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Abstract

Lossless condensers are unbalanced expander graphs,
with expansion close to optimal. Equivalently, they may be
viewed as functions that use a short random seed to map a
source on n bits to a source on many fewer bits while pre-
serving all of the min-entropy. It is known how to build loss-
less condensers when the graphs are slightly unbalanced
[3]. The highly unbalanced case is also important but the
only known construction does not condense the source well.
We give explicit constructions of lossless condensers with
condensing close to optimal, and using near-optimal seed
length.

Our main technical contribution is a randomness-
efficient method for sampling F

D (where F is a field) with
low-degree curves. This problem was addressed before
[2, 6] but the solutions apply only to degree one curves,
i.e., lines. Our technique is new and elegant. We use
sub-sampling and obtain our curve samplers by compos-
ing a sequence of low-degree manifolds, starting with high-
dimension, low-degree manifolds and proceeding through
lower and lower dimension manifolds with (moderately)
growing degrees, until we finish with dimension-one, low-
degree manifolds, i.e., curves. The technique may be of in-
dependent interest.

1. Introduction

Expanders are sparse graphs with the property that every
“not too large” set of vertices has many neighbors. One can
view expanders as balanced bipartite graphs, where u on
one side is connected to v on the other iff (u, v) is an edge in
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the original graph. Typically one is interested in constant-
degree expanders, which give rise to constant degree bal-
anced bipartite graphs. Explicit constructions of expanders
have numerous applications in computer science and com-
binatorics.

A number of applications demand a different variant,
unbalanced bipartite expanders, which are sparse bipartite
graphs G = (V,W,E) where every “not too large” subset
of V has many neighbors in W , and W is much smaller than
V . These objects retain the original “expansion” property,
while simultaneously mapping elements of V into a much
smaller domain. Often this last feature is crucial (e.g., in the
error correcting codes of [12]). Unbalanced expanders are
often called condensers.

More precisely, a condenser is a function1 C : {0, 1}n ×
{0, 1}t → {0, 1}m with the property that for every dis-
tribution X on {0, 1}n with min-entropy k1, the distribu-
tion C(X,Ut) is ε-close to a distribution with min-entropy
k2. One typically wants to maximize k2 (and bring it
close to k1 + t) while minimizing m (it can be as small
as k1 + t + O(log(1

ε )) ) and t (it can be as small as
log((n − k)/(m − k)) + log(1/ε) + O(1)). We call a con-
denser lossless if k2 = k1 + t.

Lossless condensers have some special properties not
possessed by lossy condensers. In particular they have the
unique neighbor property: for every “not too large” subset
of V , a constant fraction of the nodes in the subset have
unique neighbors in W . Some applications require this
property – see the introduction to [3] for a nice outline of
many applications in routing, error-correcting codes, fault
tolerance, and others.

Capalbo et al. [3] give constructions of lossless con-
densers with optimal seed length, but the construction time
is doubly-exponential in the shrinking factor n − m ([3],
Thm 7.2). This gives an explicit construction for the slightly
unbalanced case where n − m is small, and in particu-

1As is standard, we use the functional notation, which implicitly de-
scribes a bipartite graph. Namely, V = {0, 1}n, W = {0, 1}m, and
(v, w) ∈ E iff there exists a y for which C(v, y) = w.



lar a constant seed length, t, when n − m is a constant.
Solving the problem for this restricted regime of parame-
ters supplied the right unbalanced expander for many im-
portant applications (e.g., the error correcting codes men-
tioned above).

The highly unbalanced case is also of great importance.
This is demonstrated by the many extractor and disperser
constructions that involve a condenser as a main ingredient
(e.g., [7, 13, 15, 4, 9, 16, 5] just to mention a partial list). In
fact, in many of these constructions the progress was made
by improving the condenser quality and then using the new
condenser in a sophisticated way (e.g., the sequence of pa-
pers [7, 13, 9, 5]). This is not surprising, as extractors are a
special case of condensers (when m = k2). We note, how-
ever, that in spite of much effort, most of these condensers
are lossy, which means that k2 < k1.

Lossless condensers (as opposed to lossy ones) can be
used in a completely modular fashion, and are an important
goal because other objects can be easily derived from them.
For example, it was pointed out several times (e.g., in [9, 5])
that by applying a lossless condenser to a source on n bits
with k min-entropy, one obtains a source on somewhat more
than k bits in which the min-entropy has been preserved.
An extractor for very high min-entropy can then be applied
(and this parameter setting has historically been easier to
deal with).

In spite of their usefulness, there are few constructions
of lossless condensers. For very high min-entropies, the
already mentioned Zig-Zag construction [3] gives nearly-
optimal lossless condensers. It is also not too hard to get a
lossless condenser for every min-entropy k with seed length
O(log3 n) (see, e.g., [5], Theorem 7.3). For the very low
min-entropy regime (k = O(log(n))) the lossless extrac-
tors of [13] combined with simple hashing gives a nearly
optimal lossless condenser, and this was used several times
(e.g., in the extractor-condenser pairs of [8]). Finally, the
lossless condensers or [16] work for all min-entropies k, but
the output length m = k1+ε is larger than what one might
hope for.

We change the picture significantly in this paper. We
construct lossless condensers with much smaller output
length, for any min-entropy k. We do not get seed length
t = O(log n) but we get close. Specifically, we obtain in
Theorems 6 and 5, respectively:

• for any min-entropy k and any constant α > 0, a loss-
less condenser C : {0, 1}n × {0, 1}t → {0, 1}m with
output length m = k · (log n)O(1) and seed length
t = O((log n)1+α), and,

• for any min-entropy k, a lossless condenser C :
{0, 1}n × {0, 1}t → {0, 1}m with output length
m = k · O(log(n))2 log log(n) and seed length t =
O(log(n) log log(n)).

This should be compared with seed length t = O(log2 n)
that is required by all previous constructions that have out-
put length smaller than k1+ε, and with the lower bound
t = Ω(log(n)).

Our results are obtained using a new and elegant tech-
nique that we describe next.

1.1. Derandomized curve samplers

Our main technical contribution is a “derandomized
curve sampler,” which we believe to be of independent in-
terest. To describe how this enables us to produce lossless
condensers, we briefly outline the technique of [16] for ob-
taining lossless condensers from so-called “reconstructive
extractors.”

The approach in [16] builds on Trevisan’s insight [18]
that certain pseudo-random generator (PRG) constructions
can be converted to extractor constructions. One way to
frame this (as done by [16] and further formalized in [20])
is to observe that certain “reconstructive extractors” come
equipped with an additional randomized “advice function”
A and a “reconstruction procedure” with the property that
for every large enough subset X , with high probability over
y, the advice A(x, y) (and knowledge of what is the set X)
suffices to reconstruct x using the prescribed reconstruction
procedure. In [16] it is proved that in such setups the advice
function A is a lossless condenser!

There are really just two basic constructions of “recon-
structive extractors.” The first, breakthrough, construction
is Trevisan’s, and it can be described as mainly combina-
torial (relying on error-correcting codes, and combinatorial
designs). The results in [16] are based on this construc-
tion. The second construction is by Shaltiel and Umans
[11] and it can be characterized as mainly algebraic (it is
based on another reconstructive construction by [17] that
has a geometric intuition). Their advice function A(x, y)
is the following: first encode x ∈ {0, 1}n as a low-degree
polynomial p : F

D → F with |FD| = poly(n), then use
the randomness y to select a degree t = O(log n) curve in
F

D, and finally output p restricted to m successive “shifts”
of that curve. The standard way to select a random degree
t curve in F

D is to select t random points in F
D and pass

a curve through them. This means that the advice func-
tion uses O(t log n) = O(log2 n) random bits, which is
too many. So the bottleneck preventing us from obtain-
ing a lossless condenser from [11] is that picking a random
curve requires too much randomness. If it were not for this
bottleneck, the construction in [11] would yield a lossless
condenser with much smaller output length than Trevisan’s
construction, for the same reason that the parameters of the
corresponding extractor construction in [11] can be tuned
to handle low min-entropies without blowing up the seed
length.



The curve sampling problem arises quite often. We fre-
quently need to sample a 0/1 function f defined on F

D such
that:

• the sample space is t-wise independent so that we can
apply t-wise independent tail bounds and make the
sampling error small enough, and

• simultaneously, we need to exploit the special prop-
erties of sampling along low-degree curves – namely
that the restriction of a low-degree function over F

D to
a curve is low degree.

This combination of requirements arises in the above
extractor construction [11], but also in PCP constructions,
hardness amplification and decoding of Reed-Muller codes
[14], algebraic PRG constructions [11, 19], and some pure
complexity results (e.g. [10]).

The randomness required to sample the curve is an im-
portant parameter in these settings: it is the seed length for
condensers, and it is related to the PCP length in the PCP
setting, the list-size in the decoding setting, and the non-
uniformity in hardness amplification.

A probabilistic argument shows that there exists a small
subset of degree t curves, samplable using O(log n) ran-
domness that samples f well; i.e., the error behaves as it
would for t-wise independent samplers. The challenge is
to describe such a subset explicitly, or “derandomize curve
samplers.” Motivated by the goal of constructing short
PCPs, this problem was tackled before for the case of degree
1 curves, or lines, resulting in two beautiful papers. In [2]
Ben-Sasson et al. show how to derandomize line samplers
by picking one random point in F

D and a random direction
for the line in an ε-biased set. Moshkovitz and Raz [6] use
a different approach: they pick a direction for the line in a
subfield. However, it is not at all clear how to generalize
these results to higher degree curves.

In this paper we show how to get close to optimal curve
samplers, and we do that using a new technique. Our idea is
to use sub-sampling. We illustrate the idea with a toy exam-
ple. A useful rule-of-thumb is that the sampling error when
choosing N points t-wise independently is approximately
N−t/2. Assume we want to pick degree t = O(log n)
curves in F

D
q , with qD = poly(n). Such curves pro-

duce sampling error that is roughly q−t/2, and they require
O(tD log q) = O(log2 n) randomness to sample directly.
Rather than pick curves immediately, we first sample a ran-
dom t1/2-dimensional subspace V of F

D
q . The qt1/2

points
in V are close to being t1/2-wise independent2, and so we
expect a sampling error of about |V |−t1/2/2 = q−t/2. Now
we pick a random degree t curve in the subspace V , which
gives a sampling error of about q−t/2 as before. Overall, the

2But not close enough, as we discuss below.

sampling error is about what it would have been for picking
the curve directly. But we have gained in the randomness:
we picked t1/2 points in F

D
q , and t points in V for a total

of t1/2 log(qD) + t log(qt1/2
) = O(log3/2 n log q) random

bits, which is an improvement for typical settings of q.
A natural idea is to use more steps, implementing the

above sub-sampling process gradually. At each step i the
dimension di of the vector space we work with becomes
smaller, and the independence ti used must become larger
(to keep the error small). At a certain stage the required
independence ti becomes larger than the dimension of the
vector space. At this point we cannot get ti-wise indepen-
dence by choosing a linear subspace. So, when the dimen-
sion of the vector space we work with becomes too small,
we achieve the required independence by picking a low-
degree manifold. At the end of the process, the dimension
is as small as possible – one – and the independence is t,
so we are choosing a degree t one-dimensional manifold,
otherwise known as a curve.

However, there is a basic bug in the above argument.
Although “most” d-tuples of points in a random d dimen-
sional subspace of F

D
q are d-wise independent, a 1/qc frac-

tion are only (d − c)-wise independent, and we are shoot-
ing for an error of about q−d2/2 � q−c. Indeed, David
Zuckerman [21] showed us an example in which d dimen-
sional subspaces suffer a huge sampling error, in fact the
same as just using pair-wise independence! Our intended
application makes critical use of the tail-bounds afforded
by greater-than-pairwise independence, and so we cannot
use subspaces as intermediate samplers.

Surprisingly, we bypass this problem in an easy way, as
follows. We identify the vector space F

D
q with the field

FqD and we choose a random degree t univariate polyno-
mial over the field FqD . The evaluations of this polynomial
are t-wise independent points in FqD , as are any subset of
evaluations. A simple, but crucial, point is that the when
we view this function as a function from the vector space
F

D
q to the vector space F

D
q , then each coordinate function is

a D-variate low degree polynomial over Fq (for the simple
proof see Section 3.2). We now identify the subspace F

d
q

with a subspace in F
D
q via a linear map and we compose

this map with the sampled function. The composition is a
good sampler (because we get t-wise independence when
evaluating the polynomial over the subset of points) and is
low degree (because both mappings are low-degree). We
give full details in Section 3.2.

Altogether, we obtain in Theorems 1 and 2:

• a curve sampler in F
D with error δ, that samples

curves of degree (log D/δ)log D, using randomness
O(log(|FD|) + log(1/δ)(log D)), and

• a curve sampler in F
D with error δ, that samples

curves of degree log(1/δ)O(1), using randomness



O(log(|FD|) + log(1/δ)Dα), for any constant α > 0.

Note that an optimal curve sampler would have de-
gree O(log(1/δ)/ log q) and randomness O(log |FD| +
log(1/δ)). Our curve samplers immediately give rise to the
two condensers mentioned earlier, by plugging them into
the reconstructive extractor construction of [11].

Thus, we obtain our curve samplers by composing
a sequence of low-degree manifolds, starting with high-
dimension, low-degree manifolds and proceeding through
lower and lower dimension manifolds with (moderately)
growing degrees, until we finish with dimension-one, low-
degree manifolds.

Outline. The next section contains relevant definitions
and a tail bound for t-wise independence. Section 3 gives
the basic manifold sampler based on Reed-Solomon codes,
and Section 4 shows how to compose it with itself to obtain
randomness-efficient curve samplers. Section 5 adapts to
larger alphabets the proof from [16] that the advice function
of reconstructive extractors is a lossless condenser and ap-
plies it to the reconstructive extractor construction of [11].
Finally Section 6 plugs in the new curve samplers to obtain
improved lossless condensers.

2. Preliminaries

A probability distribution D on Λ is a function D :
Λ → [0, 1] such that

∑
x∈Λ D(x) = 1. Un is the

uniform distribution on {0, 1}n. The variation distance
|D1 − D2| between two probability distributions on Λ is
1
2

∑
x∈Λ |D1(x)−D2(x)| = maxS⊆X |D1(S)−D2(S)|.

We say D1 is ε-close to D2 if |D1 − D2| ≤ ε. The support
of a distribution D is the set of all x for which D(x) �= 0. A
distribution D is flat over its support A ⊆ Λ if D(a) = 1

|A|
for all a ∈ A. If A is a set, we use A to also refer to the
flat distribution with support A, when this meaning is clear
from context.

If D is a distribution and f a function, then f(D) denotes
the distribution obtained by picking d according to the dis-
tribution D and evaluating f(d). Thus, e.g., E(X,Ut) de-
notes the distribution obtained by picking x according to the
distribution X , picking y uniformly at random from {0, 1}t,
and evaluating E(x, y).

Distinguishers and predictors. A distinguisher is a test
that distinguishes between a given distribution and the uni-
form distribution:

Definition 1 (distinguisher). A function D :
Σm → {0, 1} ε–distinguishes a distribution X , if
|Prx←X [D(x) = 1] − Pru←Σm [D(u) = 1]| ≥ ε.

A next-element predictor is a special distinguisher that is
able to predict well the i-th element of x ∈ X given the first
i − 1 elements of x, i.e.,

Definition 2 (next-element predictor). Let X be a dis-
tribution over Σm. A function T : Σ<m → Σ
is a next-element predictor for X with success p, if
Pri∈[m],x←X [T (x1, x2, . . . , xi−1) = xi] ≥ p.

Note that a next-element predictor (or a distinguisher)
need not be efficient.

Extractors and condensers. We say a distribution X has
min-entropy k, if no element x has probability mass larger
than 2−k. Formally:

Definition 3 (min-entropy). The min-entropy of a distri-
bution X is H∞(X) = mina{− log2 X(a)}.

Definition 4 (condenser). Let C : {0, 1}n × {0, 1}t →
{0, 1}m be a function.

1. We say C is a (n, k1) →ε (m, k2) condenser if for
every distribution X with k1 min-entropy, C(X,Ut) is
ε-close to a distribution with k2 min-entropy.

2. We say C is a strong (n, k1) →ε (m, k2) condenser,
if for every distribution X with k1 min-entropy, Ut ◦
C(X,Ut) is ε-close to a distribution Ut ◦D with t+k2

min-entropy.

3. We say C is a (strong) lossless condenser if it is a
(strong) (n, k) →ε (m, k) condenser.

In this language we can define an extractor as a special
case of a condenser.

Definition 5 (extractor). The function E : {0, 1}n ×
{0, 1}t → {0, 1}m is a (strong) (k, ε)-extractor if it is a
(strong) (n, k) →ε (m,m) condenser.

Both extractors and condensers are explicit if they can
be computed in polynomial time. In the definitions above,
we may equivalently take the source distribution X to be a
flat distribution. This follows from two standard facts: (1)
any distribution X with min-entropy k1 can be written as
a convex combination of flat distributions with min-entropy
k1; and (2) a convex combination of distributions that are
each ε-close to distributions with min-entropy k2 is ε-close
to a single distribution with min-entropy k2.

A tail bound for t-wise independence. The main tool for
analyzing our new samplers is the following tail bound from
[1]:



Lemma 1 ([1]). Let t ≥ 4 be an even integer. Suppose
X1, . . . , Xm are t-wise independent random variables tak-
ing values in [0, 1] and denote X =

∑m
i=1 Xi and µ =

E(x). Then, for every A > 0 we have

Pr[|X − µ| ≥ A] ≤ 8
(

t · E(X) + t2

A2

)t/2

.

Samplers. The density of a set A ⊆ F
D is ρ(A) =

|A|
|FD| . The density of A in a subset S ⊆ F

D is ρS(A) =
Prx∈S [x ∈ A].

Definition 6 (sampler). A sampler is a probabilistic proce-
dure R that outputs a subset S ⊆ F

D. We say R samples
A ⊆ F

D with accuracy error ε and confidence error δ if

Pr [ |ρS(A) − ρ(A)| ≥ ερ(A) ] ≤ δ,

where the probability is over the randomness of R. We say
R is a (ρ, ε, δ) sampler if it samples all sets A ⊆ F

D of
density at least ρ with accuracy error ε and confidence error
δ. The randomness of the sampler is the number of random
coins it uses.

3. A manifold sampler

In this section we describe the Reed-Solomon code
based sampler that underlies our later constructions.

3.1. Low-degree manifolds

Let F = Fq be the finite field of size q. A manifold
is a function C : F

d → F
D. We call d the dimension of

the manifold. We view C as D individual functions Ci :
F

d → F describing its operation on each output coordinate,
i.e., C(a) = (C1(a), . . . , Cd(a)). We are interested in low-
degree manifolds, defined below:

Definition 7 (low-degree manifold). A manifold C : F
d →

F
D has degree t if for every 1 ≤ i ≤ D the function Ci :

F
d → F is a d-variate polynomial of degree at most t.

Note that a (parametric) degree t curve is just a one-
dimensional manifold of degree t. In discussions below, we
often identify a manifold C : F

d → F
D with its image in

F
D.

Let A : F
d1 → F

D be a d1-dimensional manifold and
B : F

d2 → F
d1 a d2-dimensional manifold. Then their

composition A ◦ B : F
d2 → F

D is defined to be

(A ◦ B)(a1, . . . , ad2) = A(B(a1, . . . , ad2)).

The composition is a new manifold of dimension d2. Its
degree is deg1 · deg2 where deg1, deg2 are the degrees of

the manifolds A and B, respectively. To see that notice that
each coordinate function Ai(b1, . . . , bd1) (for 1 ≤ i ≤ D) is
a degree deg1 polynomial in b1, . . . , bd1 , and we substitute
for each bj a degree deg2 polynomial in a1, . . . , ad2 . Notice
also that the image of A ◦ B is a subset of the image of A.

3.2. The Reed-Solomon manifold sampler

Definition 8 (manifold sampler). We say R is a manifold
sampler of dimension d and degree t if R is a sampler that
outputs a dimension d, degree t manifold C.

We now present a simple low-degree manifold sampler
based on Reed-Solomon codes.

Lemma 2. Let q be a prime power, d < D integers, ε > 0,
and let ρ > 0 be arbitrary. For every even 4 ≤ t ≤ ρqD

there exists a degree t manifold sampler R that outputs a
manifold C : F

d → F
D, and for which R is a(

ρ, ε, δ = O

(
2t

ε2ρqd

)t/2
)

sampler with randomness complexity tD log q.

Proof. We pick y = (y1, . . . , yt) with each yi ∈ FqD uni-
formly at random. We define RSy : FqD → FqD by

RSy(x) =
t∑

i=1

yi · xi,

where additions and multiplications are in the field FqD .
We identify F

D
q with the field FqD via an arbitrary basis

{e1, . . . , eD} for FqD over Fq. This allows us to view RSy

as a function from F
D
q to F

D
q .

The following claim is simple, but crucial:

Claim 1. Viewing RSy as a function from F
D
q to F

D
q , each

coordinate function (RSy)i is a D-variate degree t polyno-
mial mapping from F

D
q to Fq.

Proof. Writing the variable x in FqD as
∑D

j=1 xjej with the

xj in Fq, and each coefficient yi ∈ Fqd as
∑D

j=1 yi,jej with
the yi,j ∈ Fq, we obtain

RSy(x) =
t∑

i=1

 D∑
j=1

yi,jej

 D∑
j=1

xjej

i

.

After multiplying out, the monomials in the xj all have total
degree at most t, and their coefficients are polynomials in
the yi,j and ej elements. Rewriting each of these values in
the basis (e1, . . . , eD) and gathering the coefficients on ei,
we obtain the i-th coordinate function, which is a D-variate,
degree t polynomial in the xj variables.



We define the random variable RS(f), for f ∈ FqD \
{0}, to be the value in F

D obtained by picking y at random
and evaluating RSy(f). We know that the random variables
(RS(f))f∈FqD\{0} are t-wise independent.

Finally, we define a linear map Φ : F
d → F

D by
Φ(b1, . . . , bd) =

∑d
j=1 bjej and we take our manifold

Cy : F
d → F

D to be the function RSy ◦ Φ; i.e.,

Cy(b1, . . . , bd) = RSy

∑
j

bjej

 .

The qd evaluations of Cy are a subset of the qD evalua-
tions of RSy and so they give rise to a t-wise independent
distribution. Applying Lemma 1 we get the desired accu-
racy and confidence error.

By Claim 1, each coordinate function (RSy)i is a D-
variate degree t polynomial mapping from F

D
q to Fq. Com-

posing this with Φ : F
d
q → F

D
q , which is a degree 1, d-

variate polynomial in each coordinate, gives that each coor-
dinate function (Cy)i has degree at most t. Thus, the total
degree of Cy is t. The randomness complexity is immedi-
ate.

4. A randomness-efficient curve sampler

We save on randomness by using a small dimension, but
large degree manifold sampler to sub-sample a larger di-
mension, small degree manifold. This sub-sampling corre-
sponds to a composition of the manifold functions.

4.1. Sub-sampling

Definition 9 (composed manifold samplers). Let R1 be
a manifold sampler outputting dimension d1 manifolds in
F

d0 . Let R2 be a manifold sampler outputting dimension d2

manifolds in F
d1 . Then, we define a new sampler R1 ◦ R2

that does the following. It uses R1 to sample a manifold
C1 : F

d1 → F
d0 and R2 to sample a manifold C2 : F

d2 →
F

d1 . It then outputs the manifold C1 ◦ C2 : F
d2 → F

d0 .

We claim that if R1 and R2 are two good samplers then
their composition R1 ◦ R2 is also a good sampler.

Lemma 3. Let R1, R2 be as above. If Ri (for i ∈ {1, 2})
is a (ρ, εi, δi) sampler with randomness complexity ri and
degree ti, then R1 ◦ R2 is a (ρ/(1 − ε1), ε1 + ε2, δ1 + δ2)
sampler with randomness complexity r1 + r2 and degree
t1t2.

Proof. The randomness complexity and the degree are im-
mediate. We now turn to analyze the error. Fix an arbitrary
subset A ⊆ F

d0 of density at least ρ/(1 − ε1). As R1 is
a (ρ, ε1, δ1) sampler, except for probability δ1 the manifold

C1 samples A to within ε1 accuracy. In other words, if A′

is the set of points in F
d1 whose C1-image is in A, then

|ρ(A′) − ρ(A)| ≤ ε1ρ(A).

In particular, ρ(A′) ≥ (1 − ε1)ρ(A) ≥ ρ, and then because
R2 is a (ρ, ε2, δ2) sampler, except for probability δ2, the
manifold C2 samples A′ to within ε2 accuracy. This implies
that the density of A in (C1 ◦ C2)(Fd2) is within ε1 + ε2
accuracy of ρ(A).

4.2. Repeated sub-sampling

In the next two theorems, we give a construction of
a curve sampler that minimizes the randomness complex-
ity, and a second curve sampler that minimizes the degree
(while still achieving relatively low randomness complex-
ity). In both constructions we work over F

D
q , and we repeat-

edly sub-sample with manifolds of decreasing dimension,
and increasing degree, until we finally sample a dimension
one manifold – a curve.

Our first construction reduces the dimension by 1/2 in
each stage, for a total of log2 D stages.

Theorem 1. Let ρ, ε, δ be arbitrary, D a power of 2, and
T = log2 D. Let q be a prime power satisfying

q = Ω

((
1
ρ

)2(
T

ε

)4(
log

T

δ

)2
)

.

There is a (ρ, ε, δ) manifold sampler that outputs a function
from Fq to FD

q with degree at most log(T/δ)T , and it has
randomness complexity

O(D log q + log(1/δ) log D).

Proof. Define di = D/2i and ti = 4
⌈

log(T/δ)
di log q

⌉
for i =

0, 1, 2, . . . , T , and let Ri be the(
ρ′ =

ρ

2
, ε′ =

ε

2T
, δ′
)

manifold sampler of Lemma 2 that outputs a function from
F di

q to F
di−1
q . Our curve sampler is R = R1 ◦R2 ◦ · · · ◦RT .

The randomness complexity of R is
∑T

i=1 tidi−1 log q.
This is bounded from above by 4

∑T
i=1 di−1 log q + T ·

O(log(T/δ)) which is as claimed.
The total degree of Ri is at most ti ≤ log(T/δ) and

so the total degree of R is at most deg1 deg2 . . . degT ≤
log(T/δ)T .

We now analyze the error. Note that for all i, ti ≤
ρ′qdi−1 by our choice of q, and so Lemma 2 applies, and it
shows that each Ri is a (ρ′, ε′, δ′) sampler with confidence
error

δ′ =
(

ctiT
2

ε2ρqdi

)ti/2



for some universal constant c. By our choice of q, we have
(ctiT 2)/(ε2ρqdi) ≤ q−di/2. Thus, the confidence error of
Ri is at most q−diti/4 ≤ δ/T .

Now we use Lemma 3 to analyze the composition. It ap-
plies because the ρ′ associated with each Ri is small enough
so that even ρ′/(1 − ε′)T ≤ ρ, as can be seen from the fol-
lowing calculation: (1 − ε′)T ρ ≥ (1 − ε′T )ρ ≥ ρ/2 = ρ′.
We conclude, by Lemma 3, that R = R1 ◦ R2 ◦ · · · ◦ RT

is a (ρ, ε′T, δ′T ) sampler, and note that ε′T < ε and
δ′T ≤ δ.

Doing the same thing but with only a constant number
of rounds of sub-sampling, minimizes the degree (and the
lower bound on the field size q) at the cost of using more
randomness (but still much less than O(log2 n)).

To get down to dimension one after a constant number of
rounds, we must reduce the dimension by a constant root in
each stage.

Theorem 2. Let ρ, ε, δ be arbitrary, T be a positive con-
stant, and D a T -th power. Let q be a prime power satisfy-
ing

q = Ω

((
1
ρ

)2(
T

ε

)4(
log

T

δ

)2
)

.

There is a (ρ, ε, δ) manifold sampler that outputs a function
from Fq to FD

q with degree at most log(1/δ)T , and it has
randomness complexity

O(D log q + log(1/δ)D1/T ).

Proof. Define di = D1−i/T and ti = 4
⌈

log(T/δ)
di log q

⌉
for i =

0, 1, 2, . . . , T , and let Ri be the(
ρ′ =

ρ

2
, ε′ =

ε

2T
, δ′
)

manifold sampler of Lemma 2 that outputs a function from
F di

q to F
di−1
q . Our curve sampler is R = R1 ◦R2 ◦ · · · ◦RT .

The randomness complexity of R is

T∑
i=1

tidi−1 log q ≤ 4
T∑

i=1

di−1 log q + O(D1/T log(1/δ))

which is as claimed.
The total degree of Ri is at most ti ≤ log(1/δ) and

so the total degree of R is at most deg1 deg2 . . . degT ≤
log(1/δ)T .

Applying Lemma 2 exactly as in the proof of Theorem
1, we find that the confidence error δ′ of Ri is at most
q−diti/4 ≤ δ/T . We use Lemma 3 to analyze the compo-
sition just as in the proof of Theorem 1. We conclude that
R = R1◦R2◦· · ·◦RT is a (ρ, ε, δ) sampler, as desired.

4.3. A remark

When we have a sequence of dimensions d0 =
D, d1, . . . , dT = 1 such that di|di−1, the composition has
a particularly pleasant structure. Indeed this is the case for
both Theorem 1 and Theorem 2. In such a case Fqdi is
a subfield of Fqdi−1 . As a consequence, we do not need to
move between vector spaces and fields as we do in the proof
of Lemma 2. Instead, the entire construction amounts to
picking univariate polynomials (Reed-Solomon codewords)
pi : Fqdi → Fqdi with degree ti, and composing them to ob-
tain R = p1◦p2◦· · · pT . This is a function from Fq = FqdT

to FqD = Fqd0 , and notice that the composition is well de-
fined because Fqdi is a subfield of Fqdi−1 .

5. Lossless condensers

The following framework is adapted from [20] to apply
to larger alphabets.

5.1. Reconstructive extractors yield lossless
condensers

Certain extractor constructions ([18], [17], [11]) implic-
itly define the following object. The original purpose was
to prove that E is indeed an extractor, by arguing that if it
is not, then there exists a next-element predictor, and then
many strings in the supposedly high-entropy source X can
be reconstructed from short advice, a contradiction.

Definition 10 (reconstructive extractor). A triple
(E,A,R) of functions where:

• E : {0, 1}n × {0, 1}rE → Σm is called the extractor
function,

• A : {0, 1}n × {0, 1}rA → Σa is called the advice
function, and,

• R : Σa × {0, 1}rA × {0, 1}rR → {0, 1}n is called the
reconstruction function

is a (p, q) reconstructive extractor if for every X ⊆ {0, 1}n

and every next-element predictor T : Σ<m → Σ for
E(X,UrE

) with success p, we have

Pr
x←X,y,z

[RT (A(x, y), y, z) = x] ≥ q.

If R is deterministic, then we drop the third argument and
just write R : Σa × {0, 1}rA → {0, 1}n.

We now have two claims. First, we claim that when E’s
output is long enough, then a good next-element predictor
exists, and second that whenever such a predictor exists, A
is a lossless condenser. We begin with:



Lemma 4. Let E : {0, 1}n×{0, 1}rE → Σm be a function,
and let X ⊆ {0, 1}n be a subset of cardinality at most 2k.
Then, there exists a next-element predictor T : {0, 1}<m →
{0, 1} for E(X,UrE

) with success

p ≥ 1 − (ln 2)(k + rE)/m.

The proof idea is that if m is much larger than the en-
tropy of X , then E encodes an input x from X with much
redundancy, and hence a good predictor exists. A similar
proof was given in [16] for next-bit predictors.

Proof. (Of Lemma 4) We know that X has k min-entropy,
but because X is flat it also has k entropy. Thus, E(X,UrE

)
has at most k + rE entropy. It follows that

Ei [H(Yi | Y[1..i−1])] =
1
m

m∑
i=1

H(Yi | Y[1..i−1])

=
1
m

H(E(X,UrE
)) ≤ k + rE

m
.

Now, assume there is no next-element predictor with suc-
cess p. Then for every 1 ≤ i ≤ m,

Pr
y1,...,yi−1

[optimal predictor succeeds] ≤ p.

But, the optimal predictor always guesses the element with
the highest probability. Thus its success probability is ex-
actly 2−H∞(Yi | Y[1..i−1]=y[1..i−1]). Also, the min-entropy
is bounded from above by the entropy. It follows that
Ei

[
2−H(Yi | Y[1,i−1])

] ≤ p. The function g(z) = 2z is con-
vex, and so by Jensen’s Inequality, Ei [H(Yi | Y[1,i−1])] ≥
log(1/p).

We conclude that

k + rE

m
≥ log

(
1
p

)
≥ (log2 e)(1 − p)

(using the fact that p < e−(1−p)). This is a contradiction
when p < 1 − (ln 2)(k + rE)/m.

Our second claim is that if (E,A,R) is a reconstruc-
tive extractor, and if a good next-element predictor for
E(X,UrE

) exists, then A(X,UrA
) retains the entropy of

X . This argument is identical to [16, 20]. We state it here
and give a proof for completeness.

Lemma 5. Let (E,A,R) be a (p, q = 1− ε) reconstructive
extractor and X ⊆ {0, 1}n a subset such that there exists
a next-element predictor T : Σ<m → Σ for E(X,UrE

)
with success p. Then the distribution UrA

◦ A(X,UrA
) is

O(ε)-close to a distribution UrA
◦ D with rA + log2 |X|

min-entropy.

Proof. Let us call a pair (x, y) with x ∈ X and y ∈
{0, 1}rA good if

Pr
z

[RT (A(x, y), y, z) = x] > 1/2 (1)

Let G be the set of good pairs (x, y). Since we know
Prx←X,y,z[RT (A(x, y), y, z) = x] ≥ 1 − ε, we obtain, by
an averaging argument, that Prx←X,y[(x, y) ∈ G] ≥ 1−2ε.

Now notice that Equation (1) implies that if (x1, y)
and (x2, y) are both good, then A(x1, y) �= A(x2, y).
This holds because if A(x1, y) = A(x2, y) then
Prz[RT (A(x1, y), y, z) = x2] > 1/2, contradicting Equa-
tion (1). In particular, if we define A′(x, y) = y ◦ A(x, y),
then A′ is one-to-one on the set of good pairs G.

However, as argued above, almost every element of X ×
{0, 1}rA is good, and so the flat distribution on the set G
is O(ε)-close to the distribution X ◦ UrA

. In particular, the
probability mass on elements of A′(X,UrA

) with multiple
preimages is at most O(ε) (since A′ is one-to-one on G).
By redistributing this mass, we obtain a distribution D ◦
UrA

with min-entropy log2 |X| + rA that is O(ε)-close to
A′(X,UrA

), which proves the lemma.

Combining Lemmas 5 and 4 we see that the advice func-
tion of a reconstructive extractor (with long enough output
length m) is a lossless condenser:

Theorem 3. Assume the triple of functions (E,A,R) as in
Definition 10 is a (p = 7

8 , 1 − ε) reconstructive extractor.
Then A is a strong (n, k) →O(ε) (a, k) condenser, provided
m ≥ (8 ln 2)(k + rE).

Proof. Let X ⊆ {0, 1}n be an arbitrary subset of cardi-
nality 2k. By Lemma 4 there exists a next-element predic-
tor T for E(X,UrE

) with success p ≥ 7
8 . By Lemma 5,

UrA
◦ A(X,UrA

) is O(ε)-close to a distribution with min-
entropy k + rA. Using the observation regarding flat distri-
butions from Section 2, we find that A is the desired lossless
condenser.

5.2. The SU reconstructive extractor

We now present the Shaltiel-Umans (SU) construction
using the “reconstructive extractor” terminology, and with
the curve-samplers abstraction.

Theorem 4. Let q be a prime power and let D be an in-
teger for which qD = n2. Assume there exists a family of
efficient (ρ = 0.5, ε = 0.01, δ = 1/q2D) one-dimensional
manifold samplers, sampling degree t(n) curves in F

D
q with

randomness r(n).
Then, provided that q ≥ (100Dt(n))2, for every m =

m(n), there exists a triple of functions

E : {0, 1}n × {0, 1}rE → Σm

A : {0, 1}n × {0, 1}rA → Σa

R : Σa × {0, 1}rA → {0, 1}n



that is a (p = 7
8 , 1 − (1/qD)) reconstructive extractor with

rE = D log q, rA = r(n) and a ≤ mq log q.

We now give a sketch of the proof. For a full correct-
ness proof the reader should consult [11]. We note however
that one of the main complications in that work is avoided
in the present setting when our goal is a condenser con-
struction rather than an extractor construction. When using
the SU reconstructive extractor as an extractor construction,
one needs to work with a next-element predictor that has
only slightly better success than random guessing. A basic
step in the reconstruction procedure is to use the predictor to
learn the restriction of a low-degree polynomial to a curve.
When the predictor has such a low success rate, it makes
many errors, and one must use list-decoding to recover from
these. Picking the “correct” decoding out of the list entails a
complicated analysis of two separate “interleaved” curves,
where the first curve is used to disambiguate along the sec-
ond, and vice versa.

In the present setting, the existence of a next-element
predictor will be guaranteed by Lemma 4, and we can set
parameters so that the predictor has success rate close to
one. When using this predictor to learn the restriction of a
low-degree polynomial to a curve, we suffer few errors, and
we can use unique decoding. Consequently there is no need
for interleaved curves, and the construction and its analysis
become more straightforward.

Proof. (of Theorem 4, sketch) Pick a subset H ⊆ Fq with
h = |H| = q1/2, and identify [n] with the set HD. We think
of x ∈ {0, 1}n as a mapping x : HD → Fq and we extend
it to the unique polynomial x̂ : F

D
q → Fq with individual

variable degree at most h − 1. We let α be a generator of
the multiplicative group F

∗
qD .

• For x ∈ {0, 1}n and y ∈ F
D
q we define E(x, y) to be

(x̂(y), x̂(αy), . . . , x̂(αm−1y)).

• For x ∈ {0, 1}n and y ∈ {0, 1}rA we define A(x, y)
as follows. Use y as randomness to sample a curve
C : Fq → F

D
q using the curve sampler. Then, A(x, y)

outputs the evaluations of x̂ at the mq evaluation points
α−1C(Fq), α−2C(Fq), . . . , α−mC(Fq).

• We now define the reconstruction procedure. It re-
ceives as input a random y which describes a curve
C : Fq → F

D
q , together with the evaluations of

x̂ at α−1C(Fq), α−2C(Fq), . . . , α−mC(Fq). Using
this data, we can apply the next-element predictor that
succeeds with probability 7/8 to predict the evalua-
tions of x̂ at the points C(Fq). The points on which
the predictor succeeds form the set we are sampling
using the curve sampler. We know that except for
probability 1

q2D , the sampled curve is good, in which

case our predictions are correct on at least 0.8q ele-
ments. We also know that the true evaluations form
a low-degree univariate polynomial of degree at most
Dht(n) ≤ q/100 and so the distance is at least .99q
and we can uniquely correct more than 0.45q errors.
We error correct our predictions and obtain, with prob-
ability at least 1 − 1/q2D, the restriction of x̂ to the
curve C.

At this point, we would like to repeat the argument to
predict the “next” curve αC. For this we need to ar-
gue that a random shifted curve from a curve sampler
is good with high probability. This holds by the fol-
lowing simple, and general, observation:

Claim 2. Let R be a sampler that outputs subsets of
F

D
q . For α ∈ FqD define αR to be the sampler that

samples a subset S ⊆ F
D
q according to R and outputs

the subset αS = {αs | s ∈ S}. Then αR is a (ρ, ε, δ)
sampler iff R is.

Proof. The number of times a subset S ⊆ F
D
q hits

A ⊆ F
D
q is the same as the number of times αS hits

αA. In particular, αR samples A with accuracy error
ε and confidence error δ iff R = α−1(αR) samples
α−1A with accuracy error ε and confidence error δ.
But α−1A is of the same density as A, and so αR is a
(ρ, ε, δ) sampler iff R is.

If R is our curve sampler, then we can view the curve
αC as coming from the curve sampler αR. Thus, ex-
cept for probability 1

q2D , the curve αC is good, and
after decoding, we learn x̂ restricted to αC. Repeat-
ing the argument, we learn x̂ restricted to α2C, α3C,
and so on (for qD successive shifts), until we learn
the evaluations of x̂ on the whole space F

D
q and then

we recover x. Each step succeeds with probability
1 − 1/q2D, and so by a union bound, we succeed in
recovering x with probability at least 1 − (1/qD).

Finally, it is easy to check that rA and rE are as stated.

6. Lossless condenser constructions

Plugging in parameters we get:

Theorem 5. Let k = k(n) = Ω(log n log log n). Then A :
{0, 1}n ×{0, 1}r(n) → {0, 1}a(n) as described in Theorem
4, using the sampler in Theorem 1, is an explicit strong

(n, k(n)) →O(1/n2) (a(n), k(n))

lossless condenser, with output length a(n) =
k · O(log n)2 log log n and randomness r(n) =
O(log n log log n).



Proof. We set the parameters in the SU construction as
follows: q = Ω

(
(log n)2 log log n

)
, D = 2 log n/ log q

and m = 100k. We need a (0.5, 0.01, 1/n4) curve
sampler. Theorem 1 gives us this as long as q =
Ω(log4 D log2(log(Dn4))). We have chosen q =
Ω((log n)2 log log n) and observe that for some constant c,

log4 D log2(log(Dn4)) ≤ c · (log log n)4 log2 n,

which is at most (log n)2 log log n for sufficiently large n.
Therefore, by Theorem 1, the required curve sampler exists,
and it samples degree t(n) = (log(n4 log D))log D curves,
and uses randomness r(n) = O(log D log n).

Now, we verify that q > (100Dt(n))2. This
holds because (100Dt(n))2 = O((log n)2 log D+O(1)) =
O((log n)2 log log n) for sufficiently large n. Therefore
Theorem 4 applies and gives us a reconstructive extrac-
tor (E,A,R) whose advice function A has randomness
r(n) = O(log n log log n) and output length mq log q ≤
k ·O(log n)2 log log n, as claimed. We can also verify by our
choice of m that Theorem 3 applies, and it shows that A is
the desired lossless condenser.

Plugging our second sampler minimizes the output
length at the expense of the randomness:

Theorem 6. Fix a constant α > 0. Let k = k(n) =
Ω(log1+α n). Then A : {0, 1}n × {0, 1}r(n) → {0, 1}a(n)

as described in Theorem 4, using the sampler in Theorem 2
with T = 1/α, is an explicit strong

(n, k(n)) →O(1/n2) (a(n), k(n))

lossless condenser, with output length a(n) = k·(log n)O(1)

and randomness r(n) = O((log n)1+α).

Proof. We set the parameters in the SU construction as fol-
lows : q = (log n)Θ(1), D = 2 log n/ log q and m = 100k.
We need a (0.5, 0.01, 1/n4) curve sampler. Theorem 2
gives us this as long as q = Ω(log4 D log2(log(Dn4))),
which indeed holds by nearly the same verification as
in the proof of Theorem 5. Therefore, by Theorem 2,
the required curve sampler exists, and it samples degree
t(n) = O(log n)T curves, and uses randomness r(n) =
O(log1+α n).

Now, we observe that q > (100Dt(n))2 because
(100Dt(n))2 = O(log n)2(1+T ). Therefore Theorem 4
applies and gives us the reconstructive extractor (E,A,R)
whose advice function A has the claimed randomness and
output length. As in the proof of Theorem 5, by our choice
of m Theorem 3 applies, and it shows that A is a lossless
condenser.

Acknowledgments. We thank Ronen Shaltiel and Eli
Ben-Sasson for sharing their insights on the problem with
us.

References

[1] M. Bellare and J. Rompel. Randomness-efficient oblivious
sampling. In FOCS, pages 276–287, 1994.

[2] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson.
Randomness-efficient low degree tests and short PCPs via
epsilon-biased sets. In STOC, pages 612–621, 2003.

[3] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson.
Randomness conductors and constant-degree expansion be-
yond the degree/2 barrier. In STOC, pages 659–668, 2002.

[4] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors
and pseudo-random generators with optimal seed length. In
STOC, pages 1–10, 2000.

[5] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Ex-
tractors: Optimal up to constant factors. In STOC, pages
602–611, 2003.

[6] D. Moshkovitz and R. Raz. Sub-constant error low degree
test of almost linear size. In STOC, 2006.

[7] N. Nisan and D. Zuckerman. Randomness is linear in space.
Journal of Computer and System Sciences, 52(1):43–52,
1996.

[8] R. Raz and O. Reingold. On recycling the randomness of
states in space bounded computation. In STOC, pages 159–
168, 1999.

[9] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting ran-
domness via repeated condensing. In FOCS, pages 22–31,
2000.

[10] R. Shaltiel and C. Umans. Pseudorandomness for approxi-
mate counting and sampling. In Computational Complexity,
pages 212–226, 2005.

[11] R. Shaltiel and C. Umans. Simple extractors for all min-
entropies and a new pseudorandom generator. Journal of
the ACM, 52(2):172–216, 2005.

[12] M. Sipser and D. A. Spielman. Expander codes. IEEE
Transactions on Information Theory, 42(6):1710–1722,
1996.

[13] A. Srinivasan and D. Zuckerman. Computing with very
weak random sources. SIAM Journal on Computing,
28:1433–1459, 1999.

[14] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom gen-
erators without the xor lemma. Journal of Computer and
System Sciences, 62(2):236–266, 2001.

[15] A. Ta-Shma. On extracting randomness from weak random
sources. In STOC, pages 276–285, 1996.

[16] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less con-
densers, unbalanced expanders, and extractors. In STOC,
pages 143–152, 2001.

[17] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from
Reed-Muller codes. Journal of Computer and System Sci-
ences, 72(5):786–812, 2006.

[18] L. Trevisan. Extractors and pseudorandom generators. Jour-
nal of the ACM, pages 860–879, 2001.

[19] C. Umans. Pseudo-random generators for all hardnesses.
Journal of Computer and System Sciences, 67(2):419–440,
2003.

[20] C. Umans. Reconstructive dispersers and hitting set genera-
tors. In RANDOM, pages 460–471, 2005.

[21] D. Zuckerman. Personal communication, June 2006.


