
Reconstructive Dispersers and
Hitting Set Generators

Christopher Umans?

Computer Science Department
California Institute of Technology

Pasadena CA 91125
umans@cs.caltech.edu

Abstract. We give a generic construction of an optimal hitting set gen-
erator (HSG) from any good “reconstructive” disperser. Past construc-
tions of optimal HSGs have been based on such disperser constructions,
but have had to modify the construction in a complicated way to meet
the stringent efficiency requirements of HSGs. The construction in this
paper uses existing disperser constructions with the “easiest” parameter
setting in a black-box fashion to give new constructions of optimal HSGs
without any additional complications.
Our results show that a straightforward composition of the Nisan-Wig-
derson pseudorandom generator that is similar to the composition in
works by Impagliazzo, Shaltiel and Wigderson in fact yields optimal
HSGs (in contrast to the “near-optimal” HSGs constructed in those
works). Our results also give optimal HSGs that do not use any form
of hardness amplification or implicit list-decoding – like Trevisan’s ex-
tractor, the only ingredients are combinatorial designs and any good
list-decodable error-correcting code.

1 Introduction

Ever since Trevisan [1] showed that certain pseudorandom generator (PRG)
constructions yield extractors, many of the results in these two areas have been
intertwined. In this paper we are concerned with the one-sided variant of a PRG,
called a hitting set generator (HSG), and the one-sided variant of an extractor,
called a disperser.

Informally, a HSG construction takes an n-bit truth table of a hard function
f and converts it into a collection of poly(n) shorter m-bit strings, with the
property that every small circuit D that accepts at least 1/2 of its inputs, also
accepts one of these m-bit strings. The proof that a construction is indeed a
HSG typically gives an efficient way to convert a small circuit D on which the
construction fails to meet the definition into a small circuit computing f , thus
contradicting the hardness of f .

Informally, a disperser takes an n-bit string x sampled from a weak random
source with sufficient min-entropy and converts it into a collection of poly(n)
? Supported by NSF grant CCF-0346991 and an Alfred P. Sloan Research Fellowship.

shorter m-bit strings, with the property that every circuit D that accepts at least
1/2 of its inputs, also accepts one of these m-bit strings. Trevisan’s insight is that
a HSG construction whose proof uses D in a black-box fashion is a disperser,
for the following reason: if there is a circuit D on which the construction fails
to meet the disperser definition, then we have a small circuit relative to D that
describes input x, and it cannot be that every string in a source with sufficiently
high min-entropy has such a short description.

Thus we can produce a formal statement to the effect that “every black-box
HSG construction yields a disperser with similar parameters.” In this paper we
consider the reverse question, namely: “under what conditions does a disperser
construction yield a HSG construction?”

We will limit ourselves to so-called “reconstructive” dispersers which means,
roughly, that the associated proof has the same outline as the one sketched above,
and that the conversion in the proof is efficient. At first glance this may seem to
be such a strong constraint that the question becomes uninteresting. However,
there is an important issue related to the precise meaning of “efficient.” It turns
out that there are (at least) two possible notions of “efficient;” one is satisfied
naturally in several disperser constructions, and the other – which is the one that
is actually required for the construction to be a HSG – is far more stringent.
The distinction between the two is analogous to the distinction between an
error-correcting code being efficiently decodable in the usual sense, and being
efficiently implicitly decodable in the sense of [2].

To be precise, consider a function E : {0, 1}n × {0, 1}t → {0, 1}m (where
m < n may be as small as poly log n) and a circuit D : {0, 1}m → {0, 1} relative
to which E fails to be a disperser; i.e. D accepts at least half of its inputs,
but for every x in the weak random source, E(x, ·) fails to hit an accepting
input of D. If E is equipped with a “reconstructive” proof then the proof should
give an efficient way to reconstruct x from D and short advice (the advice may
depend on x and auxiliary randomness w used in the proof). The two notions of
reconstructivity for E that we discuss are:

explicit reconstructivity. Given oracle access to circuit D, and advice A(x,w),
compute in time poly(n) the string x with non-negligable probability over
the choice of w.

implicit reconstructivity. Given oracle access to circuit D, and advice A(x,w),
and an index i, compute in time poly(m) the i-th bit of x with non-negligable
probability over the choice of w.

Explicit reconstructivity is naturally satisfied by relatively simple disperser
constructions1 [1, 3, 4], and these construction possess two additional useful fea-
tures as well (as observed in [5–7]): (1) w has length O(log n) and (2) A is
computable in time poly(n).

In contrast, obtaining implicit reconstructivity has always required significant
extra effort: in [4], one needs to use multiple copies of the original disperser with
1 Of course these are all actually extractor constructions, but an extractor is a dis-

perser.

multiple “strides” and to piece them together in a complex manner; in [8], similar
ideas are used, together with an “augmented” low-degree extension; and in [5,
6], the construction of [1] is modified by repeated composition, but at the price
of a super-polynomial degradation in the output length.

In this paper, we show that the weaker notion of explicit reconstructivity
(together with the two additional properties satisfied by known constructions)
is in fact sufficient to construct optimal HSGs, thus avoiding the complications
of past work.

Our result is shown by analyzing a composition of reconstructive dispersers,
similar to the one used in [5, 6]. Our composition has the advantage of being
simpler (we believe) and generic (it works for any reconstructive disperser).
Most importantly, it produces optimal HSGs for all hardnesses, starting only
with reconstructive dispersers for a particular “easy” setting of parameters.

Our results also shed light on two issues: the first concerns the Nisan-Wig-
derson pseudorandom generator (PRG) [9, 10, 2], which has a non-optimal seed
length for sub-exponential hardness assumptions. Two works [5, 6] addressed this
deficiency by composing the PRG with itself in a clever way. The result came
close to an optimal construction, but fell short. One might have guessed that
there was some inherent loss associated with the composition-based approach,
or that the combinatorial-design-based constructions were too weak to obtain
the optimal result (as subsequent solutions to this problem employed different,
algebraic constructions [4, 8]). Our results show that in the end, composing the
Nisan-Wigderson PRG with itself can be made to work to obtain HSGs, by using
a somewhat different composition than those used previously.

Second, until this paper, known constructions of optimal HSGs [4, 8] have
made crucial use of implicit list-decoding (cf. [2]) of Reed-Muller codes. Implicit
list-decoding of Reed-Muller codes also underlies the hardness amplification re-
sults that were a component of earlier (non-optimal) constructions [5, 6, 2]. One
may wonder whether some form of implicit list-decoding is in fact necessary to
construct HSGs. Our results show that it is not, and indeed we can construct
optimal HSGs using only combinatorial designs and any good list-decodable
code (which, not accidentally, are also the two ingredients needed for Trevisan’s
extractors).

We remark that “reconstructivity” of various disperser and extractor con-
structions has emerged as a crucial property of these constructions in a number
of applications: error-correcting codes [11, 12], data structures [13], and com-
plexity theory [14]. This suggests that it is worthwhile to formalize and study
notions of reconstructivity as we do in this paper.

2 Preliminaries

We use [n] as shorthand for the set {1, 2, 3 . . . n}. We use Um for the random
variable uniformly distributed on {0, 1}m.

Definition 1. Let Z be a random variable distributed on {0, 1}m. We say that
a function D : {0, 1}m → {0, 1} “ε-catches” Z if |Pr[D(Um) = 1] − Pr[D(Z) =
1]| > ε. In the special case that Pr[D(Z) = 1] = 0, we say that D “ε-avoids Z”.

In this paper we will always be in the aforementioned special case, since we
are discussing one-sided objects (HSGs and dispersers). Replacing “ε-avoids”
with “ε-catches” everywhere in the paper yields the two-sided version of all of
the definitions, theorems and proofs, with the exception of one place in the proof
of Theorem 4 where we use the one-sidedness critically.

Definition 2. Let x be a n-bit truth table of a function that requires circuits
of size k. An ε-HSG is a function Hx : {0, 1}t → {0, 1}m such that no size m
circuit D : {0, 1}m → {0, 1} ε-avoids Hx(Ut).

This means that every size m circuit D that accepts more than an ε fraction of
its inputs, also accepts Hx(y) for some y. It has become customary to refer to
families of ε-HSGs that for every k = k(n) have parameters t ≤ O(log n) and
m ≥ kδ for some constant δ > 0 as optimal (because they give rise to hardness
vs. randomness tradeoffs that are optimal up to a polynomial).

For reference, we give the standard definition of a (k, ε)-disperser before stat-
ing the more complicated definition of a reconstructive disperser that we will
need for this paper.

Definition 3. A (k, ε)-disperser is a function E : {0, 1}n × {0, 1}t → {0, 1}m

such that for all subsets X ⊆ {0, 1}n with |X| ≥ 2k, no circuit D : {0, 1}m →
{0, 1} ε-avoids E(X, Ut).

2.1 Reconstructive dispersers

We now define the central object, which we call a reconstructive disperser. It
has more parameters than one would prefer, but keeping track of all of these
parameters will make the composition much easier to state.

Definition 4. A (n, t, m, d, a, b, ε, δ)-reconstructive disperser is a triple of func-
tions:

– the “disperser” function E : {0, 1}n × {0, 1}t → {0, 1}m

– the “advice” function A : {0, 1}n × {0, 1}d → {0, 1}a

– the randomized2 oracle “reconstruction” procedure R : {0, 1}a × [n/b] →
{0, 1}b

that satisfy the following property: for every D : {0, 1}m → {0, 1} and x ∈ {0, 1}n

for which D ε-avoids E(x,Ut), we have

∀i ∈ [n/b] Pr
w

[RD(A(x,w), i) = xi] ≥ δ. (1)

2 When we refer to a “randomized” function, we mean a function f that takes an extra
argument which is thought of as random bits. We refrain from explicitly writing the
second argument; however whenever f occurs within a probability, we understand
that the probability space includes the randomness of f .

Here xi refers to the i-th b-bit block in x. When b = n we drop the second
argument to R.

Note that in this definition there is no reference to the parameter “k” that
occurs in Definitions 2 and 3. The idea is that if (E,A, R) is a reconstructive
disperser, then E must be a (k, ε)-disperser for k slightly larger than a, because
relative to D, many strings x in the source X have descriptions of size approx-
imately a (via R). Similarly, E(x, ·) is an ε-HSG when x is the truth table of a
function that does not have size k circuits, for k slightly larger than a plus the
running time of R. This is because relative to D, and given a bits of advice, R
can be used to compute any specified bit of x. See Theorems 2 and 3 for formal
statements of these assertions.

The parameter b interpolates between the two types of reconstructivity. When
b = n, the reconstruction procedure outputs all of x. A reconstruction procedure
of this type running in time poly(n) is explicit and is often implied by disperser
constructions whose proofs use the so-called “reconstruction proof paradigm.”

To obtain an optimal HSG, we need b to be small and the running time of
the reconstruction procedure to be poly(m) (where m < n may be as small as
poly log n). Such a reconstruction procedure is necessarily implicit, and it satisfies
a much more stringent efficiency requirement that typically does not follow from
disperser constructions without modification. Note however that it is trivial to
decrease b by a multiplicative factor without changing the running time of R
(and we will use this fact). The challenge is to decrease b while decreasing the
running time of R simultaneously.

There are three quite clean constructions of reconstructive dispersers known
for a certain “easy” setting of the parameters.

Theorem 1 ([1, 3, 4]). For every n and ε ≥ n−1, and pair of constants γ >
β > 0 (and γ > β + 1/2 in the case of [3]), there is a

(n, t = O(log n),m = nβ , d = O(log n), a = nγ , b = n, ε, δ = 1/4)

reconstructive disperser (E, A, R) with the running time of E, A, R at most nc

for a universal constant c.

Proof. (sketch) The proofs associated with these constructions all conform to the
following outline: (1) given D that ε-avoids E(x, Ut), convert it into a randomized
next-bit predictor with success rate 1/2 + ε/m; (2) use the next-bit predictor
together with the advice A(x,w) to recover x with probability 1/4 over the
choice of w. In some cases the original proof concludes by obtaining a short list
containing x; in this case we add a random hash of x to the advice string to
allow us to correctly select x from the list with probability 1/4. ut

Note that these constructions are not sufficient to produce HSGs directly,
because the running time of the reconstruction procedure R is by itself far greater
than the trivial upper bound on the circuit complexity of a function whose truth
table has size n, so we cannot get the required contradiction.

However, if the running time of R is much smaller than the input length n,
reconstructive dispersers are hitting set generators when their input is fixed to
be a hard function.

Theorem 2. Let (E, A, R) be a (n, t, m, d, a, b, ε, δ = 2/3) reconstructive dis-
perser, for which R runs in time T . Let x ∈ {0, 1}n be the truth table of a
function that cannot be computed by circuits of size k. There is a universal con-
stant c for which: if k > c(log n)(Tm + a), then Hx(·) = E(x, ·) is an ε-HSG.

Proof. If E(x, ·) is not the claimed HSG, then there is a size m circuit D :
{0, 1}m → {0, 1} that ε-avoids E(x,Ut). By the definition of reconstructive dis-
persers we have: ∀i ∈ [n/b] Prw[RD(A(x,w), i) = xi] ≥ 2/3. We repeat the
reconstruction Θ(log n) times with independent random w’s and take the ma-
jority outcome. For a given i, the probability that this fails to produce xi is less
than 1/n by Chernoff bounds. By a union bound, the probability that we fail
on any i is strictly less than one. Thus we can fix the random bits used in this
procedure so that we correctly produce xi for all i. We hardwire A(x, w) for the
chosen w’s. The resulting circuit has size c(log n)(Tm+a) which contradicts the
hardness of x. ut

We remark that the same argument shows that reconstructive dispersers are
indeed a special case of ordinary dispersers (a more efficient conversion is possible
but that is not important for this paper):

Theorem 3. Let (E, A, R) be a (n, t, m, d, a, b, ε, δ = 2/3) reconstructive dis-
perser. There is a universal constant c for which E is a (ca(log n), ε)-disperser.

3 Intuition for the composition

In this discussion we focus almost entirely on the advice and reconstruction
functions. Getting the parameters of these “right” in the composition gives a
reconstructive disperser that is an optimal HSG. From Theorem 2 we can see that
the key is for the advice length a to be as short as possible, and for the running
time of the reconstruction procedure R to be as small as possible. Specifically,
our goal will be to obtain (after several compositions) a reconstructive disperser
with input length N À n, advice length poly(n), and R’s running time poly(n),
while maintaining an output length of at least nΩ(1).

Our starting point is the “simple” constructions of Theorem 1. Note that b =
n in those constructions so we drop the second argument of the reconstruction
procedure R, and then it simply maps a = nγ bits to n bits.

Let as also assume for the purpose of this simplified exposition that d = 0,
i.e., the advice function A just maps n bits to a = nγ bits. It is useful to
think of the advice function A as a procedure that “compresses” an arbitrary
n-bit string x into nγ bits and the reconstruction procedure R as a procedure
that “decompresses” the nγ bit string back to the original n-bit string x. Of
course this is information-theoretically impossible, but a slightly relaxed version
of this (in which d = O(log n) rather than 0, and R is given oracle access to

“distinguishing” function D) is exactly the definition of A and R in Definition
4.

So we have the ability to compress from n bits down to nγ bits. Suppose
we want to be able to compress from N À n down to nγ bits. A natural thing
to do is to divide the N -bit string into N/n substrings of size n, and use A to
compress each of the substrings. The resulting string has length (N/n)nγ ; we
can repeat the process O(log N/ log n) times until we get down to length nγ . To
decompress, we use R to reverse the process. A nice side-effect of this scheme is
that when we know which n-bit substring of the original N bit string we wish to
recover, we only need to invoke R once at each level (as opposed to, e.g., N/n
times at the bottom level, if we insist on recovering the entire original N bit
string). In the formalism of Definition 4, this means that we can take b = n, and
have R only recover the specified b-bit block of the input string.

The above description specifies an advice function that maps an N -bit string
x down to nγ bits, and a reconstruction procedure that recovers any specified n-
bit substring of x from those nγ bits. A crucial observation is that the new recon-
struction procedure has b = n ¿ N , and it runs in time poly(n, log N/ log n) ¿
N , since it invokes R once for each of the O(log N/ log n) levels.

We have made only two simplifying assumptions. First, we have assumed
that d = 0, when in fact it must be O(log n). When d = O(log n) the “com-
pression” function A produces 2d = poly(n) candidate compressed versions of
x, with the property that with high probability over a choice of candidates, the
“decompression” procedure R succeeds. We will carry out the above scheme for
all candidates at each level, and ensure that the decompression at each level
works with sufficiently high probability so that the overall decompression works
with constant probability.

Second, we have ignored the fact that R needs oracle access to a function D
with certain properties to succeed. To deal with this, we simply run the disperser
E on every n-bit string x that we “compress” in the entire process, and define the
disperser E′ of the composed object to be the union of these. The reconstruction
procedure R′ for the composed object is only required to work relative to D that
ε-avoids the output of E′. Such a D also ε-avoids the output of each invocation
of E we have performed3, and so D is exactly what is required to actually allow
the “decompressions” to work at all levels.

Both the disperser function E′ and the advice function A′ of the composed
object have asymptotically optimal seed lengths of O(log N). This is because at
each level we need a fresh O(log n) bit seed for E and A coming from Theorem
1, and there are O(log N/ log n) levels.

The formal analysis of a single level of this composition is the content of
Theorem 4. Corollary 1 and Theorem 5 apply this composition O(log N/ log n)
times to the reconstructive dispersers of Theorem 1 to obtain the final result.

3 This is the single place where we rely critically on the fact that we are dealing with
“ε-avoids,” rather than “ε-catches.”

Comparison with [5, 6]. As noted, our composition is similar to the one used in
[5, 6], which can also be understood in the language of reconstructive dispersers.
If one interprets their composition this way, the crucial difference is that our
reconstruction procedure runs on strings of length n at all levels, while in their
work, the reconstruction procedure runs on inputs whose lengths increase from
one level to the next. In addition, [5, 6] have a layer of hardness amplification at
each level, which our composition avoids. The result is that they incur a loss that
is superpolynomial if the number of levels is super-constant (and to minimize
this loss, they vary parameters from level to level in a sophisticated way). We
incur only a loss that is multiplicative in the number of levels, which for us is
logarithmic in the input length, so we can ignore it altogether.

4 Analysis of the composition

We begin by showing that a simple pairwise independent repetition can increase
the success probability of the reconstruction procedure:

Lemma 1 (increasing δ). Suppose (E, A,R) is a (n, t, m, d, a, b = n, ε, δ) re-
constructive extractor. For every α > 0, we can convert (E, A,R) into a

(n, t, m, d′ = O(d + log(pn)), a′ = O(pa), b = n, ε, δ′ = 1− α)

reconstructive extractor (E, A′, R′), where p = δ−1α−1. The running time of A′

is at most poly(p, n) times the running time of A, and the running time of R′ is
at most poly(p, n) times the running time of R.

Proof. (sketch) A′ uses its random bits to output 2p invocations of A using
pairwise independent seeds, and a random hash of the input x; R′ runs R on each
of the advice strings, using the hash to select which reconstruction to output. ut

Our main composition operation for reconstructive dispersers increases n.
More specifically, it roughly squares n, while multiplying each of the two seed
lengths (t and d) by a constant. The final object inherits the advice length a
from the first reconstructive disperser, and the block length b from the second.

Theorem 4 (composition of reconstructive dispersers). Suppose (E1, A1, R1)
is a (n1, t1,m, d1, a1, b1, ε, δ1) reconstructive disperser and that (E2, A2, R2) is a
(n2, t2,m, d2, a2, b2, ε, δ2) reconstructive disperser, with a2 = b1. Set r = n1/b1.
Then (E, A, R) defined as:

E(x1, . . . , xr; w2, y, p ∈ [r + 1]) =
{

E1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), y) if p = r + 1
E2(xp, y) otherwise

A(x1, . . . , xr; w1, w2) = A1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), w1)
RD(z; i1 ∈ [r], i2 ∈ [n2/b2]) = RD

2 (RD
1 (z, i1), i2)

is a

(n = (n1n2)/a2, t = max(t1, t2) + d2 + log(r + 1),m,

d = d1 + d2, a = a1, b = b2, ε, δ = δ1 + δ2 − 1)

reconstructive disperser.

A few words of explanation are in order. The input for the composed object is
x = x1, x2, . . . , xr, where the xi coincide with the blocks R will need to output.
The function A is very simple: it just concatenates the output of A2 run on
each of x1, x2, . . . , xr, and runs A1 on the concatenated string. The function R
is similarly simple; it reverses the process: it takes the output of A and first
uses R1 to extract the advice associated with xi1 , and then uses R2 to actually
recover (the i2-th block of) xi1 . Finally E uses part of its seed, p, to decide either
to run E2 on input xi for some i, or to run E1 on the concatenated advice string
on which A1 is run.

Proof. (of Theorem 4) Fix D and x = x1, x2, . . . , xr for which D ε-avoids
E(x1, . . . , xr; Ut). Also fix i = i1i2, where i1 ∈ [r] and i2 ∈ [n2/b2].

From the fact that D ε-avoids E(x1, . . . , xr; Ut), we know that

∀w2 D ε-avoids E1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), Ut1) (2)
∀p ∈ [r] D ε-avoids E2(xp, Ut2) (3)

From (2) and the definition of reconstructive dispersers, we get that for all w2:

Pr
w1

[RD
1 (A1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), w1), i1) = A2(xi1 , w2)] ≥ δ1. (4)

From (3) and the definition of reconstructive dispersers, we get that:

Pr
w2

[RD
2 (A2(xi1 , w2), i2) = (xi1)i2] ≥ δ2. (5)

The probability over a random choice of w1 and w2 that both events occur is at
least δ1 + δ2 − 1. If both events occur, then:

RD(A(x1, . . . , xr; w1, w2); i1, i2) = RD
2 (RD

1 (A(x1, . . . , xr; w1, w2), i1), i2) (6)
= RD

2 (RD
1 (A1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), w1), i1), i2) (7)

= RD
2 (A2(xi1 , w2), i2) = (xi1)i2 . (8)

where (6) just applies the definition of R, (7) applies the definition of A, and (8)
follows from our assumption that the events in (4) and (5) both occur.

We conclude that Prw1,w2 [R
D(A(x;w1, w2), i) = xi] ≥ δ1 + δ2 − 1, which is

what was to be shown. ut
We now apply Theorem 4 repeatedly:

Corollary 1. Fix N , n, ε, and constant γ < 1. Let (E,A, R) be a

(n, t1 = O(log n),m, d1 = O(log n), a = nγ , b = a, ε, δ1 = 1− (1/ log N))

reconstructive disperser with the running time of E,A, R at most nc1 for a uni-
versal constant c1. Then (E′, A′, R′) obtained by

(
log N

(1−γ) log n

)
applications of

Theorem 4 is a (N, t = O(log N),m, d = O(log N), a = nγ , b = a, ε, δ = 2/3)
reconstructive disperser with the running time of E′ and A′ at most N c, and the
running time of R′ at most nc for a universal constant c.

Proof. We claim that after i compositions of (E, A, R) with itself, we obtain a
(
ni = ni−(i−1)γ , ti = t1 + (i− 1)(d1 + log(n1−γ + 1)),m,

di = id1, a, b, ε, δi = i(δ1 − 1) + 1)

reconstructive disperser (Ei, Ai, Ri). This clearly holds for i = 1.
To see that it holds for arbitrary i, consider composing (Ei−1, Ai−1, Ri−1)

with (E, A,R). By Theorem 4 and our inductive assumption, we get (Ei, Ai, Ri)
with parameters:

ni = ni−1n/a = ni−1−(i−2)γn/nγ = ni−(i−1)γ

ti = max(ti−1, t1) + d1 + log(n1−γ + 1)
= [t1 + (i− 1)(d1 + log(n1−γ + 1))] + d1 + log(n1−γ + 1)
= t1 + i(d1 + log(n1−γ + 1))

di = di−1 + d1 = id1

δi = δi−1 + δ1 − 1 = (i− 1)(δ1 − 1) + δ1 = i(δ1 − 1) + 1

as claimed. Note that ni > ni(1−γ). Thus when i = log N
(1−γ) log n , we have ni ≥ N ,

and also di = O(log N) and ti = O(log N). Also note that for sufficiently large
n, δi = 1− i(1/ log N) = 1− 1

(1−γ) log n > 2/3.

Finally, let T (Ei), T (Ai), T (Ri) denote the running times of the functions
Ei, Ai, Ri respectively. From the specification of the composition in Theorem 4,
we see that

T (Ei) ≤ max(T (Ei−1) + ni−1T (A), T (E))
T (Ai) ≤ T (Ai−1) + ni−1T (A)
T (Ri) ≤ T (Ri−1) + T (R),

and then it is easy to verify by induction that T (Ei), T (Ai) ≤ ini+c1 and T (Ri) ≤
inc1 . Plugging in i = O(log N/ log n) gives the claimed running times. ut

5 Optimal hitting set generators

Now, we can use any one of the constructions of Theorem 1 in Corollary 1 to
obtain an optimal HSG for arbitrary hardness. Specifically, our HSG is built
from the N -bit truth table of a function that is hard for circuits of size k, has a
seed length of O(log N), and outputs kΩ(1) bits, while running in time poly(N).
As usual, we assume N < 2kη

for any constant η; as otherwise we could just
output the seed.

Theorem 5. Let x be the N -bit truth table of a function that cannot be computed
by circuits of size k, and set n = k1/c for a sufficiently large constant c. Let
(E, A, R) be a

(n, t = O(log n),m = nβ , d = O(log n), a = nγ , b = n, ε, δ = 1/4)

reconstructive disperser from Theorem 1. If (E′, A′, R′) is the reconstructive dis-
perser obtained by applying Lemma 1 with α = 1/ log N and then applying Corol-
lary 1, then Hx(·) = E′(x, ·) is an ε-HSG against circuits of size m = kβ/c.

Proof. After applying Lemma 1 with α = 1/ log N , we have a
(

n, t = O(log n), m = nβ , d′ = O(log n), a′ = (log N)nγ , b = n, ε, δ′ = 1− 1
log N

)

reconstructive disperser. By the assumption on N stated before the theorem, we
have that a′ ≤ nγ′ for some constant γ′ < 1. As noted following Definition 4, we
can decrease b from n to a′ trivially. Then, after applying Corollary 1 we obtain
a (N,O(log N),m, O(log N), nγ′ , a′, ε, 2/3) reconstructive disperser (E′, A′, R′),
with the running time of E′ and A′ at most poly(N) and the running time of
R′ at most poly(n).

To satisfy Theorem 2 we need c1 log N(nc2nβ + nγ′) < k, where c1 and c2

are universal constants; we can set c to ensure that this holds. Theorem 2 then
states that E′(x, ·) is an ε-HSG against circuits of size m = nβ = kβ/c. ut

As noted in the introduction, if we use Trevisan’s extractor [1] as our starting
object, then the entire construction requires only two ingredients: (1) any good
list-decodable error-correcting code and (2) combinatorial designs (to obtain
the original Trevisan extractor). In particular there is no hardness amplification
or implicit list-decoding hidden in the construction, precisely because we are
able to work with a starting object that only has explicit reconstructivity rather
than implicit reconstructivity (the latter type of reconstructivity typically has
required implicit list-decoding in some form or another).

6 Open problems

We mention briefly two interesting open problems related to this work.
First, is it possible to extend these results to two-sided objects, by giving a

similar composition for reconstructive extractors? Because implicit reconstruc-
tivity of extractors is closely related to efficient implicit list-decodability, it is
possible that such a result would give a new generic construction of implicitly
list-decodable codes (in the sense of [2]) from any good list-decodable codes.

Second, is it possible to extend our result to the non-deterministic setting?
Here there is an important technical issue of resiliency of HSGs discussed in
[15]; obtaining a resilient HSG construction would lead to so-called “low-end”
uniform hardness vs. randomness tradeoffs for the class AM. One possible route
to constructing low-end resilient HSGs against nondeterministic circuits is to
construct high-end resilient HSGs (typically an easier task) that possess the
features needed to apply the composition in this paper – namely an associated
advice function A(x,w) computable in polynomial time, with w having length
O(log n). In the currently known resilient construction [16], w has length much
larger than O(log n).

Acknowledgements. We thank Ronen Shaltiel for his comments on an early draft
of this paper.

References

1. Trevisan, L.: Extractors and pseudorandom generators. Journal of the ACM 48
(2002) 860–879

2. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR
lemma. JCSS: Journal of Computer and System Sciences 62 (2001)

3. Ta-Shma, A., Zuckerman, D., Safra, S.: Extractors from Reed-Muller codes. In:
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science. (2001)

4. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-
random generator. In: Proceedings of the 42nd Annual IEEE Symposium on Foun-
dations of Computer Science. (2001)

5. Impagliazzo, R., Shaltiel, R., Wigderson, A.: Near-optimal conversion of hardness
into pseudo-randomness. In: Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science. (1999) 181–190

6. Impagliazzo, R., Shaltiel, R., Wigderson, A.: Extractors and pseudo-randomn
generators with optimal seed-length. In: Proceedings of the Thirty-second Annual
ACM Symposium on the Theory of Computing. (2000)

7. Ta-Shma, A., Umans, C., Zuckerman, D.: Loss-less condensers, unbalanced ex-
panders, and extractors. In: Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing. (2001) 143–152

8. Umans, C.: Pseudo-random generators for all hardnesses. In: Proceedings of the
34th Annual ACM Symposium on Theory of Computing. (2002) 627–634

9. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and
System Sciences 49 (1994) 149–167

10. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium
on Theory of Computing. (1997) 220–229

11. Ta-Shma, A., Zuckerman, D.: Extractor codes. IEEE Transactions on Information
Theory 50 (2004) 3015–3025

12. Guruswami, V.: Better extractors for better codes? In: STOC. (2004) 436–444
13. Ta-Shma, A.: Storing information with extractors. Inf. Process. Lett. 83 (2002)

267–274
14. Buhrman, H., Lee, T., van Melkebeek, D.: Language compression and pseudo-

random generators. In: IEEE Conference on Computational Complexity. (2004)
15–28

15. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness vs. randomness trade-
offs for Arthur-Merlin games. In: 18th Annual IEEE Conference on Computational
Complexity. (2003)

16. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using
hitting sets. In: Proceedings of the 40th Annual IEEE Symposium on Foundations
of Computer Science. (1999) 71–80

