Reconstructive Dispersers and Hitting Set Generators

Christopher Umaris
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

November 28, 2006

Abstract

We give a generic construction of an optimal hitting set generator (HSG) from any good “reconstruc-
tive” disperser. Past constructions of optimal HSGs have been based on such disperser constructions, but
have had to modify the construction in a complicated way to meet the stringent efficiency requirements
of HSGs. The construction in this paper uses existing disperser constructions with the “easiest” param-
eter setting in a black-box fashion to give new constructions of optimal HSGs without any additional
complications.

Our results show that a straightforward composition of the Nisan-Wigderson pseudorandom gener-
ator that is similar to the composition in works by Impagliazzo, Shaltiel and Wigderson in fact yields
optimal HSGs (in contrast to the “near-optimal” HSGs constructed in those works). Our results also
give optimal HSGs that do not use any form of hardness amplification or implicit list-decoding — like
Trevisan’s extractor, the only ingredients are combinatorial designs and any good list-decodable error-
correcting code.

*A preliminary version of this paper appeared in RANDOM 2005.

femail: umans@cs.caltech.edu. Supported by NSF CCF-0346991, BSF 2004329, a Sloan Research Fellowship, and an Okawa
Foundation research grant.

1 Introduction

Derandomization is a very active area within complexity theory, whose goal is to prove the existence of
generic and efficient deterministic simulations of probabilistic procedures. This general endeavor makes
sense in many different settings, as there are several meaningful choices for exact definitions of “efficient”
and “probabilistic procedure”. This paper focuses on the derandomization of probabilistic polynomial-time;
the ultimate goal in complexity terms is to prove BRRP.

A very natural route to proving BPE P is to construct @seudorandom generat¢PRG), which is a
deterministic procedure that stretches a short, truly random string (the “seed”) into a long “pseudorandom”
string that is indistinguishable from a truly random string by polynomial-time procedures. The output of
a PRG can thus be substituted for true randomness to obtain efficient simulations of BPP, by enumerating
over all seeds. However, the existence of a uniform family of PRGs useful for derandomizing BPP implies
circuit lower bounds that seem well beyond our current abilities to prove (and more recently, it has been
shown that BPP= P itself implies circuit lower bounds [KI04]). Thus, in the absence of circuit lower
bounds, the goal is to construct PR@®er a hardness assumpticand then we can hope for a family of
constructions that represent a “best-possible” tradeoff between the hardness assumption required and the
deterministic simulation implied by the PRG. This general “hardness vs. randomness” paradigm began with
[BM84, Yao82, NW94], and continued with a number of papers working toward a best-possible quantitative
tradeoff [IW97, STV01, ISW99, ISWO00, SU05, Uma03]. See the survey by Kabanets [Kab02] for a more
complete history and an account of the current state of derandomization research.

If one wishes to derandomize one-sided-error probabilistic decision procedures, RP, then the natural
associated derandomization object ifiding set generato(HSG) (see Definition 2.4). Surprisingly, it
was shown in [ACR98] (and refined in [ACRT99, BF99, GVWO00]) that HSGs suffice to derandomize BPP,
even though they are only “intended” for one-sided error. Optimal HSGs were first constructed in [SU05],
while optimal PRGs were first constructed in [Uma03]; here “optimal” means that, up to a polynomial,
the constructions cannot be improved without implying stronger hardness assumptions than were used to
construct them in the first place (see [ISWO03] for a more detailed justification of the term “optimal” in this
context).

In this paper we construct optimal HSGs, which, as noted above, suffice for optimal “hardness vs. ran-
domness” tradeoffs for BPP as well as RP . Our construction is cast as a completely generic procedure for
converting an object we call a “reconstructive disperser” into a HSG. The construction is arguably simpler
than previous constructions, and its modular description exposes certain useful features shared by known
constructions of reconstructive dispersers. Conceptually, it is interesting to view this work as another exam-
ple of the surprising connection between information-theoretic objects (e.g., dispersers) and computational
objects (e.g., HSGs) articulated by Trevisan [Tre02]. Our construction can also be appreciated for a number
of more technical reasons, which we outline now.

The two main objects we work with are hitting set generators (HSGs) — the one-sided variant of PRGs,
anddispersers— the one-sided variant of randomness extractors.

Informally, a HSG construction takes anbit truth table of a hard functiorf and converts it into a
collection of poly(n) shorterm-bit strings, with the property that every small circiitthat accepts at least
1/2 of its inputs, also accepts one of thesebit strings. The proof that a construction is indeed a HSG
typically gives an efficient way to convert a small circiiit on which the construction fails to meet the
definition into a small circuit computing, thus contradicting the hardnessof

Informally, a disperser takes anbit stringx sampled from a weak random source with sufficient min-
entropy and converts it into a collection of poly shorterm-bit strings, with the property that every circuit
D that accepts at least 1/2 of its inputs, also accepts one of thdsestrings. Trevisan’s insight [Tre02] is

that a HSG construction whose proof ugesn a black-box fashiois a disperser, for the following reason:

if there is a circuitD on which the construction fails to meet the disperser definition, then we have a small
circuit relative to D that describes input, and it cannot be that every string in a source with sufficiently
high min-entropy has such a short description.

Thus we can produce a formal statement to the effect that “every black-box HSG construction yields
a disperser with similar parameters.” In this paper we consider the reverse question, namely: “under what
conditions does a disperser construction yield a HSG construction?”

We will limit ourselves to so-called “reconstructive” dispersers which means, roughly, that the associated
proof has the same outline as the one sketched above, and that the conversion in the proof is efficient. At
first glance this may seem to be such a strong constraint that the question becomes uninteresting. However,
there is an important issue related to the precise meaning of “efficient.” It turns out that there are (at least)
two possible notions of “efficient;” one is satisfied naturally in several disperser constructions, and the
other — which is the one that is actually required for the construction to be a HSG — is far more stringent.
The distinction between the two is analogous to the distinction between an error-correcting code being
efficiently decodable in the usual sense, and being efficiengicitly (or “locally”) decodable in the sense
of [STVO1].

To be precise, consider a functidn: {0,1}" x {0,1}' — {0,1}™ (wherem < n may be as small as
polylog n) and a circuitD : {0,1}" — {0, 1} relative to whichF fails to be a disperser; i.d) accepts at
least half of its inputs, but for everyin the weak random sourcé;(z, -) fails to hit an accepting input of
D. If E is equipped with a “reconstructive” proof then the proof should give an efficient way to reconstruct
x from D and short advice (the advice may dependraand auxiliary randomness used in the proof). The
two notions of reconstructivity foF’ that we discuss are:

Explicit Reconstructivity. Given oracle access to circuit, and adviced(z, w), compute in time polgn)
the stringz with non-negligible probability over the choice of

Implicit Reconstructivity. Given oracle access to circuit, and adviceA(z,w), and an index, compute
in time poly(m, log n) thei-th bit of x with non-negligible probability over the choice of

Explicit reconstructivitys naturally satisfied by relatively simple disperser constructipfre02, TSZS01,
SUO05], and these construction possess two additional useful features as well (as observed in [ISW99, ISWO0O,
TSUZ01]): (1)w has lengttO(log n) and (2)A is computable in time poly:).

In contrast, obtainingmplicit reconstructivityhas always required significant extra effort: in [SU05],
one needs to use multiple copies of the original disperser with multiple “strides” and to piece them together
in a complex manner; in [Uma03], similar ideas are used, together with an “augmented” low-degree exten-
sion; and in [ISW99, ISWO00], the construction of [Tre02] is modified by repeated composition, but at the
price of a super-polynomial degradation in the output length.

In this paper, we show that the weaker notion of explicit reconstructivity (together with the two additional
properties satisfied by known constructions) is in fact sufficient to constptohal HSGs, thus avoiding
the complications of past work.

Our result is shown by analyzing a composition of reconstructive dispersers, similar to the one used in
[ISW99, ISWO00]. Our composition has the advantage of being simpler (we believe), and it is presented in
a modular and generic manner, making it easy to see that it works for any reconstructive disperser. Most
importantly, it produces optimal HSGs for all hardnesses, starting only with reconstructive dispersers for a
particular “easy” setting of parameters.

Our results also shed light on the following issues:

10f course these are all actually extractor constructions, but an extractor is a disperser.

e The Nisan-Wigderson pseudorandom generator (PRG) [NW94] does not achieve an optimal quanti-
tative hardness vs. randomness tradeoff. Two works [ISW99, ISWO00] addressed this deficiency by
composing the PRG with itself in a clever way. The results came close to an optimal construction, but
fell short. Subsequently optimal tradeoffs were achieved by employing different, algebraic construc-
tions [SUO05, Uma03]. Thus, one might have guessed that there was some inherent loss associated with
the composition-based approach, or that combinatorial-design-based constructions such as [NW94]
were incapable of achieving the optimal result. Our results show that in the end, composing the
combinatorial-design-based Nisan-Wigderson PRG with itssaifoe made to work to obtain HSGs,
by using a somewhat different composition than those used previously. We note, however, that while
we obtain optimal HSGs (improving [ISW99] and matching [SU05]), we do not know how to achieve
optimal PRGs (which would improve [ISW00] and match [Uma03]) using the present techniques.

e Until this paper, known constructions of optimal HSGs [SU05, Uma03] have made crucial use of
implicit list-decoding (cf. [STVO01]) of Reed-Muller codes. Implicit (or “local”) list-decoding of
Reed-Muller codes also underlies the hardness amplification results that were a component of earlier
(non-optimal) constructions [ISW99, ISW00, STV01]. One may wonder whether some form of im-
plicit list-decoding is in fachecessaryo construct HSGs. Our results show that it is not, and indeed
we can construct optimal HSGs using only combinatorial designs and any good list-decodable code
(which, not accidentally, are also the two ingredients needed for Trevisan’s extractors).

We remark that “reconstructivity” of various disperser and extractor constructions has emerged as a
crucial property of these constructions in a number of applications: error-correcting codes [TSZ04, Gur04],
data structures [TS02], and complexity theory [BLVMO5]. This suggests that it is worthwhile to formalize
and study notions of reconstructivity as we do in this paper.

Outline. In Section 2 we define HSGs and reconstructive dispersers. In Section 3 we give informal in-
tuition for how our composition works, and in Section 4 we state and prove the formal result. Section 5
applies the composition theorem to obtain optimal HSGs. Section 6 outlines three known constructions of
reconstructive dispersers, in our terminology. Finally in Section 7 we discuss some open problems raised by
this work.

2 Preliminaries

We useln| as shorthand for the sét, 2,3 ... n}, andz[i] to denote the-th symbol in strings. We will also

need to refer tod-bit blocks” of a stringr, by which we mean that that the bitsio$hould be partitioned into
contiguous segments éfbits (the last segment may have fewer thébits and can be padded arbitrarily).
The block lengthb will always be clearly stated (or clear from context), and in such settings we will denote
thei-th block ofz by z;.

2.1 Error-correcting codes

Our use of error-correcting codes is almost entirely in Section 6, so the reader may wish to skip this subsec-
tion on a first reading.

Definition 2.1. An error-correcting codés a functionC' : IE"; — Fy. The code idinaryif ¢ = 2. The
minimum distancef a codeC' is min,, A(C(x), C(y)), whereA is the Hamming distance function. The
relative distancés the minimum distance divided hy A codeC is efficiently encodablé C is computable

in poly(n,log q) time. A code&” is efficiently list-decodable to radiusif, given a received word € F7',
one can produce the sét, = {z : A(w,C(x)) < r} in poly(|Sy|, n,log q) time.

The Johnson Bound gives an upper bound$ in terms of the minimum distance of the code: if a
binary codeC has relative distance at ledst2 — §2, then the number of codewords in any ball of relative
radiusl/2 — ¢ is at mostO(1/62).

We will mainly use codes based on polynomials. The Reed-Muller code with total degresedimen-
sion ¢ has as codewords the multivariate polynomjals }Ffl — [, of total degreeh, evaluated at every
point in their domain (and so the codewords have leggthWe index the symbols of Reed-Muller code-
words naturally by elements m‘; By the Schwartz-Zippel Lemma, the relative distance of such codes is
at leastl — h/q. The special case @f = 1 yields the Hadamard code, and the special cage-ofl yields
Reed-Solomon codes. We will use the following result regarding list-decoding of Reed-Solomon codes:

Lemma 2.2 ([Sud97]). Given a received word € F, one can produce in poly) time the set of degree
k polynomialsp : F, — F, having agreementwith w, providedt > /2kq. Moreover the number of such
polynomials is at mostq//t.

2.2 Hitting set generators and ordinary dispersers

We usel,, for the random variable uniformly distributed ¢, 1}™. If X is a set, we sometimes also use
X to denote the random variable that is uniform oXer

Definition 2.3. Let Z be a random variable distributed of®), 1}"". We say that a functio® : {0,1}"" —
{0,1} “ e-catches”Z if

|Pr[D(Uy,) = 1] — Pr[D(Z) = 1]| > e.
In the special case thdtr[D(Z) = 1] = 0, we say thaD “ e-avoidsZ”.

In this paper we will always be in the aforementioned special case, since we are discussing one-sided
objects (HSGs and dispersers). Replaciag@voids” with “e-catches” everywhere in the paper yields the
two-sided version of all of the definitions, theorems and proofs, with the exception of one place in the proof
of Theorem 4.1 where we use the one-sidedness critically.

Definition 2.4. Ane-HSGis a function
H:{0,1}' — {0,1}"
such that no size: circuit D : {0,1}"™ — {0,1} e-avoidsH (Uy).

This means that every size circuit D that accepts more than arfraction of its inputs, also accepts
H(y) for somey. We will construct HSGs from hard functions: given abit string = that is the truth
table of a function requiring circuits of size we will use it to construct a HS@. .. In discussing such a
construction, we take as the “main” size parameter, and measure the other parameters as functioits of
has become customary to refer to families-#1SGs that for every = k(n) have parameters< O(logn)
andm > k° for some constant > 0 asoptimal because they give rise to hardness vs. randomness tradeoffs
that are optimal up to a polynomial. See the discussion of this point in [ISWO03].

For reference, we give the standard definition ¢k a¢)-disperser before stating the more complicated
definition of a reconstructive disperser that we will need for this paper.

Definition 2.5. A (k, €)-disperseis a function
E:{0,1}" x {0,1}' — {0,1}"™
such that for all subset¥ C {0,1}" with | X| > 2¥, no circuitD : {0,1}™ — {0,1} e-avoidsE(X, Uy).

| parameter| interpretation

length of source string
disperser seed length
disperser output length
advice function seed length
advice length

block length

disperser error
reconstruction procedure success probability

S| oo |3 |3

Table 1: The eight parameters of a reconstructive disperser.

2.3 Reconstructive dispersers

We now define the central object, which we call a reconstructive disperser. It has more parameters than one
would prefer, but keeping track of all of these parameters will make the composition much easier to state.
For reference, in Table 1, we list the parameters of a reconstructive disperser together with their meanings.

Definition 2.6. A (n,t,m,d, a, b, €, §)-reconstructive disperses a triple of functions:
e the “disperser” functionE : {0,1}" x {0,1}" — {0,1}™
e the “advice” functionA : {0,1}" x {0,1}% — {0,1}"
e the randomizetloracle “reconstruction” procedureR : {0,1}* x [n/b] — {0,1}°

that satisfy the following property: for evely : {0,1}" — {0,1} andz € {0,1}" for which D e-avoids
E(x,U;), we have
Vi€ [n/b] Pr[RP(A(z,w),i) = x;] > 6. (1)

Herez; refers to the-th b-bit block inz. Whenb = n we drop the second argument &

Note that in this definition there is no reference to the parameétethat occurs in Definition 2.5. The
idea is that if(F, A, R) is a reconstructive disperser, thEhmust be &k, ¢)-disperser fok slightly larger
thana, because relative tD, many strings: in the sourceX have descriptions of size approximatelyia
R). Similarly, E(z, -) is ane-HSG whenz is the truth table of a function that does not have iz&cuits, for
k slightly larger tharu plus the running time oR. This is because relative 10, and giveru bits of advice,
R can be used to compute any specified bitoSee Theorems 2.8 and 2.9 for formal statements of these
assertions. We remark that both proofs work by amplifying the success probability of the reconstruction
procedureR (by repetition), which produces a new procedure that with positive probability succeeds on
all b-bit blocks ofz simultaneously, in contrast to the definition above which demands only that for each
block, the procedure succeeds with probabiiityrhe former requirement (that the reconstruction procedure
succeed on all blocks simultaneously) may seem more natural, but the weaker requirement in Definition 2.6
will be more convenient to work with, and can be converted with relative ease to the stronger one, as in the
proofs of Theorems 2.8 and 2.9 (or in a randomness-efficient manner via Lemma 2.10).

2When we refer to a “randomized” function, we mean a funcifdhat takes an extra argument which is thought of as random
bits. We refrain from explicitly writing the second argument; however whengwercurs within a probability, we understand that
the probability space includes the randomnesg.of

The parametel interpolates between the two types of reconstructivity. Whenn, the reconstruction
procedure outputs all af. A reconstruction procedure of this type running in time palyis explicitand is
often implied by disperser constructions whose proofs use the so-called “reconstruction proof paradigm.”

To obtain an optimal HSG, we neédo be small and the running time of the reconstruction procedure
to be polym,logn) (Wherem < n may be as small as polygn). Such a reconstruction procedure is
necessarilyimplicit, and it satisfies a much more stringent efficiency requirement that typicallyrotes
follow from disperser constructions without modification. Note however that it is trivial to decbdasa
multiplicative factor without changing the running time ®f(and we will use this fact). The challenge is to
decreaseé while decreasing the running time &fsimultaneously.

There are three quite clean constructions [Tre02, TSZS01, SUO05] of reconstructive dispersers known for
a certain “easy” setting of the parameters. By “easy,” we mean here that the advice length iss&t foost
some constant < 1, while the disperser output lengthi§ for some constant > 0. The original goal in
these three works was to construct extractors (as compared to our target object, a HSG), and then it becomes
important to minimizey — (. It is the pursuit of this objective that made the original constructions and their
parameter choices somewhat delicate; without this constraint, the constructions are fairly straightforward —
see Section 6.

Theorem 2.7 ([Tre02, TSZS01, SUO5])There exist constants > v > 8 > 0 such that for every, and
e >nPthereisa

(n,t = O(logn),m =nP,d = O(logn),a =n?,b=n,e,6 = 2/3)
reconstructive disperse, A, R) with the running time of, A, R at most polyn).

For the proof, see Section 6, which outlines the three constructions in detalil.

Note that these constructions aret sufficient to produce HSGs directly, because the running time of
the reconstruction procedureis by itself far greater than the trivial upper bound on the circuit complexity
of a function whose truth table has sizgso we cannot get the required contradiction.

However, when the running time & is much smaller than the input lengthreconstructive dispersers
are hitting set generators when their input is fixed to be a hard function.

Theorem 2.8.Let(E, A, R) be a
(n,t,m,d,a,b,e, 6 =2/3)

reconstructive disperser, for which runs in timeT'. Letz € {0,1}" be the truth table of a function that
cannot be computed by circuits of sizeThere is a universal constaafor which: if k > c¢(logn)(T'm+a),
thenH,(:) = E(z,-) is ane-HSG.

Proof. If E(z,-) is not the claimed HSG, then there is a sizesircuit D : {0,1}"™ — {0, 1} thate-avoids
E(z,U;). By the definition of reconstructive dispersers we have:

Vi € [n/b] I?Ur[RD(A(x,w),i) = ;] > 2/3.

We repeat the reconstructién(log n) times with independent randomis and take the majority outcome.
For a giveni, the probability that this fails to producs is less than /n by Chernoff bounds. By a union
bound, the probability that we fail on anys strictly less than one. Thus we can fix the random bits used
in this procedure so that we correctly produgefor all i. We hardwireA(z, w) for the chosenv’s. The
resulting circuit has size(logn)(7'm + a) which contradicts the hardnessaof O

Essentially the same argument shows that reconstructive dispersers are indeed a special case of ordinary
dispersers (a more efficient conversion is possible if an error-correcting code is applied to the source, but
that is not important for this paper):

Theorem 2.9.Let(E, A, R) be a
(n,t,m,d,a,b,e,d =2/3)

reconstructive disperser. Then there is a universal constémtwhich: E is a (k = aclogn, €)-disperser.

Proof. Fix a functionD : {0,1}" — {0,1}. Letx be a string for whichD e-avoidsE(z, U;). Following
the proof of Theorem 2.8, we consider the randomized procedure that runs the reconsticior) times
with independent random seeds and takes the majority outcome. As argued in the proof of Theorem 2.8,
there is some choice of randaomis (and associated (z, w)’s) for which the procedure correctly produces
x; for all i. TheseA(z,w)’s comprise a description af, of lengthaclog n for some universal constant

We conclude that at mogt = 2¢¢!°8™ stringsz have the property thab e-avoids E(z, U;). So, if
X C {0,1}" satisfies X| > K, thenD does not-avoid E(X, U;), and this holds for alD, so E is the
claimed disperser.

]

2.4 Amplifying the success probability of the reconstruction procedure

The proofs of Theorems 2.8 and 2.9 work by amplifying the success probability of the reconstruction pro-
cedure by repetition. In the rest of the paper we will need a similar amplification, but one that is more
randomness-efficient. The next lemma achieves this using pairwise independence:

Lemma 2.10 (increasing)). Suppos€FE, A, R) is a
(n,t,m,d,a,b=mn,e,J)
reconstructive extractor. For every > 0, we can convertE, A, R) into a
(n,t,m,d = O(d + log(pn)),a’ = O(pa),b =n,e,8' =1 —)

reconstructive extractofE, A’, R'), wherep = §~'a~!. The running time oft’ is at most polyp, n) times
the running time of4, and the running time aR’ is at most polyp, n) times the running time aR.

Proof. Setr = 2p, and letYy, Ys, ..., Y, be pairwise independent random variables ({\ﬂaﬂ}d. We will
use an explicit construction of such a space that can be sampledwsin@(d + log) random bit$, and
we denote by;(w) the value of random variablg; when sampling from the space withas the random
bits. LetC : {0,1}" — F{ be a Reed-Solomon code (which we will use as a hash function family) with
q>2rn/a.

We defined’ : {0,1}" x {0,1}% — {0,1} as follows:

A,($;w € {O’ 1}u’j € FQ) = (A(:c,Yl(w)),A(:c,Yg(w)), T ,A(x,Y}(w)),C(I)],])

In other words A’ simply concatenates the outputradifferent runs ofA using pairwise independent seeds,
and appends a hash of /
Our new randomized oracle procedute: {0,1}* — {0,1}" is defined as follows:

®0ne construction with these parameters is as followsFi the field with2¢ elements, and chooge= 1+ [(log(r+1))/d].
Picka € F¢ at random, and defing;, = Zj ajbg.’), where the)'”) are distinct vectors ifi* whose first coordinate is 1.

7

e Oninput(z1,22,...,2,9,7), UNRP(21), RP(2),...,RP(2,)
e Select any for which C(RP(z,)); = y, and outputRP(z,). If there is no sucl, output anything.

In other words R’ runs the original reconstruction procedut®n each of the concatenated advice strings,
and uses the hash ofto select which of the reconstructions to output.

We need to prove that this works. FIX : {0,1}"" — {0,1} andx € {0,1}" for which D e-avoids
E(z,U). We want to show:

P R/D A/ . . _ > 1 C
wE{O,l}I"‘,jqu[((‘T’ w?])) .%’] =z @

We first argue that the probability overc {0, 1}" thatx fails to appear among
RP(A(z, Y1(w))), RP (A(z, Ya(w))), ..., RP (A, Y, (w)))

is small. The expected number of occurrences ifthis listis2/«. By Chebysheyv, the probability that the
number of occurrences is 0 is at mogt2.

Next, we argue that if is in the list, then the probability of outputting a string that is mas small.
For everyz’ # x in the list, Prjer, [C(2'); = C(x);] < n/q, since the Reed-Solomon codehas relative
agreement at most/q. By a union bound,

Pr (32 #2 C(2'); = C(x);] <rn/q < a/2.
J€EFq

We conclude thaPr, ¢ 11+ jer, [R'P(A'(z;w, 7)) = 2] > 1 — o, as required. O

3 Intuition for the composition

From Theorem 2.8 we can see that a reconstructive dispgesetSG, which would beptimalif the advice
lengtha and the running time of the reconstruction procedRean be made to be only polynomially large

in the output lengthn. But starting with the constructions of Theorem 2.7, we only know how to achieve
that for largem = n?(1). Rather than try to preserve these parameters while makismaller and smaller
(which is a natural approach), our goal in the composition will be to maintain the absolute parameters of
advice lengttu = poly(m) = poly(n) and reconstruction procedure running tifie= poly(m) = poly(n),

while making theinput lengthlarger and larger — and to emphasize that the input length of the composed
object is large we will rename i. Specifically, our goal will be to obtain (after several compositions) a
reconstructive disperser with input length >> n, advice length polfn), and R’s running time polyn),

while maintaining an output length of at leagt(!). Note that to achieve this running time f& we must
achieve implicit reconstructivity in the final object.

We now outline the composition at a high level. In this discussion we focus almost entirely on the
advice and reconstruction functions. Our starting point is the “simple” constructions of Theorem 2.7. Note
thatb = n in those constructions so we drop the second argument of the reconstruction pra@ednde
then it simply maps = n” bits ton bits.

We make two unreasonable simplifying assumptions for the purpose of this exposition, and later describe
how to remove them. First, we assume that that 0, i.e., the advice functiord just maps: bits toa = n”
bits. Second, we assume that the reconstruction procddwan function properlwithoutaccess to the
oracle D, and thus it just maps bits ton bits. It is then useful to think of the advice functichas a

procedure that “compresses” an arbitrarpit stringz into n” bits and the reconstruction procedutas a
procedure that “decompresses” thie-bit string back to the originat-bit stringx.

So we have the ability to compress franbits down ton” bits. Suppose we want to be able to compress
from N > n down ton? bits. A natural thing to do is to divide th®¥-bit string into N/n substrings of size
n, and useA to compress each of the substrings. The resulting string has leéNgth)»"; we can repeat
the proces®)(log N/ log n) times until we get down to length”. To decompress, we ugeto reverse the
process. A nice side-effect of this scheme is that when we kmoieh n-bit substring of the originaN bit
string we wish to recover, we only need to invoKeonceat each level (as opposed to, ey,/n times at
the bottom level, if we insist on recovering the entire origivabit string). In the formalism of Definition
2.6, this means that we can take- n, and haveR only recover the specifigdbit block of the input string.

The above description specifies an advice function that mapé-hit stringx down ton” bits, and a
reconstruction procedure that recovers any specifibd substring ofc from thosen” bits. A crucial obser-
vation is that the new reconstruction procedurethasn < N, and it runs in time polfn, log N/logn) <
N, since it invokesk once for each of th&(log N/ log n) levels. Thus we have achieved our goals related
to the advice function and reconstruction procedure : we have advice lengtih paiynd a reconstruction
procedure running in time poly). We have yet to describe the disperser function of our composed object,
which we are aiming to have outpuf(})-bit strings. We now describe the disperser function, in the process
of showing how to remove the two simplifying assumptions.

Ouir first simplifying assumption was that the advice function seed lehgtl®, when in fact it must be
O(logn). Whend = O(log n) the “compression” functior producef? = poly(n) candidatecompressed
versions ofr, with the property that with high probability over a choice of candidates, the “decompression”
procedureR succeeds. In the actual construction, we will pick an independent seed of tergth(logn)
for each level which determines which candidate we work with at that level (for a total seed length of
d' = O(log N)). The overall compression function thus produg&s= poly(N) candidates. By making
the probability thatR fails at each individual level small enough (i.e., less thaf¥ of levels)), we ensure
that the overall decompression (which invokes the reconstruction proc&danee at each level) works
with constant probability when run with a random candidate at each level, which is what is required.

Our second simplifying assumption was to ignore the fact thakeeds oracle access to a functibn
with certain properties to succeed. To deal with this, we simply run the dispgéi@eeveryn-bit string that
we “compress” (and hence may need the capability to decompress) at any level in the entire compaosition.
We define the overall dispersér’ so that its outputs are the union of the outputs of each invocation of
E. Recalling Definition 2.6, we see that the reconstruction proceffufer the composed object is only
required to work relative td that e-avoids the output of’. Such aD alsoe-avoids the output of each
invocation of £ we have performed Our overall reconstruction proceduR has oracle access 10, and
therefore, each invocation of the “decompression” functibhas oracle access 0 (which e-avoids the
output of the associated) — and this is exactly what is required to enable the individual “decompressions”
to succeed at all levels.

Both the disperser functio” and the advice functiord’ of the composed object have asymptotically
optimal seed lengths @ (log V). This is because at each level we need a frebg n) bit seed forE' and
A coming from Theorem 2.7, and there @élog N/ logn) levels.

The formal analysis of a single level of this composition is the content of Theorem 4.1. Corollary 4.2
and Theorem 5.1 apply this compositioilog N/ log n) times to the reconstructive dispersers of Theorem
2.7 to obtain the final result.

“This is the single place where we rely critically on the fact that we are dealing withdids,” rather thané-catches.”

Comparison with [ISW99, ISWO00]. As noted, our composition is similar to the one used in [ISW99,
ISWO00], which can also be understood in the language of reconstructive dispersers. Adopting the intuition
of “compression” and “decompression” from above, one can view [ISW99, ISW00] as defining the advice
function of the composed object to be the original advice function run repeatedly: i.e., in the first application
of the advice function, the original string is compressed from. bits down ton” bits, in the second
application of the advice function to this nehorterstring, it is compressed further (o) bits, and so on.

(In contrast, in this paper, we only ever apply the advice function to strings of lengithe reconstruction
procedure can be used to “decompress” by applying it repeatedly to the final advice string, but in order
for the overall object to achieve implicit reconstructivity, one must demand that the original reconstructive
disperser possess implicit reconstructivity from the start. In addition, when things are organized this way,
each invocation of the reconstruction procedure associated with a lower level in the composition triggers
recursive invocations of the reconstruction procedures for higher levels. The result is a superpolynomial
degradation of the running time of the overall reconstruction procedure if the number of levels is super-
constant.

So one might say that the overall strategy in [ISW99, ISWO00] was to take an initial construction possess-
ing implicit reconstructivity [NW94, STV01], whose only failing was that the advice length was much larger
than poly(m), and repeatedly compress until the advice length becamérpalyn contrast, our strategy in
this paper is to take an initial construction with the proper relationship between output length, advice length,
and reconstruction procedure running time, but which only works for large n*(!) (Theorem 2.7) and
compose it to obtain a new construction with a much largput length N. This method only requires
explicit reconstructivity to start (implicit reconstructivity is a natural side-effect of the composition), and
avoids the superpolynomial loss associated with the recursive invocation of the reconstruction procedure in
[ISW99, ISWO0Q0]. It should be pointed out, however, that [ISWO00] produces a two-sided object (a PRG) via
composition, while our composition seems to only work to produce a one-sided object (a HSG).

4 Analysis of the composition

Our main composition operation for reconstructive dispersers increasdéore specifically, it roughly
squarese, while multiplying each of the two seed lengthsafdd) by a constant. The final object inherits
the advice lengtl, from the first reconstructive disperser, and the block lehdthm the second.

Theorem 4.1 (composition of reconstructive dispersers)Suppos€F1, A1, Ry1) is a
(n1,t1,m,dy,a1,by,€,01)

reconstructive disperser andvs, Az, Rz) is a
(ng, to, m,da, az, ba, €,02)

reconstructive disperser, withy = b,. Setr = n1/b;. Then(E, A, R) defined as:

, B E1(Az(z1,w2) 0 -+ 0 Ag(xp,w2),y) fp=r+1
E(x1,..., x5 we,y,p € [r+1]) = { Ea(z,,y) otherwise
A(xl,...,xr;wl,wg) = Al(AQ(xl,UJQ)O"-OAQ(ZCT,UJQ),wl)
RD(Z;’il S [T],ig S [nz/bz]) = RQD(RlD(Z,il),iQ)

isa

<n: M2 4 — max(ty, ta) + do + log(r + 1),m,d = dy + do,a = a1,b = by, €,d = &1 + 6 — 1>
a

10

reconstructive disperser.

A few words of explanation are in order. The input for the composed objectis, 2o, . . ., z.., where
the z; coincide with the blocks? will need to output. The functiod is very simple: it just concatenates
the output ofA, run on each ofcq, zo, ..., x,, and runsA; on the concatenated string. The functiin
is similarly simple; it reverses the process: it takes the output ahd first uses?; to extract the advice
associated with;, , and then use&; to actually recover (thé-th block of)z;, . Finally E uses part of its
seedp, to decide either to rui, on inputz; for somei, or to runE; on the concatenated advice string on
which A7 is run.

Proof. (of Theorem 4.1) FixD andx = z1,x2,. .., z, for which D e-avoidsE(x1, ..., z,; U). Also fix
i = i1i2, wherei; € [r] andiz € [ng2/ba].

From the fact thaD e-avoidsE(z1, .. ., x,; U;), we know that
Ywsg D E-aVOidSE1 (A2 ($1, w2) 0--+0 AQ(.’L’T, ’LUQ), Utl) (2)
Vpelr] D eavoidsEy(xy,Us,) (3)

From (2) and the definition of reconstructive dispersers, we get that fesall

Ef[R?(Al(Az(xl,wz) 00 Ag(xyr, w2), w1),11) = Aa(xs, wa)] > d1. (4)

From (3) and the definition of reconstructive dispersers, we get that:
Eg[Réj(Az(%,w%h) = (iy)is) = 02 (5)

The probability over a random choice @f andw- that both events occur is at least+ d» — 1. If both
events occur, then:

RD(A(xl,...,xT;wl,wg);il,iz) = RQD(R?(A(:Q,...,xr;wl,wg),il),ig) (6)
= RP(RP(A1(As(m1,w2) 00 Ag(mr, w),w1),11),42) (7)
= RY(As(wiy,wa),i2) = (i))iy- (8)

where (6) just applies the definition &% (7) applies the definition ofl, and (8) follows from our assumption
that the events in (4) and (5) both occur.
We conclude that
Pr [RD(A(:v;wl,wg),i) = iCZ] >0+ — 1,

wi,w2

which is what was to be shown. O

We now apply Theorem 4.1 repeatedly. We start with a reconstructive disp&rsér R) and compose
it with itself. In subsequent repetitions, we apply Theorem 4.1, taking the reconstructive disperser from
the previous repetition ag1, A1, Ry1), and the original £, A, R) as the second reconstructive disperser
(EQa A27 RQ)

Corollary 4.2. Fix N, n, ¢, and constanty < 1. Let(E, A, R) be a

(n,t1 = O(logn),m,d; = O(logn),a =n",b=a,¢,61 =1—(1/log N))

11

reconstructive disperser with the running timeBf A, R at mostn“* for a universal constant;. Then

(E', A’, R') obtained by(%) applications of Theorem 4.1 is a

(N,t =0(log N),m,d =0(log N),a =n",b=a,e,d =1 —o(1))

reconstructive disperser with the running timefgfand A’ at mostN¢, and the running time ok’ at most
n¢ for a universal constant.

Proof. We claim that aftef compositions of E, A, R) with itself, we obtain a
<ni = nii(iil)’y,ti =t + (i — 1>(d1 + log(nlfA’ + 1)), m,d; =idy,a,b,€,0; = 2(51 —-1)+ 1)

reconstructive dispersér;, A;, R;). This clearly holds foi = 1.
To see that it holds for arbitrary consider composing;_1, 4;—1, R;—1) with (E, A, R). By Theorem
4.1 and our inductive assumption, we ¢&%, A;, R;) with parameters:

ni = ninja=n"1"0"D7 7 = ==y

t; = max(ti—1,t1) +di + log(nl_W +1)

[t1 + (i = 1)(di +log(n' ™7 + 1))] + dy + log(n' ™7 + 1)
t1 +i(dy +log(n'~7 4+ 1))

di = di1+di=1idy

i = 01+ —-1=0E-1)(61—-1)+61=i(61—-1)+1

as claimed. Note that; > n*!=7). Thus when

B log N
(1—7)logn’
we haven; > N, and alsal; = O(log N) andt; = O(log N). Also note that for sufficiently large
1
0;=1—i(1/logN)=1— ——— =1—0(1).
i(1/log N) = 1= 7w = 1= o(1)

Finally, letT'(E;), T (A;), T(R;) denote the running times of the functiolis A;, R; respectively. From
the specification of the composition in Theorem 4.1, we see that

T(EZ) < max(T(Ei_l) + ni_lT(A), T(E))
< T(Ai—1) +ni—1T(A)

< T(Ri-1) +T(R),

and then it is easy to verify by induction th&{(E;), T'(A;) < in*™t andT(R;) < in°t. Plugging in
i = O(log N/logn) gives the claimed running times. O

5 Optimal hitting set generators
Now, we can use any one of the constructions of Theorem 2.7 in Corollary 4.2 to obtain an optimal HSG
for arbitrary hardness. Specifically, our HSG is built from f¥iebit truth table of a function that is hard for

circuits of sizek, has a seed length 6f(log N), and outputsg:*(!) bits, while running in time polfV). As
usual, we assumd < 25" for any constanty; as otherwise we could just output the seed.

12

Theorem 5.1. Letz be theN-bit truth table of a function that cannot be computed by circuits ofsjzand
setn = k!/¢ for a sufficiently large constant Let(E, A, R) be a

(n,t = O(logn),m =n?,d = O(logn),a =n",b=n,e, = 2/3)

reconstructive disperser from Theorem 2.7.
If (E', A’, R") is the reconstructive disperser obtained by applying Lemma 2.10awithl / log N and
then applying Corollary 4.2, theH,(-) = E'(x, -) is ane-HSG against circuits of size, = k”/°.

Proof. After applying Lemma 2.10 witix = 1/log N, we have a

_ B g _ ! ¥ _ I 1 1
(n,t =0O(logn),m =n",d = O(logn),a’ = (log N)n”,b =n,e,§ =1 logN>
reconstructive disperser.

By the assumption oV stated before the theorem, we have thiat< n” for some other constant
~" < 1. As noted following Definition 2.6, we can decredsitom n to o’ trivially. Then, after applying
Corollary 4.2 we obtain a

(N,0(log N),m,O(log N),n" ,d,€,2/3)

reconstructive disperséf’, A’, R'), with the running time of2” and A’ at most polyN) and the running
time of R’ at mostn*!.

To satisfy Theorem 2.8 we neegllog N (n n? + rﬂ') < k, wherec; andc, are the universal constants
from Corollary 4.2 and Theorem 2.8, respectively. We chaokege enough to ensure that this holds.
Theorem 2.8 then states that(z, -) is ane-HSG against circuits of sizes = n® = k%/¢, O

As noted in the introduction, if we use Trevisan's extractor [Tre02] as our starting object, then the
entire construction requires only two ingredients: (1) any good list-decodable error-correcting code and (2)
combinatorial designs (see Subsection 6.2). In particular ther@hsrdness amplification or implicit list-
decoding hidden in the construction, precisely because we are able to work with a starting object that only
hasexplicit reconstructivityather than implicit reconstructivity (the latter type of reconstructivity typically
has required implicit list-decoding in some form or another).

6 Specific constructions

As stated in Theorem 2.7, there are three relatively straightforward constructions of reconstructive dispersers
that are sufficient for our purposes. Here we describe these constructions in our language. The construction
in Subsection 6.2 is intended to be a complete proof of Theorem 2.7. The presentations of the following two
constructions are detailed sketches; the reader should consult the original papers [TSZS01, SUQ5] to obtain
full proofs.

6.1 Yao'sLemma

We will make repeated use of a variant of Yao’s Lemma (the “moreover” part of the lemma is often not
stated as it was not important in past applications, but it is crucial here):

Lemma 6.1 ([Yao82]). Let Z be a random variable distributed of0, 1} and letD : {0,1}"" — {0,1}
be a function that-avoidsZ. Then exists an € [m], and a functionP : {0,1}"~ — {0, 1} for which
1 €

PrP(Zy,..i-1) = Zi] 2 5 + 5

13

Moreover, there is a uniform randomized procedure to prodddeom D, which succeeds with probability
at leaste/(8m?).

Proof. Itis by now standard (see, e.qg., the proof in [Tre02]) that there existsn|, and bitshy, b, € {0, 1},

for which 1
€
Pr [bo ® D(Z1. i-1,b1,Ciq1,.. Cm) = Zi) > 5+ —.

Cit1y,Cm -2 m

To obtain P from D, pick by, b1,7, andc;41, - . ., ¢, uniformly at random, and definB(z1,...,z,-1) =
bo ® D(z1,...,2i-1,b1,Ci+1,-..,cm). The probabilityby, by,i are correct isl/(4m) and an averaging
argument shows that with probability at leagt2m) the randomly chosetis yield the requiredP. O

6.2 The Trevisan reconstructive disperser

In this subsection, we describe Trevisan’s extractor [Tre02] (based on [NW94]) in our language, showing
that it is a reconstructive disperser satisfying Theorem 2.7nFix = n®, ¢ > m™!, for a constants < 1
to be specified later. There are two ingredients to the construction:

e A binary error-correcting codé€’ : {0,1}*=" — {0,1}" with = = poly(k), and relative distance
at leastl /2 — (e/(4m))?. We require that has efficient encoding and efficient list-decoding from
relative radiusl /2 — ¢/(4m). Such a code is easy to obtain, e.g., by concatenating a Reed-Solomon
code with a binary Hadamard code, using brute-force list-decoding of the inner code and Lemma 2.2
to list-decode the outer code [GSO00].

e A combinatorial design: subsefs, Ss, . .., S, of a universdt], for which |S;| = log . for all 4, and
|S; N S;| < Blogn. From [NW94] we have that such designs exist, for O(log#i/3?), and that
they can be constructed deterministically in tim&‘m) = poly(n).

The reconstructive disperser has three parts:

e The disperser functio®t : {0,1}" x {0,1}" — {0,1}™. Given inputz and seed € {0, 1}’, thei-th
output bit isC(z)[y,s,] wherey,s, denotes the restriction gf € {0, 1} to the bit positions in the set
S;.

e The advice functiod : {0,1}" x {0,1}*=" — {0,1}%. We are given an input and a seeds €
{0, 1}d. We output the following bits for everyc [m]: for eachj < i, restrictw to the bit positions
indexed bys;, alter the bit positions indexed I N S; in all 2/% 7% possible ways, and for each,
use the resultinglog n)-bit string to index intoC'(z), outputting that bit ofC'(x). For eachi, this
produces at mosh(i — 1) output bits. Finally, we output the seadfor a total of at most, = m?
output bits.

e The reconstruction functio® : {0,1}* — {0,1}", which works as follows. We are given access
to D thate-avoidsZ = E(z,U;). By Lemma 6.1 we can convel into a next-bit predicto® with
probabilitye/(8m?). That is,

Pr{P(E(z, w)..... Bz, w)i1) = Bz, w)i] > % oo
Substituting the definition of:
Pr [P(C(x)[wg,] ... C(x)[ws,_,]) = C(z)[w;s,] >

w

Writing w as(w’, w”), wherew’ is the portion ofw outside the positions i§; andw” is the portion
of w inside.S;, we have:

Pr [PC@IW,)5 C@IW)5) = C@lw,u)s]] = 3 + o
By an averaging argument, for at leastegfdm) fraction of thew’, we have:
Py [PO@)!, u")s,] .- C@)w' u)s_) = C@lw w”)s]] > 3+
Note that(w’, w")|g, is justw”, and so this can be rewritten as:
Py [P(C@[, 0”5,] - C@)w s,) =C@’] > S+ @

Our reconstruction function is gives(x, w), which contains the bits af'(x) required to evaluat®
as above, for all”. In particular,A(x,w) containsC(z)[(w’, w")s,] for all j < i. Whenever (9)
holds for somev’, the evaluations

Ty = P<C(x)[(w/7 w”)\SJ cee C(x)[(w/7 w//)‘sifl])

form a stringr having1/2 + ¢/(4m) relative agreement witt’'(z). We apply list-decoding to obtain
a list of L = O((4m/e€)?) strings (this upper bound on the list size is guaranteed by the Johnson
Bound), one of which is (when (9) holds). We output a random one of those strings. Altogether

D € e 1
—xl> . = .=
lfur[R (A(z,w)) = x] > 52 am I’

where the first term on the right-hand-side is the probability that we produce a good next-bit predictor
P, the second term is the probability that= (w’,w") is good (i.e. that (9) holds far’), and the

third term is the probability that we selectfrom the list of sizeL. Note that the right-hand-side is at
leastrn— ¢t for some universal constaat.

Finally, we apply Lemma 2.10 with = 1/3 andé = m~“! to obtain a
(n,t = O(logn),m =n?,d = O(logn), O(m*3),b = n, e 2/3)

reconstructive disperser. Choosifig< 1/(c; + 3) satisfies the statement of the theorem.

6.3 The Ta-Shma-Zuckerman-Safra reconstructive disperser

In this subsection, we describe a quite different, algebraic construction [TSZS01] in our language. Since
we are only aiming to satisfy Theorem 2.7, we can choose parameters more liberally than in the original
presentation of [TSZS01]. Fix, m = n®, e > m™~!, for a constang; to be specified later. Set= n*. We

will use the following error-correcting codes:

e Abivariate (i.e./ = 2) Reed-Muller cod&™; : F?Z”/ 89 _, (F,)?" with total degreé: = 2\/n.
e A binary Hadamard cod€’ : {0,1}'°67 — {0,1}7.

The reconstructive disperser has three parts:

15

e The disperser functio®? : {0,1}" x {0,1}* — {0,1}™. Given inputz and a seed consisting of
y1 € F? andy; € [¢], thei-th output bit is

Ca(Cr(z)[yr + (2, 0)])[y2].

e The advice functiom : {0,1}" x {0,1}* — {0, 1}“. We are given an inputand a seed € {0, 1}%.
We vieww as specifying a random link,, : F, — Iﬁ‘g together with a random elememt € F, (so
d = 5logq = O(logn)). We outputC (x) restricted toL,, + (¢,0) for: = 1,...,(m — 1) (such
a restriction is a degrefe polynomial and thus can be specified by- 1 elements off,), as well as
C1(x)[Lw(pw) + (3,0)] fori = m,m+1, ..., m+ h. Finally, we output the seed, for a total output
length ofa = (h + 1)mlogq + d.

e The reconstruction functioR : {0,1}* — {0,1}", which works as follows. We are given access to
D thate-avoidsZ = E(x,U;), andA(x, w) for a randomly chosew. By Lemma 6.1 we can convert
D into a next-bit predicto® with probability ¢/(8m?), and then by standard techniques (see, e.g,
[SUO05]), P can be converted to a next-element predidtor Fé‘l — [, for which:

Pr [P'(C1(z)yr + (1,0)],.... Ca(x)[yr + (i — 1,0)]) = Ca(z)[yr + (i,0)]] = p = Q(e/m)*.

Note thatA(x,w) contains the portion of'; (x) required to evaluaté’ to obtain “predictions” for

(4 (x) restricted to the lind.,, 4+ (m, 0). We expecpqg correct predictions along this line, and because
the points on linel,, + (m, 0) are pairwise independent, with probability at least O(1/(pq)) we
obtain at leaspq/2 correct predictions. Efficient list-decoding from these data points is possible as
long aspq/2 > \/2hq via Lemma 2.2, and this inequality holds by our choice;@nd /. We thus
obtain a list of4/p candidates foc’; (x) restricted toL,, + (m,0). Now, A(x,w) also contains the
value of Cy(z) at a random poinp,, along this line. With probability at least— O(p=2h/q), the
correct candidate in the list is the only one agreeing with this random value.

Having learned’ (z) restricted to linel.,, + (m, 0), we have recovered the portion@f(x) required
to repeat the process, to lear(x) restricted tal,, + (m+1,0). After h repetitions we have learned
enough ofC4 () to interpolate and recover. The probability we succeed on dlirepetitions is at
leastl — O(h%p~2/q) by a union bound, and this probability is at leag2 by our choice of; andh.

Altogether,
€ 1

f;r[RD(A(x,w)) =z| > P R

where the first term on the right-hand-side is the probability that we produce a good next-bit predictor,
and the second term is the probability ouethat the procedure above outputsNote that the right-
hand-side is at least ¢t for some universal constaat.

As in the previous subsection, we apply Lemma 2.10 with 1/3 andd = m~“* to obtain a
(n,t = O(logn),m = n®,d = O(logn),0(ma),b = n,e 2/3)

reconstructive disperser. Sinae= O(mn'/?logn), we can choosg < (1/2)/(c; + 1) to satisfy
the statement of the theorem.

16

6.4 The Shaltiel-Umans reconstructive disperser

In this subsection, we describe the construction of [SUO5] in our language. In the present context, this
construction is quite similar to the one in the previous subsection — the difference between the two construc-
tions is crucial when viewing them as extractor constructions, but not important for the purpose of obtaining
optimal HSGs via the results in this paper.

As above, we are only aiming to satisfy Theorem 2.7, so we choose parameters more liberally than
in the presentation in [SU05]. Fix,m = n® e > m™1, for a constani to be specified later. We also
have a parametet which will be specified later. Sét = ¢n'/¢ andg = n!°. We will use the following
error-correcting codes:

e A (-variate Reed-Muller codé€ : IFEZ”/ logg _,]Fg‘ﬂ with total degreéh.
e A binary Hadamard cod€’ : {0,1}'°67 — {0,1}7.
The reconstructive disperser has three parts:

o The disperser functios : {0,1}" x {0,1}" — {0,1}"". Leta : F — F’ be a generator of the
multiplicative group offf .. Given inputz and a seed consisting of € Fq‘ andyy € [qg|, thei-th
output bit is ‘

Co(Cr(x)[a'y1])[y2]-

e The advice functiom : {0,1}" x {0,1}* — {0, 1}“. We are given an inputand a seed € {0, 1}%.
We vieww as specifying two random degree= ©(¢) curvesL), : F, — F, andLZ : F, — F.,
interleaved in the manner described in [SU05] ¢se- 2(c + 1)¢logq = O(¢?logn)). We output
C(z) restricted taL}, o o andL? oo’ fori = 1,2, ..., (m — 1); each restriction can be specified by
ch+1 elements of,. We also output the seed for a total output length af = 2(ch+1)mlog g+d.

e The reconstruction functio® : {0,1}* — {0,1}", which works as follows. We are given access to
D thate-avoidsZ = E(z,U;), andA(z, w) for a randomly chosew. As in the previous subsection,
we use Lemma 6.1 to convelit into a next-bit predicto with probabilitye/(8m?), and then into a
next-element predictaP” : F;~' — I, for which:

Pr [P'(Ci(x)[a'yil,..., Cr(z)[a" yi]) = Cu(@)[a'yi]] = p = Q(e/m)*.

As in the previous subsectioAz, w) contains the portion af’; (z) required to evaluat®’ to obtain
“predictions” forC () restricted to the curvekl, o o™ and L2 o o™. The analysis in [SUO5] shows

that by list-decoding via Lemma 2.2 and pruning the lists according to the intersections of these two
curves with portions of”; (x) contained inA(x,w), we can learn the restriction @f;(x) to these

two curves with probability at least— 1/(44¢").

This sets us up to repeat the process to learn the restrictiafig(of to the curves) o o™*! and

L2 oo™, and then curves) oa™*2 andL2 o o™*2, and so on, until we have learned all@f(z),

from which we can recover. The probability that we succeed on all steps in this process is at least
1/2 by a union bound.

The analysis in [SU05] further shows that when= »n*(!) (as it is here), we may choogeo be a
constant. This has the important consequence of ensuring that the advice seed len@tfiog),

17

and that the number of steps in the reconstruction proceduye 4s poly(n). As in the previous

subsection, we end up with
€ 1

D _
PrR7(A(z,w)) =2l 2 o5 - 5
where the right-hand-side is at least ! for some universal constant. We finally apply Lemma
2.10 witha = 1/3 andé = m™“ to obtain a

(n,t = O(logn),m =n”,d = O(logn),0(ma),b = n,e 2/3)

reconstructive disperser. Since= O(mn'/*logn), we can choosg < (1—1/¢)/(c; + 1) to satisfy
the statement of the theorem.

7 Open problems

We mention briefly two interesting open problems related to this work.

First, is it possible to extend these results to two-sided objects, by giving a similar composition for
reconstructiveextractor® Because implicit reconstructivity of extractors is closely related to effioment
plicit list-decodability, it is possible that such a result would give a new generic construction of implicitly
list-decodable codes (in the sense of [STV01]) franygood list-decodable codes.

Second, is it possible to extend our result to the non-deterministic setting? Here there is an important
technical issue afesiliencyof HSGs discussed in [GSTSO03]; obtaining a resilient HSG construction would
lead to so-called “low-end” uniform hardness vs. randomness tradeoffs for the class AM. One possible route
to constructing low-end resilient HSGs against nondeterministic circuits is to construct high-end resilient
HSGs (typically an easier task) that possess the features needed to apply the composition in this paper
— namely an associated advice functid(u:, w) computable in polynomial time, witw having length
O(logn). In the currently known resilient construction [MVO05§, has length much larger thaw(log n).

Acknowledgements. We thank Ronen Shaltiel for his comments on an early draft of this paper, and the
anonymous referees for numerous helpful suggestions.

References

[ACR98] A. E. Andreev, Andrea E. F. Clementi, and J. D. P. Rolim. A new general derandomization
method.Journal of the ACM45(1):179-213, January 1998.

[ACRT99] A. E. Andreev, A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan. Weak random sources, hitting
sets, and BPP simulationSIAM Journal on Computing@8(6), 1999.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic computation. In
Theoretical aspects of computer science, 16th annual sympos2989.

[BLVMO5] H. Buhrman, T. Lee, and D. van Melkebeek. Language compression and pseudorandom gener-
ators.Computational Complexify14(3):228-255, December 2005.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM Journal on Computind. 3(4):850-864, 1984.

18

[GS00]

V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated codes. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Comp2@dg.

[GSTSO03] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. Uniform hardness vs. randomness tradeoffs for

[Gur04]

[GVWOO]

[ISW99]

[1SWO00]

[ISW03]

[IW97]

[Kab02]

[KI04]

[MVO5]

[NW94]

[STVO1]

[SUO5]

[Sud97]

[Tre02]

Arthur-Merlin games Computational Complexifyl2(3—4):85-130, 2003.

V. Guruswami. Better extractors for better codes? Pioceedings of the 36th Annual ACM
Symposium on Theory of Computipgges 436—444, 2004.

O. Goldreich, S. Vadhan, and A. Wigderson. Simplified derandomization of BPP using a hitting
set generator. Technical Report TR00-004, Electronic Colloquium on Computational Complex-
ity, January 2000.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness into
pseudo-randomness. Rroceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Scienggages 181-190, 1999.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random generators with
optimal seed-length. IRroceedings of the Thirty-second Annual ACM Symposium on the Theory
of Computingpages 21-23, May 2000.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Reducing the seed length in the Nisan-
Wigderson generator. Full version of [ISWO00] and [ISW99]. To appear in Combinatoria.
Manuscript, 2003.

R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. IrProceedings of the 29th Annual ACM Symposium on Theory of Computing
pages 220-229, 1997.

V. Kabanets. Derandomization: a brief overvieBulletin of the European Association for
Theoretical Computer Science6:88-103, 2002.

V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit
lower bounds. Computational Complexify1 3(1-2):1-46, 2004.

P. B. Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin games using hitting
sets.Computational Complexify1 4(3):256—279, December 2005.

N. Nisan and A. Wigderson. Hardness vs randomndssirnal of Computer and System Sci-
ences49(2):149-167, 1994.

M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma.
JCSS: Journal of Computer and System Scier@&2001.

R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom
generatorJournal of the ACM52(2):172—-216, 2005.

M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bdoadhal of
Complexity 13, 1997.

L. Trevisan. Extractors and pseudorandom generatdosirnal of the ACM48(4):860-879,
2002.

19

[TS02] A. Ta-Shma. Storing information with extractotsf. Process. Lett.83(5):267-274, 2002.

[TSUZO01] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced expanders, and
extractors. IProceedings of the 33rd Annual ACM Symposium on Theory of Comppéiggs
143-152, 2001.

[TSZ04] A. Ta-Shma and D. Zuckerman. Extractor cod&SEE Transactions on Information Theory
50(12):3015-3025, December 2004.

[TSZS01] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller codBsodaedings
of the 42nd Annual IEEE Symposium on Foundations of Computer Sciitce

[Uma03] C. Umans. Pseudo-random generators for all hardnessms&nal of Computer and System
Sciences67:419-440, 2003.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions.Plceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Scignages 80-91, 1982.

20

