
Reconstructive Dispersers and Hitting Set Generators∗

Christopher Umans†

Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

November 28, 2006

Abstract

We give a generic construction of an optimal hitting set generator (HSG) from any good “reconstruc-
tive” disperser. Past constructions of optimal HSGs have been based on such disperser constructions, but
have had to modify the construction in a complicated way to meet the stringent efficiency requirements
of HSGs. The construction in this paper uses existing disperser constructions with the “easiest” param-
eter setting in a black-box fashion to give new constructions of optimal HSGs without any additional
complications.

Our results show that a straightforward composition of the Nisan-Wigderson pseudorandom gener-
ator that is similar to the composition in works by Impagliazzo, Shaltiel and Wigderson in fact yields
optimal HSGs (in contrast to the “near-optimal” HSGs constructed in those works). Our results also
give optimal HSGs that do not use any form of hardness amplification or implicit list-decoding – like
Trevisan’s extractor, the only ingredients are combinatorial designs and any good list-decodable error-
correcting code.
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1 Introduction

Derandomization is a very active area within complexity theory, whose goal is to prove the existence of
generic and efficient deterministic simulations of probabilistic procedures. This general endeavor makes
sense in many different settings, as there are several meaningful choices for exact definitions of “efficient”
and “probabilistic procedure”. This paper focuses on the derandomization of probabilistic polynomial-time;
the ultimate goal in complexity terms is to prove BPP= P.

A very natural route to proving BPP= P is to construct apseudorandom generator(PRG), which is a
deterministic procedure that stretches a short, truly random string (the “seed”) into a long “pseudorandom”
string that is indistinguishable from a truly random string by polynomial-time procedures. The output of
a PRG can thus be substituted for true randomness to obtain efficient simulations of BPP, by enumerating
over all seeds. However, the existence of a uniform family of PRGs useful for derandomizing BPP implies
circuit lower bounds that seem well beyond our current abilities to prove (and more recently, it has been
shown that BPP= P itself implies circuit lower bounds [KI04]). Thus, in the absence of circuit lower
bounds, the goal is to construct PRGsunder a hardness assumption, and then we can hope for a family of
constructions that represent a “best-possible” tradeoff between the hardness assumption required and the
deterministic simulation implied by the PRG. This general “hardness vs. randomness” paradigm began with
[BM84, Yao82, NW94], and continued with a number of papers working toward a best-possible quantitative
tradeoff [IW97, STV01, ISW99, ISW00, SU05, Uma03]. See the survey by Kabanets [Kab02] for a more
complete history and an account of the current state of derandomization research.

If one wishes to derandomize one-sided-error probabilistic decision procedures, RP, then the natural
associated derandomization object is ahitting set generator(HSG) (see Definition 2.4). Surprisingly, it
was shown in [ACR98] (and refined in [ACRT99, BF99, GVW00]) that HSGs suffice to derandomize BPP,
even though they are only “intended” for one-sided error. Optimal HSGs were first constructed in [SU05],
while optimal PRGs were first constructed in [Uma03]; here “optimal” means that, up to a polynomial,
the constructions cannot be improved without implying stronger hardness assumptions than were used to
construct them in the first place (see [ISW03] for a more detailed justification of the term “optimal” in this
context).

In this paper we construct optimal HSGs, which, as noted above, suffice for optimal “hardness vs. ran-
domness” tradeoffs for BPP as well as RP . Our construction is cast as a completely generic procedure for
converting an object we call a “reconstructive disperser” into a HSG. The construction is arguably simpler
than previous constructions, and its modular description exposes certain useful features shared by known
constructions of reconstructive dispersers. Conceptually, it is interesting to view this work as another exam-
ple of the surprising connection between information-theoretic objects (e.g., dispersers) and computational
objects (e.g., HSGs) articulated by Trevisan [Tre02]. Our construction can also be appreciated for a number
of more technical reasons, which we outline now.

The two main objects we work with are hitting set generators (HSGs) — the one-sided variant of PRGs,
anddispersers— the one-sided variant of randomness extractors.

Informally, a HSG construction takes ann-bit truth table of a hard functionf and converts it into a
collection of poly(n) shorterm-bit strings, with the property that every small circuitD that accepts at least
1/2 of its inputs, also accepts one of thesem-bit strings. The proof that a construction is indeed a HSG
typically gives an efficient way to convert a small circuitD on which the construction fails to meet the
definition into a small circuit computingf , thus contradicting the hardness off .

Informally, a disperser takes ann-bit stringx sampled from a weak random source with sufficient min-
entropy and converts it into a collection of poly(n) shorterm-bit strings, with the property that every circuit
D that accepts at least 1/2 of its inputs, also accepts one of thesem-bit strings. Trevisan’s insight [Tre02] is
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that a HSG construction whose proof usesD in a black-box fashionis a disperser, for the following reason:
if there is a circuitD on which the construction fails to meet the disperser definition, then we have a small
circuit relative toD that describes inputx, and it cannot be that every string in a source with sufficiently
high min-entropy has such a short description.

Thus we can produce a formal statement to the effect that “every black-box HSG construction yields
a disperser with similar parameters.” In this paper we consider the reverse question, namely: “under what
conditions does a disperser construction yield a HSG construction?”

We will limit ourselves to so-called “reconstructive” dispersers which means, roughly, that the associated
proof has the same outline as the one sketched above, and that the conversion in the proof is efficient. At
first glance this may seem to be such a strong constraint that the question becomes uninteresting. However,
there is an important issue related to the precise meaning of “efficient.” It turns out that there are (at least)
two possible notions of “efficient;” one is satisfied naturally in several disperser constructions, and the
other – which is the one that is actually required for the construction to be a HSG – is far more stringent.
The distinction between the two is analogous to the distinction between an error-correcting code being
efficiently decodable in the usual sense, and being efficientlyimplicitly (or “locally”) decodable in the sense
of [STV01].

To be precise, consider a functionE : {0, 1}n × {0, 1}t → {0, 1}m (wherem < n may be as small as
poly log n) and a circuitD : {0, 1}m → {0, 1} relative to whichE fails to be a disperser; i.e.D accepts at
least half of its inputs, but for everyx in the weak random source,E(x, ·) fails to hit an accepting input of
D. If E is equipped with a “reconstructive” proof then the proof should give an efficient way to reconstruct
x from D and short advice (the advice may depend onx and auxiliary randomness used in the proof). The
two notions of reconstructivity forE that we discuss are:

Explicit Reconstructivity. Given oracle access to circuitD, and adviceA(x,w), compute in time poly(n)
the stringx with non-negligible probability over the choice ofw.

Implicit Reconstructivity. Given oracle access to circuitD, and adviceA(x,w), and an indexi, compute
in time poly(m, log n) thei-th bit of x with non-negligible probability over the choice ofw.

Explicit reconstructivityis naturally satisfied by relatively simple disperser constructions1 [Tre02, TSZS01,
SU05], and these construction possess two additional useful features as well (as observed in [ISW99, ISW00,
TSUZ01]): (1)w has lengthO(log n) and (2)A is computable in time poly(n).

In contrast, obtainingimplicit reconstructivityhas always required significant extra effort: in [SU05],
one needs to use multiple copies of the original disperser with multiple “strides” and to piece them together
in a complex manner; in [Uma03], similar ideas are used, together with an “augmented” low-degree exten-
sion; and in [ISW99, ISW00], the construction of [Tre02] is modified by repeated composition, but at the
price of a super-polynomial degradation in the output length.

In this paper, we show that the weaker notion of explicit reconstructivity (together with the two additional
properties satisfied by known constructions) is in fact sufficient to constructoptimal HSGs, thus avoiding
the complications of past work.

Our result is shown by analyzing a composition of reconstructive dispersers, similar to the one used in
[ISW99, ISW00]. Our composition has the advantage of being simpler (we believe), and it is presented in
a modular and generic manner, making it easy to see that it works for any reconstructive disperser. Most
importantly, it produces optimal HSGs for all hardnesses, starting only with reconstructive dispersers for a
particular “easy” setting of parameters.

Our results also shed light on the following issues:

1Of course these are all actually extractor constructions, but an extractor is a disperser.
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• The Nisan-Wigderson pseudorandom generator (PRG) [NW94] does not achieve an optimal quanti-
tative hardness vs. randomness tradeoff. Two works [ISW99, ISW00] addressed this deficiency by
composing the PRG with itself in a clever way. The results came close to an optimal construction, but
fell short. Subsequently optimal tradeoffs were achieved by employing different, algebraic construc-
tions [SU05, Uma03]. Thus, one might have guessed that there was some inherent loss associated with
the composition-based approach, or that combinatorial-design-based constructions such as [NW94]
were incapable of achieving the optimal result. Our results show that in the end, composing the
combinatorial-design-based Nisan-Wigderson PRG with itselfcanbe made to work to obtain HSGs,
by using a somewhat different composition than those used previously. We note, however, that while
we obtain optimal HSGs (improving [ISW99] and matching [SU05]), we do not know how to achieve
optimal PRGs (which would improve [ISW00] and match [Uma03]) using the present techniques.

• Until this paper, known constructions of optimal HSGs [SU05, Uma03] have made crucial use of
implicit list-decoding (cf. [STV01]) of Reed-Muller codes. Implicit (or “local”) list-decoding of
Reed-Muller codes also underlies the hardness amplification results that were a component of earlier
(non-optimal) constructions [ISW99, ISW00, STV01]. One may wonder whether some form of im-
plicit list-decoding is in factnecessaryto construct HSGs. Our results show that it is not, and indeed
we can construct optimal HSGs using only combinatorial designs and any good list-decodable code
(which, not accidentally, are also the two ingredients needed for Trevisan’s extractors).

We remark that “reconstructivity” of various disperser and extractor constructions has emerged as a
crucial property of these constructions in a number of applications: error-correcting codes [TSZ04, Gur04],
data structures [TS02], and complexity theory [BLvM05]. This suggests that it is worthwhile to formalize
and study notions of reconstructivity as we do in this paper.

Outline. In Section 2 we define HSGs and reconstructive dispersers. In Section 3 we give informal in-
tuition for how our composition works, and in Section 4 we state and prove the formal result. Section 5
applies the composition theorem to obtain optimal HSGs. Section 6 outlines three known constructions of
reconstructive dispersers, in our terminology. Finally in Section 7 we discuss some open problems raised by
this work.

2 Preliminaries

We use[n] as shorthand for the set{1, 2, 3 . . . n}, andx[i] to denote thei-th symbol in stringx. We will also
need to refer to “b-bit blocks” of a stringx, by which we mean that that the bits ofx should be partitioned into
contiguous segments ofb bits (the last segment may have fewer thanb bits and can be padded arbitrarily).
The block lengthb will always be clearly stated (or clear from context), and in such settings we will denote
thei-th block ofx by xi.

2.1 Error-correcting codes

Our use of error-correcting codes is almost entirely in Section 6, so the reader may wish to skip this subsec-
tion on a first reading.

Definition 2.1. An error-correcting codeis a functionC : Fk
q → Fn

q . The code isbinary if q = 2. The
minimum distanceof a codeC is minx 6=y ∆(C(x), C(y)), where∆ is the Hamming distance function. The
relative distanceis the minimum distance divided byn. A codeC is efficiently encodableif C is computable
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in poly(n, log q) time. A codeC is efficiently list-decodable to radiusr if, given a received wordw ∈ Fn
q ,

one can produce the setSw = {x : ∆(w,C(x)) ≤ r} in poly(|Sw|, n, log q) time.

The Johnson Bound gives an upper bound on|Sw| in terms of the minimum distance of the code: if a
binary codeC has relative distance at least1/2 − δ2, then the number of codewords in any ball of relative
radius1/2− δ is at mostO(1/δ2).

We will mainly use codes based on polynomials. The Reed-Muller code with total degreeh and dimen-
sion ` has as codewords the multivariate polynomialsp : F`

q → Fq of total degreeh, evaluated at every
point in their domain (and so the codewords have lengthq`). We index the symbols of Reed-Muller code-
words naturally by elements ofF`

q. By the Schwartz-Zippel Lemma, the relative distance of such codes is
at least1− h/q. The special case ofh = 1 yields the Hadamard code, and the special case of` = 1 yields
Reed-Solomon codes. We will use the following result regarding list-decoding of Reed-Solomon codes:

Lemma 2.2 ([Sud97]).Given a received wordw ∈ Fq
q, one can produce in poly(q) time the set of degree

k polynomialsp : Fq → Fq having agreementt with w, providedt ≥ √
2kq. Moreover the number of such

polynomials is at most2q/t.

2.2 Hitting set generators and ordinary dispersers

We useUm for the random variable uniformly distributed on{0, 1}m. If X is a set, we sometimes also use
X to denote the random variable that is uniform overX.

Definition 2.3. LetZ be a random variable distributed on{0, 1}m. We say that a functionD : {0, 1}m →
{0, 1} “ ε-catches”Z if

|Pr[D(Um) = 1]− Pr[D(Z) = 1]| > ε.

In the special case thatPr[D(Z) = 1] = 0, we say thatD “ ε-avoidsZ”.

In this paper we will always be in the aforementioned special case, since we are discussing one-sided
objects (HSGs and dispersers). Replacing “ε-avoids” with “ε-catches” everywhere in the paper yields the
two-sided version of all of the definitions, theorems and proofs, with the exception of one place in the proof
of Theorem 4.1 where we use the one-sidedness critically.

Definition 2.4. An ε-HSG is a function

H : {0, 1}t → {0, 1}m

such that no sizem circuit D : {0, 1}m → {0, 1} ε-avoidsH(Ut).

This means that every sizem circuit D that accepts more than anε fraction of its inputs, also accepts
H(y) for somey. We will construct HSGs from hard functions: given ann-bit string x that is the truth
table of a function requiring circuits of sizek, we will use it to construct a HSGHx. In discussing such a
construction, we taken as the “main” size parameter, and measure the other parameters as functions ofn. It
has become customary to refer to families ofε-HSGs that for everyk = k(n) have parameterst ≤ O(log n)
andm ≥ kδ for some constantδ > 0 asoptimal, because they give rise to hardness vs. randomness tradeoffs
that are optimal up to a polynomial. See the discussion of this point in [ISW03].

For reference, we give the standard definition of a(k, ε)-disperser before stating the more complicated
definition of a reconstructive disperser that we will need for this paper.

Definition 2.5. A (k, ε)-disperseris a function

E : {0, 1}n × {0, 1}t → {0, 1}m

such that for all subsetsX ⊆ {0, 1}n with |X| > 2k, no circuitD : {0, 1}m → {0, 1} ε-avoidsE(X, Ut).
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parameter interpretation

n length of source string
t disperser seed length
m disperser output length
d advice function seed length
a advice length
b block length
ε disperser error
δ reconstruction procedure success probability

Table 1: The eight parameters of a reconstructive disperser.

2.3 Reconstructive dispersers

We now define the central object, which we call a reconstructive disperser. It has more parameters than one
would prefer, but keeping track of all of these parameters will make the composition much easier to state.
For reference, in Table 1, we list the parameters of a reconstructive disperser together with their meanings.

Definition 2.6. A (n, t, m, d, a, b, ε, δ)-reconstructive disperseris a triple of functions:

• the “disperser” functionE : {0, 1}n × {0, 1}t → {0, 1}m

• the “advice” functionA : {0, 1}n × {0, 1}d → {0, 1}a

• the randomized2 oracle “reconstruction” procedureR : {0, 1}a × [n/b] → {0, 1}b

that satisfy the following property: for everyD : {0, 1}m → {0, 1} andx ∈ {0, 1}n for whichD ε-avoids
E(x,Ut), we have

∀i ∈ [n/b] Pr
w

[RD(A(x,w), i) = xi] ≥ δ. (1)

Herexi refers to thei-th b-bit block inx. Whenb = n we drop the second argument toR.

Note that in this definition there is no reference to the parameter “k” that occurs in Definition 2.5. The
idea is that if(E, A, R) is a reconstructive disperser, thenE must be a(k, ε)-disperser fork slightly larger
thana, because relative toD, many stringsx in the sourceX have descriptions of size approximatelya (via
R). Similarly,E(x, ·) is anε-HSG whenx is the truth table of a function that does not have sizek circuits, for
k slightly larger thana plus the running time ofR. This is because relative toD, and givena bits of advice,
R can be used to compute any specified bit ofx. See Theorems 2.8 and 2.9 for formal statements of these
assertions. We remark that both proofs work by amplifying the success probability of the reconstruction
procedureR (by repetition), which produces a new procedure that with positive probability succeeds on
all b-bit blocks ofx simultaneously, in contrast to the definition above which demands only that for each
block, the procedure succeeds with probabilityδ. The former requirement (that the reconstruction procedure
succeed on all blocks simultaneously) may seem more natural, but the weaker requirement in Definition 2.6
will be more convenient to work with, and can be converted with relative ease to the stronger one, as in the
proofs of Theorems 2.8 and 2.9 (or in a randomness-efficient manner via Lemma 2.10).

2When we refer to a “randomized” function, we mean a functionf that takes an extra argument which is thought of as random
bits. We refrain from explicitly writing the second argument; however wheneverf occurs within a probability, we understand that
the probability space includes the randomness off .
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The parameterb interpolates between the two types of reconstructivity. Whenb = n, the reconstruction
procedure outputs all ofx. A reconstruction procedure of this type running in time poly(n) is explicitand is
often implied by disperser constructions whose proofs use the so-called “reconstruction proof paradigm.”

To obtain an optimal HSG, we needb to be small and the running time of the reconstruction procedure
to be poly(m, log n) (wherem < n may be as small as polylog n). Such a reconstruction procedure is
necessarilyimplicit, and it satisfies a much more stringent efficiency requirement that typically doesnot
follow from disperser constructions without modification. Note however that it is trivial to decreaseb by a
multiplicative factor without changing the running time ofR (and we will use this fact). The challenge is to
decreaseb while decreasing the running time ofR simultaneously.

There are three quite clean constructions [Tre02, TSZS01, SU05] of reconstructive dispersers known for
a certain “easy” setting of the parameters. By “easy,” we mean here that the advice length is at mostnγ for
some constantγ < 1, while the disperser output length isnβ for some constantβ > 0. The original goal in
these three works was to construct extractors (as compared to our target object, a HSG), and then it becomes
important to minimizeγ− β. It is the pursuit of this objective that made the original constructions and their
parameter choices somewhat delicate; without this constraint, the constructions are fairly straightforward —
see Section 6.

Theorem 2.7 ([Tre02, TSZS01, SU05]).There exist constants1 > γ > β > 0 such that for everyn and
ε ≥ n−β there is a

(n, t = O(log n),m = nβ, d = O(log n), a = nγ , b = n, ε, δ = 2/3)

reconstructive disperser(E,A, R) with the running time ofE, A, R at most poly(n).

For the proof, see Section 6, which outlines the three constructions in detail.
Note that these constructions arenot sufficient to produce HSGs directly, because the running time of

the reconstruction procedureR is by itself far greater than the trivial upper bound on the circuit complexity
of a function whose truth table has sizen, so we cannot get the required contradiction.

However, when the running time ofR is much smaller than the input lengthn, reconstructive dispersers
arehitting set generators when their input is fixed to be a hard function.

Theorem 2.8. Let (E, A,R) be a
(n, t,m, d, a, b, ε, δ = 2/3)

reconstructive disperser, for whichR runs in timeT . Letx ∈ {0, 1}n be the truth table of a function that
cannot be computed by circuits of sizek. There is a universal constantc for which: ifk > c(log n)(Tm+a),
thenHx(·) = E(x, ·) is anε-HSG.

Proof. If E(x, ·) is not the claimed HSG, then there is a sizem circuit D : {0, 1}m → {0, 1} thatε-avoids
E(x,Ut). By the definition of reconstructive dispersers we have:

∀i ∈ [n/b] Pr
w

[RD(A(x,w), i) = xi] ≥ 2/3.

We repeat the reconstructionΘ(log n) times with independent randomw’s and take the majority outcome.
For a giveni, the probability that this fails to producexi is less than1/n by Chernoff bounds. By a union
bound, the probability that we fail on anyi is strictly less than one. Thus we can fix the random bits used
in this procedure so that we correctly producexi for all i. We hardwireA(x,w) for the chosenw’s. The
resulting circuit has sizec(log n)(Tm + a) which contradicts the hardness ofx.
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Essentially the same argument shows that reconstructive dispersers are indeed a special case of ordinary
dispersers (a more efficient conversion is possible if an error-correcting code is applied to the source, but
that is not important for this paper):

Theorem 2.9. Let (E, A,R) be a
(n, t,m, d, a, b, ε, δ = 2/3)

reconstructive disperser. Then there is a universal constantc for which: E is a (k = ac log n, ε)-disperser.

Proof. Fix a functionD : {0, 1}m → {0, 1}. Let x be a string for whichD ε-avoidsE(x,Ut). Following
the proof of Theorem 2.8, we consider the randomized procedure that runs the reconstructionΘ(log n) times
with independent random seeds and takes the majority outcome. As argued in the proof of Theorem 2.8,
there is some choice of randomw’s (and associatedA(x,w)’s) for which the procedure correctly produces
xi for all i. TheseA(x,w)’s comprise a description ofx, of lengthac log n for some universal constantc.

We conclude that at mostK = 2ac log n stringsx have the property thatD ε-avoidsE(x,Ut). So, if
X ⊆ {0, 1}n satisfies|X| > K, thenD does notε-avoidE(X,Ut), and this holds for allD, soE is the
claimed disperser.

2.4 Amplifying the success probability of the reconstruction procedure

The proofs of Theorems 2.8 and 2.9 work by amplifying the success probability of the reconstruction pro-
cedure by repetition. In the rest of the paper we will need a similar amplification, but one that is more
randomness-efficient. The next lemma achieves this using pairwise independence:

Lemma 2.10 (increasingδ). Suppose(E, A, R) is a

(n, t, m, d, a, b = n, ε, δ)

reconstructive extractor. For everyα > 0, we can convert(E, A,R) into a

(n, t,m, d′ = O(d + log(pn)), a′ = O(pa), b = n, ε, δ′ = 1− α)

reconstructive extractor(E,A′, R′), wherep = δ−1α−1. The running time ofA′ is at most poly(p, n) times
the running time ofA, and the running time ofR′ is at most poly(p, n) times the running time ofR.

Proof. Setr = 2p, and letY1, Y2, . . . , Yr be pairwise independent random variables over{0, 1}d. We will
use an explicit construction of such a space that can be sampled usingu = O(d + log r) random bits3, and
we denote byYi(w) the value of random variableYi when sampling from the space withw as the random
bits. LetC : {0, 1}n → Fq

q be a Reed-Solomon code (which we will use as a hash function family) with
q ≥ 2rn/α.

We defineA′ : {0, 1}n × {0, 1}d′ → {0, 1}a′ as follows:

A′(x; w ∈ {0, 1}u, j ∈ Fq) = (A(x, Y1(w)), A(x, Y2(w)), · · · , A(x, Yr(w)), C(x)j , j).

In other words,A′ simply concatenates the output ofr different runs ofA using pairwise independent seeds,
and appends a hash ofx.

Our new randomized oracle procedureR′ : {0, 1}a′ → {0, 1}n is defined as follows:

3One construction with these parameters is as follows. LetF be the field with2d elements, and choose` = 1+d(log(r+1))/de.
Picka ∈ F` at random, and defineYi =

P
j ajb

(i)
j , where theb(i) are distinct vectors inF` whose first coordinate is 1.
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• On input(z1, z2, . . . , zr, y, j), runRD(z1), RD(z2), . . . , RD(zr)

• Select anỳ for whichC(RD(z`))j = y, and outputRD(z`). If there is no such̀, output anything.

In other words,R′ runs the original reconstruction procedureR on each of ther concatenated advice strings,
and uses the hash ofx to select which of the reconstructions to output.

We need to prove that this works. FixD : {0, 1}m → {0, 1} andx ∈ {0, 1}n for which D ε-avoids
E(x,Ut). We want to show:

Pr
w∈{0,1}u,j∈Fq

[R′D(A′(x;w, j)) = x] ≥ 1− α.

We first argue that the probability overw ∈ {0, 1}u thatx fails to appear among

RD(A(x, Y1(w))), RD(A(x, Y2(w))), . . . , RD(A(x, Yr(w)))

is small. The expected number of occurrences ofx in this list is2/α. By Chebyshev, the probability that the
number of occurrences is 0 is at mostα/2.

Next, we argue that ifx is in the list, then the probability of outputting a string that is notx is small.
For everyx′ 6= x in the list,Prj∈Fq [C(x′)j = C(x)j ] ≤ n/q, since the Reed-Solomon codeC has relative
agreement at mostn/q. By a union bound,

Pr
j∈Fq

[∃x′ 6= x C(x′)j = C(x)j ] ≤ rn/q ≤ α/2.

We conclude thatPrw∈{0,1}u,j∈Fq
[R′D(A′(x; w, j)) = x] ≥ 1− α, as required.

3 Intuition for the composition

From Theorem 2.8 we can see that a reconstructive disperseris a HSG, which would beoptimalif the advice
lengtha and the running time of the reconstruction procedureR can be made to be only polynomially large
in the output lengthm. But starting with the constructions of Theorem 2.7, we only know how to achieve
that for largem = nΩ(1). Rather than try to preserve these parameters while makingm smaller and smaller
(which is a natural approach), our goal in the composition will be to maintain the absolute parameters of
advice lengtha = poly(m) = poly(n) and reconstruction procedure running timeT = poly(m) = poly(n),
while making theinput lengthlarger and larger — and to emphasize that the input length of the composed
object is large we will rename itN . Specifically, our goal will be to obtain (after several compositions) a
reconstructive disperser with input lengthN À n, advice length poly(n), andR’s running time poly(n),
while maintaining an output length of at leastnΩ(1). Note that to achieve this running time forR, wemust
achieve implicit reconstructivity in the final object.

We now outline the composition at a high level. In this discussion we focus almost entirely on the
advice and reconstruction functions. Our starting point is the “simple” constructions of Theorem 2.7. Note
thatb = n in those constructions so we drop the second argument of the reconstruction procedureR, and
then it simply mapsa = nγ bits ton bits.

We make two unreasonable simplifying assumptions for the purpose of this exposition, and later describe
how to remove them. First, we assume that thatd = 0, i.e., the advice functionA just mapsn bits toa = nγ

bits. Second, we assume that the reconstruction procedureR can function properlywithout access to the
oracleD, and thus it just mapsa bits to n bits. It is then useful to think of the advice functionA as a
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procedure that “compresses” an arbitraryn-bit stringx into nγ bits and the reconstruction procedureR as a
procedure that “decompresses” thenγ-bit string back to the originaln-bit stringx.

So we have the ability to compress fromn bits down tonγ bits. Suppose we want to be able to compress
from N À n down tonγ bits. A natural thing to do is to divide theN -bit string intoN/n substrings of size
n, and useA to compress each of the substrings. The resulting string has length(N/n)nγ ; we can repeat
the processO(log N/ log n) times until we get down to lengthnγ . To decompress, we useR to reverse the
process. A nice side-effect of this scheme is that when we knowwhichn-bit substring of the originalN bit
string we wish to recover, we only need to invokeR onceat each level (as opposed to, e.g.,N/n times at
the bottom level, if we insist on recovering the entire originalN bit string). In the formalism of Definition
2.6, this means that we can takeb = n, and haveR only recover the specifiedb-bit block of the input string.

The above description specifies an advice function that maps anN -bit stringx down tonγ bits, and a
reconstruction procedure that recovers any specifiedn-bit substring ofx from thosenγ bits. A crucial obser-
vation is that the new reconstruction procedure hasb = n ¿ N , and it runs in time poly(n, log N/ log n) ¿
N , since it invokesR once for each of theO(log N/ log n) levels. Thus we have achieved our goals related
to the advice function and reconstruction procedure : we have advice length poly(n), and a reconstruction
procedure running in time poly(n). We have yet to describe the disperser function of our composed object,
which we are aiming to have outputnΩ(1)-bit strings. We now describe the disperser function, in the process
of showing how to remove the two simplifying assumptions.

Our first simplifying assumption was that the advice function seed lengthd = 0, when in fact it must be
O(log n). Whend = O(log n) the “compression” functionA produces2d = poly(n) candidatecompressed
versions ofx, with the property that with high probability over a choice of candidates, the “decompression”
procedureR succeeds. In the actual construction, we will pick an independent seed of lengthd = O(log n)
for each level which determines which candidate we work with at that level (for a total seed length of
d′ = O(log N)). The overall compression function thus produces2d′ = poly(N) candidates. By making
the probability thatR fails at each individual level small enough (i.e., less than1/(# of levels)), we ensure
that the overall decompression (which invokes the reconstruction procedureR once at each level) works
with constant probability when run with a random candidate at each level, which is what is required.

Our second simplifying assumption was to ignore the fact thatR needs oracle access to a functionD
with certain properties to succeed. To deal with this, we simply run the disperserE on everyn-bit string that
we “compress” (and hence may need the capability to decompress) at any level in the entire composition.
We define the overall disperserE′ so that its outputs are the union of the outputs of each invocation of
E. Recalling Definition 2.6, we see that the reconstruction procedureR′ for the composed object is only
required to work relative toD that ε-avoids the output ofE′. Such aD alsoε-avoids the output of each
invocation ofE we have performed4. Our overall reconstruction procedureR′ has oracle access toD, and
therefore, each invocation of the “decompression” functionR has oracle access toD (which ε-avoids the
output of the associatedE) — and this is exactly what is required to enable the individual “decompressions”
to succeed at all levels.

Both the disperser functionE′ and the advice functionA′ of the composed object have asymptotically
optimal seed lengths ofO(log N). This is because at each level we need a freshO(log n) bit seed forE and
A coming from Theorem 2.7, and there areO(log N/ log n) levels.

The formal analysis of a single level of this composition is the content of Theorem 4.1. Corollary 4.2
and Theorem 5.1 apply this compositionO(log N/ log n) times to the reconstructive dispersers of Theorem
2.7 to obtain the final result.

4This is the single place where we rely critically on the fact that we are dealing with “ε-avoids,” rather than “ε-catches.”
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Comparison with [ISW99, ISW00]. As noted, our composition is similar to the one used in [ISW99,
ISW00], which can also be understood in the language of reconstructive dispersers. Adopting the intuition
of “compression” and “decompression” from above, one can view [ISW99, ISW00] as defining the advice
function of the composed object to be the original advice function run repeatedly: i.e., in the first application
of the advice function, the original stringx is compressed fromn bits down tonγ bits, in the second
application of the advice function to this newshorterstring, it is compressed further to(nγ)γ bits, and so on.
(In contrast, in this paper, we only ever apply the advice function to strings of lengthn). The reconstruction
procedure can be used to “decompress” by applying it repeatedly to the final advice string, but in order
for the overall object to achieve implicit reconstructivity, one must demand that the original reconstructive
disperser possess implicit reconstructivity from the start. In addition, when things are organized this way,
each invocation of the reconstruction procedure associated with a lower level in the composition triggers
recursive invocations of the reconstruction procedures for higher levels. The result is a superpolynomial
degradation of the running time of the overall reconstruction procedure if the number of levels is super-
constant.

So one might say that the overall strategy in [ISW99, ISW00] was to take an initial construction possess-
ing implicit reconstructivity [NW94, STV01], whose only failing was that the advice length was much larger
than poly(m), and repeatedly compress until the advice length became poly(m). In contrast, our strategy in
this paper is to take an initial construction with the proper relationship between output length, advice length,
and reconstruction procedure running time, but which only works for largem = nΩ(1) (Theorem 2.7) and
compose it to obtain a new construction with a much largerinput lengthN . This method only requires
explicit reconstructivity to start (implicit reconstructivity is a natural side-effect of the composition), and
avoids the superpolynomial loss associated with the recursive invocation of the reconstruction procedure in
[ISW99, ISW00]. It should be pointed out, however, that [ISW00] produces a two-sided object (a PRG) via
composition, while our composition seems to only work to produce a one-sided object (a HSG).

4 Analysis of the composition

Our main composition operation for reconstructive dispersers increasesn. More specifically, it roughly
squaresn, while multiplying each of the two seed lengths (t andd) by a constant. The final object inherits
the advice lengtha from the first reconstructive disperser, and the block lengthb from the second.

Theorem 4.1 (composition of reconstructive dispersers).Suppose(E1, A1, R1) is a

(n1, t1,m, d1, a1, b1, ε, δ1)

reconstructive disperser and(E2, A2, R2) is a

(n2, t2,m, d2, a2, b2, ε, δ2)

reconstructive disperser, witha2 = b1. Setr = n1/b1. Then(E, A, R) defined as:

E(x1, . . . , xr;w2, y, p ∈ [r + 1]) =
{

E1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), y) if p = r + 1
E2(xp, y) otherwise

A(x1, . . . , xr;w1, w2) = A1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), w1)
RD(z; i1 ∈ [r], i2 ∈ [n2/b2]) = RD

2 (RD
1 (z, i1), i2)

is a(
n =

n1n2

a2
, t = max(t1, t2) + d2 + log(r + 1),m, d = d1 + d2, a = a1, b = b2, ε, δ = δ1 + δ2 − 1

)
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reconstructive disperser.

A few words of explanation are in order. The input for the composed object isx = x1, x2, . . . , xr, where
thexi coincide with the blocksR will need to output. The functionA is very simple: it just concatenates
the output ofA2 run on each ofx1, x2, . . . , xr, and runsA1 on the concatenated string. The functionR
is similarly simple; it reverses the process: it takes the output ofA and first usesR1 to extract the advice
associated withxi1 , and then usesR2 to actually recover (thei2-th block of)xi1 . Finally E uses part of its
seed,p, to decide either to runE2 on inputxi for somei, or to runE1 on the concatenated advice string on
whichA1 is run.

Proof. (of Theorem 4.1) FixD andx = x1, x2, . . . , xr for which D ε-avoidsE(x1, . . . , xr; Ut). Also fix
i = i1i2, wherei1 ∈ [r] andi2 ∈ [n2/b2].

From the fact thatD ε-avoidsE(x1, . . . , xr;Ut), we know that

∀w2 D ε-avoidsE1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), Ut1) (2)

∀p ∈ [r] D ε-avoidsE2(xp, Ut2) (3)

From (2) and the definition of reconstructive dispersers, we get that for allw2:

Pr
w1

[RD
1 (A1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), w1), i1) = A2(xi1 , w2)] ≥ δ1. (4)

From (3) and the definition of reconstructive dispersers, we get that:

Pr
w2

[RD
2 (A2(xi1 , w2), i2) = (xi1)i2 ] ≥ δ2. (5)

The probability over a random choice ofw1 andw2 that both events occur is at leastδ1 + δ2 − 1. If both
events occur, then:

RD(A(x1, . . . , xr; w1, w2); i1, i2) = RD
2 (RD

1 (A(x1, . . . , xr; w1, w2), i1), i2) (6)

= RD
2 (RD

1 (A1(A2(x1, w2) ◦ · · · ◦A2(xr, w2), w1), i1), i2) (7)

= RD
2 (A2(xi1 , w2), i2) = (xi1)i2 . (8)

where (6) just applies the definition ofR, (7) applies the definition ofA, and (8) follows from our assumption
that the events in (4) and (5) both occur.

We conclude that
Pr

w1,w2

[RD(A(x; w1, w2), i) = xi] ≥ δ1 + δ2 − 1,

which is what was to be shown.

We now apply Theorem 4.1 repeatedly. We start with a reconstructive disperser(E, A,R) and compose
it with itself. In subsequent repetitions, we apply Theorem 4.1, taking the reconstructive disperser from
the previous repetition as(E1, A1, R1), and the original(E,A, R) as the second reconstructive disperser
(E2, A2, R2).

Corollary 4.2. Fix N , n, ε, and constantγ < 1. Let(E, A, R) be a

(n, t1 = O(log n), m, d1 = O(log n), a = nγ , b = a, ε, δ1 = 1− (1/ log N))
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reconstructive disperser with the running time ofE, A,R at mostnc1 for a universal constantc1. Then

(E′, A′, R′) obtained by
(

log N
(1−γ) log n

)
applications of Theorem 4.1 is a

(N, t = O(log N),m, d = O(log N), a = nγ , b = a, ε, δ = 1− o(1))

reconstructive disperser with the running time ofE′ andA′ at mostN c, and the running time ofR′ at most
nc for a universal constantc.

Proof. We claim that afteri compositions of(E,A, R) with itself, we obtain a
(
ni = ni−(i−1)γ , ti = t1 + (i− 1)(d1 + log(n1−γ + 1)),m, di = id1, a, b, ε, δi = i(δ1 − 1) + 1

)

reconstructive disperser(Ei, Ai, Ri). This clearly holds fori = 1.
To see that it holds for arbitraryi, consider composing(Ei−1, Ai−1, Ri−1) with (E, A, R). By Theorem

4.1 and our inductive assumption, we get(Ei, Ai, Ri) with parameters:

ni = ni−1n/a = ni−1−(i−2)γn/nγ = ni−(i−1)γ

ti = max(ti−1, t1) + d1 + log(n1−γ + 1)
= [t1 + (i− 1)(d1 + log(n1−γ + 1))] + d1 + log(n1−γ + 1)
= t1 + i(d1 + log(n1−γ + 1))

di = di−1 + d1 = id1

δi = δi−1 + δ1 − 1 = (i− 1)(δ1 − 1) + δ1 = i(δ1 − 1) + 1

as claimed. Note thatni > ni(1−γ). Thus when

i =
log N

(1− γ) log n
,

we haveni ≥ N , and alsodi = O(log N) andti = O(log N). Also note that for sufficiently largen

δi = 1− i(1/ log N) = 1− 1
(1− γ) log n

= 1− o(1).

Finally, letT (Ei), T (Ai), T (Ri) denote the running times of the functionsEi, Ai, Ri respectively. From
the specification of the composition in Theorem 4.1, we see that

T (Ei) ≤ max(T (Ei−1) + ni−1T (A), T (E))
T (Ai) ≤ T (Ai−1) + ni−1T (A)
T (Ri) ≤ T (Ri−1) + T (R),

and then it is easy to verify by induction thatT (Ei), T (Ai) ≤ ini+c1 andT (Ri) ≤ inc1 . Plugging in
i = O(log N/ log n) gives the claimed running times.

5 Optimal hitting set generators

Now, we can use any one of the constructions of Theorem 2.7 in Corollary 4.2 to obtain an optimal HSG
for arbitrary hardness. Specifically, our HSG is built from theN -bit truth table of a function that is hard for
circuits of sizek, has a seed length ofO(log N), and outputskΩ(1) bits, while running in time poly(N). As
usual, we assumeN < 2kη

for any constantη; as otherwise we could just output the seed.
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Theorem 5.1. Letx be theN -bit truth table of a function that cannot be computed by circuits of sizek, and
setn = k1/c for a sufficiently large constantc. Let(E, A, R) be a

(n, t = O(log n),m = nβ, d = O(log n), a = nγ , b = n, ε, δ = 2/3)

reconstructive disperser from Theorem 2.7.
If (E′, A′, R′) is the reconstructive disperser obtained by applying Lemma 2.10 withα = 1/ log N and

then applying Corollary 4.2, thenHx(·) = E′(x, ·) is anε-HSG against circuits of sizem = kβ/c.

Proof. After applying Lemma 2.10 withα = 1/ log N , we have a
(

n, t = O(log n),m = nβ, d′ = O(log n), a′ = (log N)nγ , b = n, ε, δ′ = 1− 1
log N

)

reconstructive disperser.
By the assumption onN stated before the theorem, we have thata′ ≤ nγ′ for some other constant

γ′ < 1. As noted following Definition 2.6, we can decreaseb from n to a′ trivially. Then, after applying
Corollary 4.2 we obtain a

(N,O(log N),m, O(log N), nγ′ , a′, ε, 2/3)

reconstructive disperser(E′, A′, R′), with the running time ofE′ andA′ at most poly(N) and the running
time ofR′ at mostnc1 .

To satisfy Theorem 2.8 we needc2 log N(nc1nβ +nγ′) < k, wherec1 andc2 are the universal constants
from Corollary 4.2 and Theorem 2.8, respectively. We choosec large enough to ensure that this holds.
Theorem 2.8 then states thatE′(x, ·) is anε-HSG against circuits of sizem = nβ = kβ/c.

As noted in the introduction, if we use Trevisan’s extractor [Tre02] as our starting object, then the
entire construction requires only two ingredients: (1) any good list-decodable error-correcting code and (2)
combinatorial designs (see Subsection 6.2). In particular there isno hardness amplification or implicit list-
decoding hidden in the construction, precisely because we are able to work with a starting object that only
hasexplicit reconstructivityrather than implicit reconstructivity (the latter type of reconstructivity typically
has required implicit list-decoding in some form or another).

6 Specific constructions

As stated in Theorem 2.7, there are three relatively straightforward constructions of reconstructive dispersers
that are sufficient for our purposes. Here we describe these constructions in our language. The construction
in Subsection 6.2 is intended to be a complete proof of Theorem 2.7. The presentations of the following two
constructions are detailed sketches; the reader should consult the original papers [TSZS01, SU05] to obtain
full proofs.

6.1 Yao’s Lemma

We will make repeated use of a variant of Yao’s Lemma (the “moreover” part of the lemma is often not
stated as it was not important in past applications, but it is crucial here):

Lemma 6.1 ([Yao82]). Let Z be a random variable distributed on{0, 1}m and letD : {0, 1}m → {0, 1}
be a function thatε-avoidsZ. Then exists ani ∈ [m], and a functionP : {0, 1}i−1 → {0, 1} for which

Pr[P (Z1,...,i−1) = Zi] ≥ 1
2

+
ε

2m
.
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Moreover, there is a uniform randomized procedure to produceP from D, which succeeds with probability
at leastε/(8m2).

Proof. It is by now standard (see, e.g., the proof in [Tre02]) that there existsi ∈ [m], and bitsb0, b1 ∈ {0, 1},
for which

Pr
ci+1,...,cm

[b0 ⊕D(Z1...i−1, b1, ci+1, . . . , cm) = Zi] ≥ 1
2

+
ε

m
.

To obtainP from D, pick b0, b1, i, andci+1, . . . , cm uniformly at random, and defineP (z1, . . . , zi−1) =
b0 ⊕ D(z1, . . . , zi−1, b1, ci+1, . . . , cm). The probabilityb0, b1, i are correct is1/(4m) and an averaging
argument shows that with probability at leastε/(2m) the randomly chosenc’s yield the requiredP .

6.2 The Trevisan reconstructive disperser

In this subsection, we describe Trevisan’s extractor [Tre02] (based on [NW94]) in our language, showing
that it is a reconstructive disperser satisfying Theorem 2.7. Fixn,m = nβ, ε ≥ m−1, for a constantβ < 1
to be specified later. There are two ingredients to the construction:

• A binary error-correcting codeC : {0, 1}k̄=n → {0, 1}n̄ with n̄ = poly(k̄), and relative distance
at least1/2 − (ε/(4m))2. We require thatC has efficient encoding and efficient list-decoding from
relative radius1/2 − ε/(4m). Such a code is easy to obtain, e.g., by concatenating a Reed-Solomon
code with a binary Hadamard code, using brute-force list-decoding of the inner code and Lemma 2.2
to list-decode the outer code [GS00].

• A combinatorial design: subsetsS1, S2, . . . , Sm of a universe[t], for which |Si| = log n̄ for all i, and
|Si ∩ Sj | ≤ β log n. From [NW94] we have that such designs exist, fort = O(log n̄/β2), and that
they can be constructed deterministically in timeO(2tm) = poly(n).

The reconstructive disperser has three parts:

• The disperser functionE : {0, 1}n×{0, 1}t → {0, 1}m. Given inputx and seedy ∈ {0, 1}t, thei-th
output bit isC(x)[y|Si

] wherey|Si
denotes the restriction ofy ∈ {0, 1}t to the bit positions in the set

Si.

• The advice functionA : {0, 1}n × {0, 1}d=t → {0, 1}a. We are given an inputx and a seedw ∈
{0, 1}d. We output the following bits for everyi ∈ [m]: for eachj < i, restrictw to the bit positions
indexed bySj , alter the bit positions indexed bySj ∩ Si in all 2|Sj∩Si| possible ways, and for each,
use the resulting(log n̄)-bit string to index intoC(x), outputting that bit ofC(x). For eachi, this
produces at mostm(i − 1) output bits. Finally, we output the seedw for a total of at mosta = m3

output bits.

• The reconstruction functionR : {0, 1}a → {0, 1}n, which works as follows. We are given access
to D thatε-avoidsZ = E(x,Ut). By Lemma 6.1 we can convertD into a next-bit predictorP with
probabilityε/(8m2). That is,

Pr
w

[P (E(x, w)1, . . . , E(x, w)i−1) = E(x,w)i] ≥ 1
2

+
ε

2m
.

Substituting the definition ofE:

Pr
w

[
P (C(x)[w|S1

] . . . C(x)[w|Si−1
]) = C(x)[w|Si

]
] ≥ 1

2
+

ε

2m
.
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Writing w as(w′, w′′), wherew′ is the portion ofw outside the positions inSi andw′′ is the portion
of w insideSi, we have:

Pr
w′,w′′

[
P (C(x)[(w′, w′′)|S1

] . . . C(x)[(w′, w′′)|Si−1
]) = C(x)[(w′, w′′)|Si

]
] ≥ 1

2
+

ε

2m
.

By an averaging argument, for at least anε/(4m) fraction of thew′, we have:

Pr
w′′

[
P (C(x)[(w′, w′′)|S1

] . . . C(x)[(w′, w′′)|Si−1
]) = C(x)[(w′, w′′)|Si

]
] ≥ 1

2
+

ε

4m
.

Note that(w′, w′′)|Si
is justw′′, and so this can be rewritten as:

Pr
w′′

[
P (C(x)[(w′, w′′)|S1

] . . . C(x)[(w′, w′′)|Si−1
]) = C(x)[w′′]

] ≥ 1
2

+
ε

4m
. (9)

Our reconstruction function is givenA(x,w), which contains the bits ofC(x) required to evaluateP
as above, for allw′′. In particular,A(x,w) containsC(x)[(w′, w′′)|Sj

] for all j < i. Whenever (9)
holds for somew′, the evaluations

rw′′ = P (C(x)[(w′, w′′)|S1
] . . . C(x)[(w′, w′′)|Si−1

])

form a stringr having1/2 + ε/(4m) relative agreement withC(x). We apply list-decoding to obtain
a list of L = O((4m/ε)2) strings (this upper bound on the list size is guaranteed by the Johnson
Bound), one of which isx (when (9) holds). We output a random one of those strings. Altogether

Pr
w

[RD(A(x,w)) = x] ≥ ε

8m2
· ε

4m
· 1
L

,

where the first term on the right-hand-side is the probability that we produce a good next-bit predictor
P , the second term is the probability thatw = (w′, w′′) is good (i.e. that (9) holds forw′), and the
third term is the probability that we selectx from the list of sizeL. Note that the right-hand-side is at
leastm−c1 for some universal constantc1.

Finally, we apply Lemma 2.10 withα = 1/3 andδ = m−c1 to obtain a

(n, t = O(log n),m = nβ, d = O(log n), O(mc1+3), b = n, ε, 2/3)

reconstructive disperser. Choosingβ < 1/(c1 + 3) satisfies the statement of the theorem.

6.3 The Ta-Shma-Zuckerman-Safra reconstructive disperser

In this subsection, we describe a quite different, algebraic construction [TSZS01] in our language. Since
we are only aiming to satisfy Theorem 2.7, we can choose parameters more liberally than in the original
presentation of [TSZS01]. Fixn,m = nβ, ε ≥ m−1, for a constantβ to be specified later. Setq = n4. We
will use the following error-correcting codes:

• A bivariate (i.e.,̀ = 2) Reed-Muller codeC1 : Fk̄=n/ log q
q → (Fq)q2

with total degreeh = 2
√

n.

• A binary Hadamard codeC2 : {0, 1}log q → {0, 1}q.

The reconstructive disperser has three parts:
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• The disperser functionE : {0, 1}n × {0, 1}t → {0, 1}m. Given inputx and a seed consisting of
y1 ∈ F 2

q andy2 ∈ [q], thei-th output bit is

C2(C1(x)[y1 + (i, 0)])[y2].

• The advice functionA : {0, 1}n×{0, 1}d → {0, 1}a. We are given an inputx and a seedw ∈ {0, 1}d.
We vieww as specifying a random lineLw : Fq → F2

q , together with a random elementpw ∈ Fq (so
d = 5 log q = O(log n)). We outputC1(x) restricted toLw + (i, 0) for i = 1, . . . , (m − 1) (such
a restriction is a degreeh polynomial and thus can be specified byh + 1 elements ofFq), as well as
C1(x)[Lw(pw)+(i, 0)] for i = m, m+1, . . . ,m+h. Finally, we output the seedw, for a total output
length ofa = (h + 1)m log q + d.

• The reconstruction functionR : {0, 1}a → {0, 1}n, which works as follows. We are given access to
D thatε-avoidsZ = E(x,Ut), andA(x,w) for a randomly chosenw. By Lemma 6.1 we can convert
D into a next-bit predictorP with probability ε/(8m2), and then by standard techniques (see, e.g,
[SU05]),P can be converted to a next-element predictorP ′ : Fi−1

q → Fq for which:

Pr
y1

[
P ′(C1(x)[y1 + (1, 0)], . . . , C1(x)[y1 + (i− 1, 0)]) = C1(x)[y1 + (i, 0)]

]
= ρ ≥ Ω(ε/m)2.

Note thatA(x,w) contains the portion ofC1(x) required to evaluateP ′ to obtain “predictions” for
C1(x) restricted to the lineLw +(m, 0). We expectρq correct predictions along this line, and because
the points on lineLw + (m, 0) are pairwise independent, with probability at least1−O(1/(ρq)) we
obtain at leastρq/2 correct predictions. Efficient list-decoding from these data points is possible as
long asρq/2 ≥ √

2hq via Lemma 2.2, and this inequality holds by our choice ofq andh. We thus
obtain a list of4/ρ candidates forC1(x) restricted toLw + (m, 0). Now, A(x,w) also contains the
value ofC1(x) at a random pointpw along this line. With probability at least1 − O(ρ−2h/q), the
correct candidate in the list is the only one agreeing with this random value.

Having learnedC1(x) restricted to lineLw +(m, 0), we have recovered the portion ofC1(x) required
to repeat the process, to learnC1(x) restricted toLw +(m+1, 0). After h repetitions we have learned
enough ofC1(x) to interpolate and recoverx. The probability we succeed on allh repetitions is at
least1−O(h2ρ−2/q) by a union bound, and this probability is at least1/2 by our choice ofq andh.

Altogether,

Pr
w

[RD(A(x,w)) = x] ≥ ε

8m2
· 1
2

where the first term on the right-hand-side is the probability that we produce a good next-bit predictor,
and the second term is the probability overw that the procedure above outputsx. Note that the right-
hand-side is at leastm−c1 for some universal constantc1.

As in the previous subsection, we apply Lemma 2.10 withα = 1/3 andδ = m−c1 to obtain a

(n, t = O(log n),m = nβ, d = O(log n), O(mc1a), b = n, ε, 2/3)

reconstructive disperser. Sincea = O(mn1/2 log n), we can chooseβ < (1/2)/(c1 + 1) to satisfy
the statement of the theorem.
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6.4 The Shaltiel-Umans reconstructive disperser

In this subsection, we describe the construction of [SU05] in our language. In the present context, this
construction is quite similar to the one in the previous subsection – the difference between the two construc-
tions is crucial when viewing them as extractor constructions, but not important for the purpose of obtaining
optimal HSGs via the results in this paper.

As above, we are only aiming to satisfy Theorem 2.7, so we choose parameters more liberally than
in the presentation in [SU05]. Fixn,m = nβ, ε ≥ m−1, for a constantβ to be specified later. We also
have a parameter̀, which will be specified later. Seth = `n1/` andq = n10. We will use the following
error-correcting codes:

• A `-variate Reed-Muller codeC1 : Fk̄=n/ log q
q → Fq`

q , with total degreeh.

• A binary Hadamard codeC2 : {0, 1}log q → {0, 1}q.

The reconstructive disperser has three parts:

• The disperser functionE : {0, 1}n × {0, 1}t → {0, 1}m. Let α : F`
q → F`

q be a generator of the
multiplicative group ofFq` . Given inputx and a seed consisting ofy1 ∈ F `

q andy2 ∈ [q], the i-th
output bit is

C2(C1(x)[αiy1])[y2].

• The advice functionA : {0, 1}n×{0, 1}d → {0, 1}a. We are given an inputx and a seedw ∈ {0, 1}d.
We vieww as specifying two random degreec = Θ(`) curvesL1

w : Fq → F`
q andL2

w : Fq → F`
q,

interleaved in the manner described in [SU05] (sod = 2(c + 1)` log q = O(`2 log n)). We output
C(x) restricted toL1

w ◦ αi andL2
w ◦ αi for i = 1, 2, . . . , (m− 1); each restriction can be specified by

ch+1 elements ofFq. We also output the seedw, for a total output length ofa = 2(ch+1)m log q+d.

• The reconstruction functionR : {0, 1}a → {0, 1}n, which works as follows. We are given access to
D thatε-avoidsZ = E(x,Ut), andA(x, w) for a randomly chosenw. As in the previous subsection,
we use Lemma 6.1 to convertD into a next-bit predictorP with probabilityε/(8m2), and then into a
next-element predictorP ′ : Fi−1

q → Fq for which:

Pr
y1

[
P ′(C1(x)[α1y1], . . . , C1(x)[αi−1y1]) = C1(x)[αiy1]

]
= ρ ≥ Ω(ε/m)2.

As in the previous subsection,A(x,w) contains the portion ofC1(x) required to evaluateP ′ to obtain
“predictions” forC1(x) restricted to the curvesL1

w ◦αm andL2
w ◦αm. The analysis in [SU05] shows

that by list-decoding via Lemma 2.2 and pruning the lists according to the intersections of these two
curves with portions ofC1(x) contained inA(x,w), we can learn the restriction ofC1(x) to these
two curves with probability at least1− 1/(4q`).

This sets us up to repeat the process to learn the restrictions ofC1(x) to the curvesL1
w ◦ αm+1 and

L2
w ◦αm+1, and then curvesL1

w ◦αm+2 andL2
w ◦αm+2, and so on, until we have learned all ofC1(x),

from which we can recoverx. The probability that we succeed on all steps in this process is at least
1/2 by a union bound.

The analysis in [SU05] further shows that whenm = nΩ(1) (as it is here), we may choose` to be a
constant. This has the important consequence of ensuring that the advice seed lengthd = O(log n),
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and that the number of steps in the reconstruction procedure isq` = poly(n). As in the previous
subsection, we end up with

Pr
w

[RD(A(x,w)) = x] ≥ ε

8m2
· 1
2

where the right-hand-side is at leastm−c1 for some universal constantc1. We finally apply Lemma
2.10 withα = 1/3 andδ = m−c1 to obtain a

(n, t = O(log n),m = nβ, d = O(log n), O(mc1a), b = n, ε, 2/3)

reconstructive disperser. Sincea = O(mn1/` log n), we can chooseβ < (1−1/`)/(c1 +1) to satisfy
the statement of the theorem.

7 Open problems

We mention briefly two interesting open problems related to this work.
First, is it possible to extend these results to two-sided objects, by giving a similar composition for

reconstructiveextractors? Because implicit reconstructivity of extractors is closely related to efficientim-
plicit list-decodability, it is possible that such a result would give a new generic construction of implicitly
list-decodable codes (in the sense of [STV01]) fromanygood list-decodable codes.

Second, is it possible to extend our result to the non-deterministic setting? Here there is an important
technical issue ofresiliencyof HSGs discussed in [GSTS03]; obtaining a resilient HSG construction would
lead to so-called “low-end” uniform hardness vs. randomness tradeoffs for the class AM. One possible route
to constructing low-end resilient HSGs against nondeterministic circuits is to construct high-end resilient
HSGs (typically an easier task) that possess the features needed to apply the composition in this paper
– namely an associated advice functionA(x,w) computable in polynomial time, withw having length
O(log n). In the currently known resilient construction [MV05],w has length much larger thanO(log n).

Acknowledgements. We thank Ronen Shaltiel for his comments on an early draft of this paper, and the
anonymous referees for numerous helpful suggestions.
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