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Abstract

We obtain randomized algorithms for factoring degreanivariate polynomials ovel, that use
O(nt5+e() 4 plte() Jog ¢) field operations, when the characteristic is at m@$t). Whenlog ¢ < n,
this is asymptotically faster than the best previous algorithms (von zur Gathen & Shoup (1992) and
Kaltofen & Shoup (1998)); fotogq > n, it matches the asymptotic running time of the best known
algorithms.

The improvements come from a new algorithm for modular composition of degnegivariate
polynomials, which is the asymptotic bottleneck in fast algorithms for factoring polynomials over finite
fields. The best previous algorithms for modular compositionge“+1)/2) field operations, where
w is the exponent of matrix multiplication (Brent & Kung (1978)), with a slight improvement in the
exponent achieved by employing fast rectangular matrix multiplication (Huang & Pan (1997)).

We show that modular composition and multipoint evaluation of multivariate polynomials are essen-
tially equivalent in the sense that an algorithm for one achieving expeniemplies an algorithm for the
other with exponent + o(1), and vice versa. We then give a new algorithm that requires' o))
field operations when the characteristic is at mo$t), which is optimal up to lower order terms.

Our algorithms do not rely on fast matrix multiplication, in contrast to all previous subquadratic
algorithms for these problems. The main operations are fast univariate polynomial arithmetic, multipoint
evaluation, and interpolation, and consequently the algorithms could be feasible in practice.
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1 Introduction

Polynomial factorization is one of the central problems in computer algebra. Milestones in the development
of polynomial-time algorithms for factoring i, [X] are the algorithms of BerlekamBér7(], Cantor &
ZassenhaugdZ81]], von zur Gathen & ShoupvEGS92 and Kaltofen & ShoupKS9g. See the surveys
[vzGP01Kal03, vzG0g. Presently, there are practical algorithms that factor degreaynomials oveff,
in 5(n2 + nlog q) operations, and sub-quadratic algorithms that rely on fast matrix multiplica<®a¢g].
Efficient algorithms for factoring polynomials over other domains (gZ, algebraic number fields) and
for factoring multivariate polynomials in turn depend on factorind jnX|.

The bottleneck in most modern factoring algorithms (including the asymptotically fastest ones) turns
out to be the computation of the “Frobenius power” polynomial§,, modulo the degree-polynomial
to be factored, for variousbetweenl andn. Wheni = n, a repeated-squaring approach requirésg g
modular multiplications of degreepolynomials. A clever improvement based on the so-called “polynomial
representation of the Frobenius map” (an idea attributed to Kaltofen) was exploited in this context by von
zur Gathen & ShoupvizGS92: first computeX? mod f(X) by repeated squaring, themmposethat
polynomial with itself modulof (X)) to get

(X9 mod f(X) = X9 mod f(X).

Repeating the compositidng n times computes(¢” mod f(X) with only log ¢ modular multiplications
andlog n modular compositions overall. There are sub-quadratic algorithms for modular composition, and
so this approach is asymptotically superior to the straightforward repeated-squaring algorithm. The same
idea can also be applied to other problems that arise in polynomial factorization, like computing the norm
and trace mapsy¢" +¢" '+ +atl gnd X" 4 X" + XY + X, with similar speedups.

Thus the modular composition problem emerges as a crucial component of the fastest factoring al-
gorithms (as well as other problems, such as irreducibility testing and constructing irreducible polyno-
mials [Sho94, and manipulating normal bases of finite field6S9€). Indeed, if we could compute
f(g(X)) mod h(X) for degreen polynomialsf, g, h € F,[X] in n® operations, then there are algorithms
for factoring degree polynomial oveif,, usingO (n®+0-5+o(1) 1 n1+() Jog ) operations. For comparison,
the currently fastest algorithms take eiti@@m? + n log q) [vzZGS92 or O(n'8' log ) [KS9 operations
(also, see the more precise accounting and detailed comparisons in FiguteSOEl) [

1.1 Modular composition of polynomials

Usmg Horner’s rule and fast modular polynomial arithmetic, a modular composition can be computed in
O( 2) operations; one could hope f@((n) operations. The only asymptotic improvement over the straight-
forward algorithm is the algorithm of Brent & Kun@K78], with a slight improvement by Huang & Pan
[HP94. The first take®) (n'® + n(“+1)/2) operations, where is the exponent of square matrix multiplica-
tion (the best upper bound is currently< 2.376 [CW9(]), and the second také¥(n !> +n2/2) operations
wherews, is the exponent of x n by n x n? matrix multiplication, for which Huang & Pan proved an upper
bound slightly better thap.376 + 1. Devising an improved algorithm for modular composition has been
mentioned as an important open problem$hd94, [KS9§, and ¥zGG99.

In this paper, we consider a slight generalization of modular composition, in which we are given a
multivariate polynomialf (X1, Xo, ..., Xm) € Fy[X1, Xo, ..., X;»] andm univariate polynomials

g1(X),...,gm(X) € Fy[X]



together with the modulus(X) € F,[X]. We wish to compute

f(gl(X)’ T agm(X)) mod h(X)

The relevant case will always have the individual degreeslmbunded by/, and theg; and’ polynomials

of degree at moslV = d™. Here the straightforward algorithm tak€$N?) operations, and we note that

the Brent & Kung “baby-steps/giant-steps” approach generalizes to this case, giving an algorithm that takes
O(N'/5 4 N«2/2) operations.

Our insight is that this modular composition problem andrthétipoint evaluation problem for multi-
variate polynomialsare essentially equivalent in the sense that an algorithm for one achieving exponent
implies an algorithm for the other with exponent- o(1), and vice versa. Recall that one can evaluate a
degreen univariatepolynomial atn evaluations points i (n log® n) operations, for an amortized cost of
only O(log? n) operations per evaluation. However, nothing similar is known for multivariate polynomials.
The only improvement over the straightforward algorithm is liysken & ZieglerINZ04], who show how
to evaluate bivariate polynomial with individual degrefeat d° points inO(d~2/2*1) operations; their algo-
rithm generalizes to the:-variate case where it také¥ d(<2/2(m=1)+1) gperations. Unfortunately, this is
not enough to yield an improved algorithm for modular composition via the aforementioned equivalence.

As one can see from the proliferation©® andws’s in the preceding discussion, all of the non-trivial
algorithms for modular composition and multipoint evaluation of multivariate polynomials rely on fast ma-
trix multiplication. As a result, they are currently unlikely to be practiGaid the same can be said for
the asymptotically fastest algorithms for polynomial factorization that use them as subroutines. In addition,
notice that the Brent & Kung algorithm for modular composition cannot achieve an exponent better than
1.5, even if we had optimal fast matrix multiplication algorithms.

1.2 A new algorithm in small characteristic

Our main technical contribution is a completely new algorithm for multipoint evaluation of multivariate
polynomials, and using the above equivalence, for modular compostiamall characteristic Our al-
gorithm uses an asymptotically optimal number of operations (up to lower order terms), and in partic-
ular, solves the modular composition problem relevant for degrpelynomial factorization oveF, in
O(n1+o(1)) operations, when the characteristic is at mo¥t). We immediately obtain polynomial fac-
torization algorithms for small characteristic, with running tifén!->+°(1)  p1+e() Jog q), and similar
improvements to the fastest known algorithms for a number of other problems (see Sgctipplications
aside, our results represent the first new algorithmic ideas for modular composition since the algorithm of
Brent & Kung in 1978 (as the Huang & Pan improvement is really an improved upper bound on the matrix
multiplication step; the actual algorithm remains the same).

Another important feature of our algorithm is that it doest rely on fast matrix multiplication. The
main operations are standard fast univariate polynomial arithmetic operations, and multipoint evaluation
and interpolation of univariate polynomials. All of these problem have algorithms that are asymptotically
optimal up to lower order terms, and that are very reasonable in practice. In all of the settings we have
mentioned where modular composition is the crucial subroutine, the other parts of the algorithms are again
these standard fast and practical operations, so the algorithms derived from our new algorithm could be
feasible in practice.

'However, real implementations successfully use classical matrix multiplication, or even Strassen’s algorithm, and find that even
then the dominant operations on instances arising in practice are operations on polynomials, as opposed to matrix multiplication
[ABSOQE, p. 25-26].



1.3 Techniques

The reductions between modular composition and multipoint evaluation of multivariate polynomials are
not difficult, even though it appears that at least one direction of this equivalence — the one needed for
our main result — was not known before (the other direction, reducing multipoint evaluation of multivariate
polynomials to modular composition, is just beneath the surface of the resUNZ 04]).

Our algorithm for multipoint evaluation of multivariate polynomials is more involved (and we are only
able to make it work in small characteristic), although it utilizes a very natural idea. The idea is to reduce
to multipoint evaluation of ainivariatepolynomialover an extension fieldsuppose we have a multivariate
polynomial f (X, X1, ..., X;n—1) with individual degreed—1, with coefficients irflf,. A related univariate
polynomial /* is obtained by thé&ronecker substitutian

F(2)=f(2,2% 2%, ..., 27" 7).

A tempting approach is to describe some (efficiently computable) mapping from evaluation oints
(a1, ,aq) € F* intended forf to evaluation points in an extension field, intended fgr, with the
property thatf («) can be easily recovered frojfif (@). Then we could perform multipoint evaluation pf
by mapping all of the evaluation points to their counterparts in the extension field, and then invoking a fast
univariatemultipoint evaluation algorithm to evaluafé at these points.

We are able to make something very close to this strategy work. To do so we need to (1)/ddfine
raising to successive powers of a parameater dm? instead of/, (2) carefully construct the extension field,
and (3) arrange fol to be a power of the characteristic (this is why we need small characteristic) so that we
can exploit properties of the Frobenius endomorphism.

A technical requirement of our algorithm is that it needs an element of multiplicative brddrin IF,,.
If F, does not contain the subfield,, such an element does not even exist. As a result, we need to first
extendF, to guarantee such an element. This complication is not needed in settings where gnh erdgr-
element is already available.

1.4 Related work

The special case of modular composition in whigh= 1 and the modulu&(X) is X¢ has an algorithm
attributed to Brent & Kung that use3(n'-3) operations (see Exercise 12.4 izGG99), and a different
algorithm by BernsteinBer9§ that is faster in small characteristic. This special case is not useful for
polynomial factoring (and other applications), because in these applicatidhsends up being the input
polynomial, and modular composition is used as a means of determining its (initially unknown) structure.
The problem of factoring a degree polynomial in small characteristic has been considered before
by Kaltofen & ShoupKS97]. Their algorithm is advantageous when= p” is quite large (i.e., when
k ~ n!te, for constanty > 0). Its running time is expressed in terms of the running time for modular
composition, and so we obtain improvements there as well; see Séction
The inspiration for our new algorithm for multivariate multipoint evaluation is two recent works in
coding theory: a new variant of Reed-Solomon codes discovered by Parvaresh & Paf@§] pnd a
particular instantiation of these codes used by Guruswami & Ri@lRDf]. The analysis of the decoding
algorithm in [PVOE] uses the Kronecker substitution to obtain a univariate polynomial from a multivariate
polynomial that carries information about the received word. This univariate polynomial is then viewed over
an extension field, just as in this work. [&RO0€], they utilize a particular extension field with the property
that raising a polynomial (that is a canonical representative of a residue class in the extension field) to a
Frobenius power is the same as shifting the polynomial by a generator of the field. We use the same trick to
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“store” the coordinates of an intended evaluation point in a single extension ring element, and then “access”
them by raising to successive Frobenius powers.

1.5 Outline

In Sectior2 we give some preliminary definitions and conventions, and formally define the modular compo-
sition and multipoint evaluation problem for multivariate polynomials. In Se@iware give the reductions
showing that these two problems are essentially equivalent. S@ttiontains the main technical result —

the new algorithm for multipoint evaluation of multivariate polynomials in small characteristic. S&ction
describes the resulting improvements in polynomial factorization algorithms, and some other applications.
In this section we also reformulate the algorithm KiSRE in order to highlight a self-contained open
problem, whose resolution would lead to@(1n1+0(1) log q) polynomial factorization algorithm.

2 Preliminaries

We have already discussed the Kronecker substitution, which can be viewed as a transformation that de-
creases the number of variables at the expense of increasing the degree. We now define a map that is (in a
sense made precise following the definition) the “inverse” of the Kronecker substitution — it increases the
number of variables while decreasing the degree:

Definition 2.1. The map)y, o fromF,[Xo, X1, ..., Xpm-1] t0F[Yo,0,. .., Ym—1,-1] is defined as follows.
GivenX?, write a in baseh: a = 3 .-, a;h’ and define the monomial

MCL()/Ov ceey }/f—l) déf YOaOYIal T }/v@afil'

The mapyy, o sendsX to M, (Y, ..., Yi¢—1) and extends multilinearly t8,[Xo, X1, ..., Xm—1].

Note thaty, ¢( f) can be computed in linear time in the sizefofassumingf is presented explicitly by
its coefficients. Also note that;, , is injective on the set of polynomials with individual degrees at most
h* — 1. For such a polynomiaf, if g = v, +(f), then

0 1 -1 0 1 £—1
f(Xoy oy Xon) = g(X0 X0, xE - xh X X)),
In this senseyy, ¢ is the inverse of the Kronecker substitution.
The problems we are interested in are formally defined below:
Problem 1 (MULTIVARIATE MULTIPOINT EVALUATION ). Given f(Xo,..., X;—1) in Fy[Xo, ..., Xpm—1]
with individual degrees at most— 1, and evaluation points, . .., agn 1 in Fy*, output f(«;) for i =

0,1,2,...,d™ — 1.

Defining N 4t gm, the straightforward algorithm také¥ N?) field operations. One may hope for an
algorithm that uses onl@(NV) field operations.

Problem 2 (MODULAR COMPOSITION). Given f(Xo, ..., X;,—1) in Fy[Xo, ..., Xmn—1] with individual
degrees at most — 1, and polynomialgjo(X), ..., gm—1(X) and h(X), all in F,[X] and with degree at
mostd™ — 1, outputf(go(X), ..., gm-1(X)) mod h(X).



Operation Input Output Operations
Multiplication | f(X), g(X) of degreen f(X)-g(X) M(n) = O(nlogn)
Remainder | f(X),g(X) of degreeD(n) f(X) mod g(X O(M(n))
Evaluation f(X) of degreen; aq,--- ,ap | flag),i=1,. O(M(n)logn)
Interpolation | ag, -, o, Bo, -, Bn f(X) of degreez flai) =pi | O(M(n)logn)

Figure 1:Operation counts for standard operations on univariate polynomials over a commutative ring. For
interpolation, we additionally require that — «; is a unit, fori # j.

We note that the term “modular composition” more commonly refers to the special case of this problem

in whichm = 1. Again definingN def d™, the straightforward algorithm také¥ N?2) field operations.
One may hope for an algorithm that uses ofli{/V') field operations.

For both problems, we sometimes refer to the problem “with paramétetsif we need to specify the
individual degrees and number of variables explicitly.

Figurel gives the running time for standard operations on univariate polynomials that we use in the
remainder of the paper. See, e.§zGG99. In this paper polynomials are always represented explicitly
by a list of their coefficients. We us¥ (n) throughout the paper as the number of operations sufficient to
multiply two univariate polynomials of degree(and we assumé/ (O(n)) = O(M (n))). Thus, when we
construct an extension field (or ring) by adjoining an indetermidatand mod-ing out by a polynomial
of degreen, arithmetic operations in the extension field (or ring) t&ke\/(n)) operations in the base
field, since they entail the addition or multiplication of degree 1 polynomials followed by a remainder
operation involving degre@(n) polynomials.

We use the “soft-oh” notatiod to suppress polylogarithmic factors. When the argument involves
several variables, we explicitly record the quantity whose polylog factors we are suppressing by putting it in
the subscript, like thisO,, (nm?).

3 The reductions

In this section we give the reductions showing (essentially)Miatr IVARIATE MULTIPOINT EVALUATION
andMODULAR COMPOSITIONare equivalent. We first redusg>DULAR COMPOSITIONtO MULTIVARIATE
MULTIPOINT EVALUATION (this is the direction that we use in order to give our improved algorithm for
MODULAR COMPOSITION).

Theorem 3.1. Given f(Xo, ..., X;m—1) In Fy[Xo, ..., X;n—1] with individual degrees at most— 1, and
polynomialsgy(X), ..., gm—1(X) and h(X), all in F,[X] and with degree at most™ — 1, there is, for
everyd, < d, an algorithm that outputg (go(X), ..., gm—1(X)) mod A(X) in

Oam ((d™ + T(dg, tm))do)

field operations, wheré = [log,, d|, and7'(dy, mo) is the number of field operations to SOMELTIVARI -
ATE MULTIPOINT EVALUATION with parametersiy, my.

Proof. SetN = d". We perform the following steps:
1. Computef’ = g4, ¢(f).

2. Computeg; ;(X) < ¢;(X)% mod h(X) forall i, andj = 0,1,...,0— 1.
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3. SetR = Nmldy, and seleciR distinct field elementsgs, ..., r_1 (if ¢ < R, then we need to
work in an extension field containing at ledgelements, but this only affects the operation count by

logarithmic factors). Compute; ; » of gi,;(B) for all 4, 7, k using fast multipoint evaluation.
4. Computef’(c,0k, - - ¥m—1,4-1%) fork=0,...,R—1.

5. Interpolate to recovef’(go,0(X), ..., gm—1,-1(X)) (wWhich is a univariate polynomial of degree less
than R) from these evaluations. Output the result moduld’).

Correctness follows from the observation that
F(900(X), - gm—1,-1(X)) = f(90(X),...,gm-1(X)) (mod h(X)).

The first step take®)(V) time. For eacty;, the second step takés(M (N) log(d%)) operations to

computegflé by repeated squaring, and this happensjfer 0,1,2,...,¢ — 1, giving an upper bound of at
mostO (M (N)¢? log dy) operations to compute the required powers. This happens forgeémha total of
O(M(N)¢?1og dym) operations.

The third step take® (M (R)(log R)¢m) operations using fast univariate polynomial evaluation. The
fourth step invokes fast multivariate polynomial evaluation at a codt(df,, m¢)mtd, operations (each
invocation of fast multivariate polynomial evaluation can comptjté > d™ = N evaluations, and we need
to repeat thisn/d, times to obtain allR evaluations). The final step requir€sM (R) log R) operations.
Note that both of théog R terms can be removed if the field supports an FFT anddteeare chosen
accordingly. O

Corollary 3.2. Fix parametersi, m. For everys > 0, if MULTIVARIATE MULTIPOINT EVALUATION with
parametersiy = d° andmg = m/e can be solved ird)dgno((dg’“’)a) operations for some constant> 1,

thenMODULAR COMPOSITIONWith parametersl, i can be solved iy ((d™)**¢) operations.

Now, we reduc@ULTIVARIATE MULTIPOINT EVALUATION tOoMODULAR COMPOSITION, which demon-
strates the equivalence of the two problems.

Theorem 3.3. Given f(Xo, ..., Xpm—1) In Fy[Xo, ..., X,,—1] with individual degrees at most— 1, and
evaluation pointsy, . .., agn 1 in F?, there is an algorithm that output§(«;) for i = 0,1,...,d™ — 1,
in

Ogm (d™ 4+ T(d,m))

field operations, wher&'(d, m) is the number of field operations to solM®DULAR COMPOSITION with
parametersi, m.
Proof. SetN = d™. We perform the following steps:

1. Select distinct field elementsy, ..., Gv_1 (if ¢ < N, then we need to work in an extension field
containing at leastv elements, but this only affects the operation count by logarithmic factors). Find
g; € F4[X] for which g;(8x) = (o), for all 4, k using fast univariate polynomial interpolation.

2. Produce the univariate polynomialX) < [T, (X — 3,), and then computg(go(X) . . . , gm—1(X))
moduloh(X).

3. Evaluate this univariate polynomial &, ..., Gy_1 using fast polynomial evaluation, and output
these evaluations.



Correctness follows from the observation that

F(g1(X), .. gm(X))(Br) = flax)

and the same holds when taking the left-hand-side polynomial mad{9 sinceh vanishes on the evalu-
ation pointsgGy.

The first step take® (M (N) log V) operations for each interpolation, and theresarsuch interpola-
tions. The second step requir@$)M (N) log N) time to computei(X ), and then it invokes fast modular
composition at a cost df (d, m) operations. The final step requir€@$M (N)) operations. Note that both
of thelog N terms can be removed if the field supports an FFT angithare chosen accordingly. [

Corollary 3.4. Fix parametersi, m. If MODULAR COMPOSITIONwith parametersl andm can be solved
in Ogm ((d™)*) operations for some constant> 1, thenMULTIVARIATE MULTIPOINT EVALUATION  with
parametersi, m can be solved i~ ((d™)*) operations.

4  An optimal algorithm in small characteristic

In this section we describe our main algorithm — fQWLTIVARIATE MULTIPOINT EVALUATION — which
leads to a new algorithm fanODULAR COMPOSITIONVia Theoren3.1. These algorithms work in small
characteristic, and give operation counts that are optimal up to lower order terms.

As described in Sectioh.3, our algorithm operates by reducing multipoint evaluation of the tangi-
variatepolynomial f to multipoint evaluation of a relatathivariatepolynomial f* obtained by substituting
h-th powers of a single variable for the different variables off (the “Kronecker substitution”). The given
m-variate polynomialf will have coefficients in a fieldf, and the parametérwill be a power of the charac-
teristic. We will actually viewf as a polynomial with coefficients in an extensiang R = F,[W]/P(W)
for some polynomialP (not necessarily irreducible ovél,). The reason for this complication is that the
algorithm needs a special elemerthat satisfies two properties:

1. the multiplicative order ofjish — 1, and
2. nt — 1/ isinvertible for alli, j € {0,1,2,...,m — 1}, withi # ;.

We will constructR so that we can easily get our hands on sughldan element of ordek — 1 is already
available inF,, then it automatically satisfies the second property beciygea field, and there is no need
to pass to the extension ririg

We now describe in detail how to construct the extension Bn@nd findrn. Fix parameterd andm,
and a fieldF, with characteristip. Leth = p¢ be the smallest integer power pthat is larger thamn?d.
Construct the ring? = F,[W]/P(W), whereP (V) is a degree: polynomial with coefficients iff),, that
is irreducible oveif,. Notice thatl,[W]/P(W) C R and also thaF, C R, and that these embeddings
are easy to compute. Choogédo be a primitive element of the fiell,[W]/P(W). Thisn clearly has
multiplicative orderh — 1, and because the elementsfor i = 0,1,...,m — 1 are distinct elements of a
field, the second property above is also satisfied. Figutepicts the construction dt.

Given them-variate polynomialf over 2, we want to be able to evaluate it at many point8jhC R™.
Our strategy will be to lift the evaluation points to elements of an extensionjngvaluate a related
univariate polynomiaff* at those points, and then project back to an elemeht &/e choose the rin§ to

be the extension rin[Z]/E(Z), whereE(Z) def gh-1 _ 7. Refer to Figuré.



S = R[Z]/E(%)
\
Fo[W]/P(W)

/\
\/

W]/ P(W)

Figure 2:Containment diagram. Our input polynomial will be oW, but we view it as a polynomial over
the extension rind?. We will end up evaluating a related polynomial at elements of the further extefision

Let o be (a power of) the Frobenius endomorphism fréo R, given byz — z". The “lift” map
¢ : Fy' — S'is defined as follows: given = (ay,...,am-1) € Fy' € R™, ¢(a) is the (residue class
whose canonical representative is the) degree 1 polynomialg,(Z) € R[Z] which has

go (') = 07 (ay) fori =0,1,2...,m — 1. 1)

Note thatg,, is well defined because although is only anendomorphisnof R (under which certain ele-
ments may have no preimage), we only demand preimages of eleméntsof?, ando® is anautomor-
phismwhen restricted td,,.

The “project” mapr : S — R that recovers the evaluation of the original multivariate polynorjiial
from an evaluation of the univariate polynomiél is defined as follows: given an element $fwhose
canonical representative is the degteé — 1 polynomialg(Z) € R[Z], w(g) is the evaluatio(1).

Our main lemma shows how to recover the evaluation ofrtheariate polynomialf at a pointa €
Fy' € R™, from the evaluation of the univariate polynomjdl at an element of the extension ritg

Lemma 4.1. Let f(Xo, X1, ..., X,,—1) be a polynomial if¥,[ Xy, X1, ..., X,,—1] with individual degrees
d — 1, and supposé&, has characteristip. Defineh, R, E, S, ¢, m as above, and define the univariate
polynomialf*(Y') € S[Y] by:

PO E Pyt Ly,
For everya € F;' C R™, the following identity holdsx(f*(¢(a))) = f(«).

Proof. Fix ¢(«), which is an element oR[Z]/E(Z). Letg,(Z) € R[Z] be its (degreen — 1) canonical
representative, and denote dY(g,, ) the polynomial obtained by applying to the coefficients of,. Then
we have:

ga (2" = o' (ga)(2")



where the last equality used the fact thaias orderh — 1 and so it is fixed undes. For convenience, let

us denote b)ggf)(Z) the polynomial(g.(Z))"" mod E(Z). A crucial point that we will use shortly is that

deg(gfj)) = deg(gn). The above equation implies that

98 (1) = 0'(ga) (') = 0" (90 (671)) = 0" (90 (') = ' (0" 01s) = ax;, @

where the third equality again used the fact thét fixed undetr, and the fourth equality used Ed.)(
When we evaluate the polynomigt at the element of whose canonical representativegiswe get
the element of whose canonical representative is:

F(2),98(2),.... 90"~ V(2)) mod E(2).

Now f is a polynomial with total degree at mast, and eacrg&i) is a polynomial of degree at most — 1.
Therefore, sincé’ has degree at leagtn? > dm(m — 1), this polynomial is just

F@(2),90(2),....98"H(2)),

and evaluating at gives (using Eq.2)):

f(gg])(l)a g((yl)(l)7 s 7g&m_1)(1)) = f(a0> A, ... 705m71)
as claimed. n

The next theorem applies the strategy we have developed above MUtT@/ARIATE MULTIPOINT
EVALUATION problem. It achieves an optimal operation count (up to lower order terms) when the charac-
teristicp = d°Y), and whenm is not too small and not too large (to be precise, we ne@d < m <
d°™ /1og m). When used via Theore1 for the case of main interest (modular composition of univariate
polynomials) we are able to choose the parameteasdm of the invokedMULTIVARIATE MULTIPOINT
EVALUATION instance to satisfy these constraints.

Theorem 4.2. Given f(Xo, ..., Xpm—1) in Fy[Xo, ..., X,,—1] with individual degrees at most— 1, and
evaluation pointsx, . . ., agm_1 INF?, there is an algorithm that outpu«;) fori = 0,1,2,...,d™ -1,
in

Ogr (d™ (m*p)™poly(d, p))
field operations.
Proof. SetN = d". We perform the following steps:

1. Chooseh = p° to be the smallest power pfthat is at leastn?d. Find a degree irreducible polyno-
mial P(W) overF,, and a primitive element of IF,,[W]/P(W). Define the ringk = F,[W]/P(W),
and the ringS = R[Z]/E(Z), whereE(Z) = Z"~! — 1, as above.

2. Fori =0,1,2,..., N—1, compute the canonical representativeaf;): the degreen—1 polynomial
9a;(Z) € R[Z].

3. Produce the univariate polynomigt (V) = f(Y, Y™, Y"* . Y" ") overS.

4. Evaluatef* at the pointgj,, (Z), and for each evaluation apptyto recoverf(«;).
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Step 1 requires constructing the fidig and finding a primitive element. This can be done by brute
force in time polyh), although much better algorithms are available.

Each polynomiab,, computed in Step 2 requires the following operations (recalllfdfirst, we need
to computer 7 (a;); for j = 0,1,...,m — 1. A single field operation gives L($)zi);1, and then using re-
peated squaring we can apply using at mosO(log(h™)) F,-operations. The overall cost of doing this for
all i is O(Nm?1log h). Next, we performV polynomial interpolations iz, each costing) (M (m) log m)
operations ink, or O(M (m)logmM c)) operations inf,. Note that for every two interpolation points
n',n’, the difference;’ — n’ is a unitinR (sincen is an element of,(W)/P(W) which is a field). This is
required for the interpolation step. The total cost for Step 2 is

O(N(m?logh + M(m)logmM/(c)))

[F,-operations.

Step 4 is a univariate multiple evaluation problem. We havelements ofS, and a univariate poly-
nomial /* over S, of degree at mosimh™ (and this quantity is greater tha). Using fast multipoint
evaluation then, this step requir@$) (dmh'™ ) log(dmh™)) operations inS, or

O(M (dmh™) log(dmh™)M (h)M(c))

F,-operations. Recalling thdt < dm?p, and that polym) factors are polylogarithmic in the main size
measurel™ (and so are suppressed by the soft-oh notation) the claimed bound follows. O

Corollary 4.3. TheMODULAR COMPOSITION problem with parameterg, 1 can be solved in
O(d" o)
operations, provided the characterisgic= d°(V).

Proof. Itis sufficient to be able to choose, for any 0, the parametef, < d° so thatm, def (log d)/(log do)
satisfies:m?)m0 < df andp™ < d°. We then apply Theorei8.1. For sufficiently largel (and using the
assumption that < ¢°(Y)) these demands are met by choosigg= max{(log d)?/¢, p'/}. O

5 Applications

In this section we describe some improved algorithms that arise as a consequence of our new algorithm for
modular composition. Of primary interest is univariate polynomial factorization, so we begin with that. In
this section, we le€’(n) denote the number of operations sufficient to perform a modular composition with
parameters, 1. As shown in the previous section, in small characteristic, we now®éxg = O(n'*+o(1),

5.1 Polynomial factorization

There are three stages in variants of the Cantor-Zassenhaus algorithm for factoring andegjregiate
polynomial overF,: square-free factorization, distinct-degree factorization, and equal-degree factorization
(see ¥zGG9g for a thorough presentation).

The first stage, square-free factorization, can be performédm%*f’(l) + nlog ¢) operations, using an
algorithm attributed byKS9¢ to Yun. The second stage, distinct-degree factorization, has a deterministic
algorithm due to Kaltofen & ShouKIS9¢ that takes

O(C(n)n®>T°M) 4+ M(n)logq).
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The third stage, equal-degree factorization, has a randomized algorithm due to von zur Gathen & Shoup
[vzGS93] that takes an expected numbe()M (n) logn + C(n)logn + M(n)log q) operations.
Notice that with our improvements (i.eG(n) = O(n'*°(1)) in small characteristic, the first and
third stages us®(n'*t°) 4 n!t+o(]og q) operations and the second stage improve®ta'°+o() +
n't°Mlogq). The second stage remains the barrier to an “exponent 1” algorithm, so we describe the
algorithm of Kaltofen & Shoup in enough detail here (and in a manner differing somewhat from the original)
to highlight a self-contained open problem whose resolution would improve its efficiem@grib () +
n'to( 1og ¢) operations. We will also see the critical role played by modular composition in this algorithm.
The problem we are trying to solve is:

Problem 3 (DISTINCT-DEGREE FACTORIZATION. Given a monic, squarefree polynomjak F,[X] of de-
green, outputfi, fa, ..., fn € F,[X] wheref; is either 1 or the product of degréérreducible polynomials,

andfifa--- fn=f.

The crucial (standard) algebraic fact used in these algorithms is:

Proposition 5.1. The polynomials; (X)) & (X7 — X) e [F,[X] is the product of all monic irreducible

polynomials ovelr, whose degree divides

Therefore, computingced(s;(X), f(X)) splits off those irreducible factors gfwhose degrees divide
i. In preparing the polynomiad; (X) for this purpose, we are free to compute it modgi{d).

The main step in the algorithm for distinct-degree factorization will be to split the input polynomial
f into two non-constant polynomial§ fa - - - fr, and f 41 fim+2 -« - fn for somem € {1,2,...,n}. One
could do this by computinged(s;(X), f(X)) fori = 1,2,...,n and stopping at the first non-trivial gcd,
but in the worst case, a non-trivial split will not be found uritike n/2 which spoils any chance of a
subquadratic algorithm. Instead, we will perform a “binary search:” we beginwith n/2, and if this
does not yield a non-trivial split, we proceed to eitmer= n/4 or m = 3n/4 depending on whether
fifa++ fu2 €qualsf or 1, and so on.

For this purpose we need to be able to solve the following sub-problem, which gives us the polynomials
needed for the “splits” in the above binary-search strategy (and note that for our intended application we do
not care if thes;(X) factors are repeated, which explains th's below):

Problem 4. Given a monic, squarefree polynomigle F,[X] of degreen, a positive integern, and the
polynomialX? mod f(X), compute the polynomial

s1(X)M - 53(X)™ oo s (X) mod f(X) = [[(X7 — X)* mod f(X)
i=1

for any positive integers;.

Now, it is easy to see that this problem can be solve@{(0C(n) + M (n))m) operations: withmn
successive modular compositions witif, we can obtainX?' mod f(X) fori = 1,2,...,m, and thenn
further polynomial additions and multiplications modisuffice to computg [, (X% — X) mod f(X).

Kaltofen & Shoup describe a clever algorithm that reduces the exponentfoom 1 to 0.5:

Lemma 5.2 (implicitin [KS98]). Problem4 can be solved i®(C(n)\/m+M (n)y/mlog /m) operations.
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Proof. First, computeX? fori = 0,1,2,...,/m — 1; and thenX®*" for j = 1,2, ..., /m, all modulo

f(X). This requiregD(C(n)/m) operations (since we are givéf! mod f(X) to begin with). Form the
degree,/m polynomial P(Z) over the ringF,[X]/ f(X) defined as:

vm—1 _
P(z)E T] (- X7)mod f(X).
i=0
This requiresO(y/mlog v/m) operations in the ring, o® (M (n)\/mlog /m) operations irF,. Finally,
evaluateP(Z) at the elementst®¥™ mod f(X) for ;7 = 1,2,...,y/m, and take the product of these
evaluations modulg (X)), yielding:

vm-1 _
[T X" — x) mod f(X)
L1l

3

i
.
o

which equals:
—1

(XY™~ X) mod f(X),

3
3

Il
=)

7

.
Il
—

which is a polynomial of the desired form (theare various powers af). Using fast multipoint evaluation
this final step entail® (M (/m) log /m) operations in the ring, a® (M (n) M (1/m) log \/m) operations
inIF,. O

We consider it a very interesting open problem to devise an algorithm for Prabbbiat takes only
O(n'*t°Wme()) operations (under the assumption thdi) = O(n' o)),

Using Problend as a subroutine, it is not hard to describe a fast algorithnDfemINCT-DEGREE
FACTORIZATION:

Theorem 5.3. If Problem4 can be solved ir@(namﬁ) operations (withre > 1), then there is an algorithm
for DISTINCT-DEGREE FACTORIZATIONthat usesD(n®*# 4+ M(n)log ¢) operations.

Proof. We first prepare the polynomial? mod f(X) needed as input to Probletnat a cost oD (M (n) log q)
operations.

Now, in addition to the input of a squarefrgéX) € F,[X] of degreen, we assume we are given a
range within which we know all of the degrees of the irreducible factogslia. Initially, this is justl .. . n.

If the range consists of only a single integer, then we can oytpit) itself and halt. Otherwise, set
m to the midpoint of this range, and compute a polynomial as specified in Pr@hleafi this polynomial
S(X). Computeged(S(X), f(X)). If this ged is f(X), then we reduce the range to the first half and
recurse; if this gcd is a constant polynomial, then we reduce the range to the second half and recurse; if this
gcd is a non-trivial polynomiafjqwer(X), then we computéuppef X) = f(X)/ fiower(X), and these
two polynomials represent a successful “split.” Notice that( figwer) + deg(fuppen = deg(f). We now
recurse oryjower (With the range reduced to the first half) afigpper(with the range reduced to the second
half).

We now analyze the operation count of this recursive algorithm when factoring a degrpet poly-
nomial. Notice that we never set larger tham throughout the entire algorithm, so we will pessimistically
assume it is always to simplify the analysis.
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Let T'(n/, r) denote the operation count of the procedure, when called with a polynomial of dégree
and range of size. If » = 1, the cost is zero. Otherwise, the procedure solves Profikgina cost of at most
cin’*n?, and the other operations before the recursive call (a gcd, and possibly a polynomial division) cost
at mostean’ log? n’ for some constanis,, cs. Sete = ¢; + ca.

We will prove that for allT’(n/, r) with n’,r < n,

T(n',r) < en’*log? n'n’logr,
by induction onr. The base case, when= 1, is clear. In general we have that

{ T(n',r/2)

/ < I ﬁ ! 2/
T(n',r) < cn'*n” + can’log”n’ + max T(i,r/2) +T(n' —i,r/2)

1<i<n/
where the two lines in the inequality correspond to the cases that result in recursive calls. In the first case
we have:
en’nP + eyn’log?n/ + T(n',1/2)

< ern'*nP + con’log? n’ + en/* log? n'nP(logr — 1) < en*log? n/n’ log r
as required. In the second case, we have:

en'nP + con’log?n/ + T(i,r/2) + T(n' —i,r/2)
< en'nP + con’log? n/ + ¢[i®log? i + (n' — i)* log?(n' — i)]n’ (logr — 1)

< en*nP + con’log? n' + c[n'*log? n’]nﬁ(logr —1) < enlog? n'n?logr
as required. The claimed upper bound in the theorem follows by considEfing: ). O

We now see how our new modular composition algorithm yields the fastest univariate factorization
algorithm in small characteristic:

Theorem 5.4. There is an algorithm that returns the irreducible factors of a degr@elynomialf € F,[X]
and uses)(n!5te() 4 plte) Jog ¢) operations, if the characteristic is at mast(!).

Proof. As noted the first and third phases already fall within this bound. Plugging Cordlaingto Lemma
5.2 yields an algorithm for Proble using O (n!'to(1)m0-5+2(1)) gperations. Theoref.3 then yields the
claimed result. O

5.2 Other problems

Modular composition is a core operation in a variety of algebraic algorithms. We briefly outline improve-
ments our new algorithm implies for a few of these problems (note that this section is not intended to be an
exhaustive survey of such problems), in small characteristic.

e As mentioned in the introduction, Kaltofen & Shot397] considered the polynomial factorization
problem in small characteristic. They give a new algorithm for equal-degree factorization of a degree
n polynomial overF, with ¢ = p*, that uses

On(log k(nCp(k) + Cq(n)M (k) + M (n) M (F)))
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operations iff,. HereC,(-) andC(-) distinguish between modular compositions over the figJd
and the fieldf,. Our algorithm improve€’,(-), and consequently the running time of their algorithm,
whenp = n°(). In fact, in many of the algorithms discussed in this section, ther&©igld(n) log q)
term that arises solely from computidg? modulo some degree polynomial. One of the insights
of [KS97] is that wheng = p*, and when countind, operations, this term can be improved. As
above, their approach uses modular composition over BpthndF,. Our algorithm for modular
composition in small characteristic improves the operation count folffh@odular compositions,
and consequently realizes improvements in algorithms witt{ye (n) log ¢) term in their running
time, when one does the accounting o¥gras in KS97).

e Their are simple algorithms for testing irreducibiliiR@b8() that can be implemented to take
O(M(n)logq+ C(n)(logn)(n))

operations (see Algorithm 14.36 m2GG99), whered(n) is the number of distinct prime factors of
n (sod(n) < logn). We improve the running time in small characteristic, yielding the asymptotically
fastest irreducibility test in this setting.

¢ Kaltofen & ShouplKS9§ also study several problems related to manipulating normal bases: the prob-
lem of basis selectiorfgiven a degree: irreducible f(X), find a normal element df ,[ X/ f(X));
and the problems of converting to a normal basis representation from a power-basis representation,
and vice-versa. Their algorithms use modular composition as well as fast matrix multiplication. In
small characteristic we obtain improvements to the running times, but stating the precise operation
counts is a bit messy in this case, so the reader is referré&BS@€].

e By the “transposition principle” (see the discussion in, ell§S9€]), the complexity of thetrans-
poseof modular composition, “modular power projectigrhas complexity at most a constant factor
larger than the complexity of modular composition (provided the algorithm for modular composition
computes only linear forms in the polynomigl which ours does). As a result, we obtain improved
algorithms for this transposed problem in small characteristic, which in turn implies faster algorithms
for computing minimal polynomials in these fields, via the algorithm:Simd99.

6 Open problems
We consider it an appealing and important open problem to give an algorithm for Prdbisimg only
O(nlJro(l)mo(l))

operations (under the assumption thdi) = O(n!T°(1)). Improvements in small characteristic are inter-
esting, as well as in arbitrary characteristic. In fact, any algorithm with operation cwrit*()m?) for
constant? < 1/2 seems to require a new idea.

It remains open to obtain any improvement over the Brent & Kung and Huang & Pan algorithms for
modular composition in arbitrary characteristic. Perhaps a fruitful route is to focus on the multipoint evalu-
ation problem for multivariate polynomials (which is essentially equivalent via TheoBet@sd3.3), but
seems to have received comparatively less attention.

2Modular power projection is the problem: given a linear form F; — Ty, and degree: — 1 polynomialsg(X), h(X) €
Fq[X], computer(g(X)* mod h(X))fori=0,1,...,n — 1.
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It would also be interesting to adapt our algorithms so that they work in a commutiaigvef small
characteristic. Currently we require a field (see the discussion followin@d)Eq.

Finally, the general idea of dealing with multivariate polynomials by lifting to an extension ring and
working with a related univariate polynomial seems to be a very natural one. We wonder if this strategy
(which is successfully implemented here, in small characteristic) could be useful elsewhere.
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