments our new algorithm implies for a few of these problems (note that this section is not intended to be an
exhaustive survey of such problems), in small characteristic.

• As mentioned in the introduction, Kaltofen & Shoup [KS97] considered the polynomial factorization
problem in small characteristic. They give a new algorithm for equal-degree factorization of a degree
n polynomial overFq with q = pk, that uses

Õn(log k(nCp(k) + Cq(n)M(k) + M(n)M(k)))
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operations inFp. HereCp(·) andCq(·) distinguish between modular compositions over the fieldFp

and the fieldFq. Our algorithm improvesCq(·), and consequently the running time of their algorithm,
whenp = no(1). In fact, in many of the algorithms discussed in this section, there is aO(M(n) log q)
term that arises solely from computingXq modulo some degreen polynomial. One of the insights
of [KS97] is that whenq = pk, and when countingFp operations, this term can be improved. As
above, their approach uses modular composition over bothFp andFq. Our algorithm for modular
composition in small characteristic improves the operation count for theFq-modular compositions,
and consequently realizes improvements in algorithms with theO(M(n) log q) term in their running
time, when one does the accounting overFp, as in [KS97].

• Their are simple algorithms for testing irreducibility [Rab80] that can be implemented to take

O(M(n) log q + C(n)(log n)δ(n))

operations (see Algorithm 14.36 in [vzGG99]), whereδ(n) is the number of distinct prime factors of
n (soδ(n) ≤ log n). We improve the running time in small characteristic, yielding the asymptotically
fastest irreducibility test in this setting.

• Kaltofen & Shoup [KS98] also study several problems related to manipulating normal bases: the prob-
lem of basis selection(given a degreen irreduciblef(X), find a normal element ofFq[X]/f(X));
and the problems of converting to a normal basis representation from a power-basis representation,
and vice-versa. Their algorithms use modular composition as well as fast matrix multiplication. In
small characteristic we obtain improvements to the running times, but stating the precise operation
counts is a bit messy in this case, so the reader is referred to [KS98].

• By the “transposition principle” (see the discussion in, e.g., [KS98]), the complexity of thetrans-
poseof modular composition, “modular power projection2,” has complexity at most a constant factor
larger than the complexity of modular composition (provided the algorithm for modular composition
computes only linear forms in the polynomialf , which ours does). As a result, we obtain improved
algorithms for this transposed problem in small characteristic, which in turn implies faster algorithms
for computing minimal polynomials in these fields, via the algorithms in [Sho99].

6 Open problems

We consider it an appealing and important open problem to give an algorithm for Problem4 using only

O(n1+o(1)mo(1))

operations (under the assumption thatC(n) = O(n1+o(1))). Improvements in small characteristic are inter-
esting, as well as in arbitrary characteristic. In fact, any algorithm with operation countO(n1+o(1)mβ) for
constantβ < 1/2 seems to require a new idea.

It remains open to obtain any improvement over the Brent & Kung and Huang & Pan algorithms for
modular composition in arbitrary characteristic. Perhaps a fruitful route is to focus on the multipoint evalu-
ation problem for multivariate polynomials (which is essentially equivalent via Theorems3.1and3.3), but
seems to have received comparatively less attention.

2Modular power projection is the problem: given a linear formπ : Fn
q → Fq, and degreen − 1 polynomialsg(X), h(X) ∈

Fq[X], computeπ(g(X)i mod h(X)) for i = 0, 1, . . . , n− 1.
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It would also be interesting to adapt our algorithms so that they work in a commutativering of small
characteristic. Currently we require a field (see the discussion following Eq.1).

Finally, the general idea of dealing with multivariate polynomials by lifting to an extension ring and
working with a related univariate polynomial seems to be a very natural one. We wonder if this strategy
(which is successfully implemented here, in small characteristic) could be useful elsewhere.
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