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Abstract

We study computational procedures that use both randomness and nondeterminism. Examples are
Arthur-Merlin games and approximate counting and sampling of NP-witnesses. The goal of this paper
is to derandomize such procedures under the weakest possible assumptions.

Our main technical contribution allows one to “boost” a given hardness assumption. One special
case is a proof that

EXP ¢ NP/poly = EXP ¢ P\'P/poly.

In words, if there is a problem in EXP that cannot be computed by poly-size hondeterministic circuits
then there is one which cannot be computed by poly-size circuits that make non-adaptive NP oracle
queries. This in particular shows that the various assumptions used over the last few years by several
authors to derandomize Arthur-Merlin games (i.e., show ANNP) are in fact alequivalent In addition
to simplifying the framework of AM derandomization, we show that this “unified assumption” suffices
to derandomize several other probabilistic procedures.

For these results we define two new primitives that we regard as the natural pseudorandom objects
associated witlapproximate countingind samplingof NP-witnesses. We use the “boosting” theorem
and hashing techniques to construct these primitives using an assumption that is no stronger than that
used to derandomize AM. As a consequence, under this assumption, thdedeaimainisticpolynomial
time algorithms that useon-adaptiveNP-queries and perform the following tasks:

e approximate counting of NP-witnesses: given a Boolean cirtu@utputr such that
1-elAT (D) <r < A7)

e pseudorandom sampling of NP-witnesses: given a Boolean cifgyitoduce a polynomial-size
sample space that is computationally indistinguishable from the uniform distributionlovét ).

We also present applications. For example, we observe that Cai's proofzpthgt gPPYP and the

learning algorithm of Bshouty et al. can be seen as reductions to sampling that are not probabilistic. As

a consequence they can be derandomized under the assumption stated above, which is weaker than the
assumption that was previously known to suffice.

*Some of this work was done while at the Weizmann Institute and supported by the Koshland Scholarship. This research was
also supported by BSF grant 2004329.
TThis research was supported by NSF grant CCF-0346991, BSF grant 2004329, and an Alfred P. Sloan Research Fellowship.



1 Introduction

One of the major areas in complexity is the study of the power of randomness in various computational
settings. In certain contexts randomness affords additional power. But for broad classes of problems it has
been demonstrated over the last decade that randomness can be simulated deterministically, under widely
accepted complexity assumptions.

The central object used in these derandomization resultpse@orandom generat@PRG), which is
an efficient deterministic procedure that generatdiserepancy set a set of strings with the property that
no test (from a pre-specified class of tests) can distinguish a random string in the discrepancy set from a uni-
formly random string. We say that a PR@lIsthis class of tests. A probabilistic procedure is derandomized
by replacing its random bits with strings from the discrepancy set; the procedure cannot behave noticeably
differently than it would with truly random bits, as then it would constitute a distinguishing test. As a con-
sequence derandomizing stronger probabilistic algorithms typically requires pseudorandom generators that
produce discrepancy sets for stronger classes of tests.

An efficient pseudorandom generator for some class of tests immediately implies an efficiently com-
putable function which is hard for these tests. More specifically, an efficient pseudorandom generator
that fools small circuits implies the existence of a language in a uniform complexity class (e-g., E
DTIME (2°()) that lies outside a non-uniform complexity class (e.gp®y). Thus constructing such
pseudorandom generators amounts to proving circuit lower bounds for explicit functions, a task that is
currently beyond our reach. Consequently, this line of research focuses on constructing pseudorandom gen-
erators under hardness assumptiénin this context the goal is to achieve derandomization results under
the weakest possible hardness assumptions.

One of the main efforts in derandomization over the last decade has focused on the class BPP which can
be derandomized given access to pseudorandom generators that fool small circuits. Here the appropriate
hardness assumption is that there exists a language in E that requires exponential size circuits (i.e., the lan-
guage cannot be computed by s¥@ circuits, for some > 0).? A sequence of results [NW94, BFNW93,

Imp95, IW97] showed that under this hardness assumption-BIPPA further sequence of papers achieved
aquantitatively optimahardness vs. randomness tradeoff [ISW99, ISW00, SU0O1, Uma03].

An analogous line of work [AKO01, KvM02, MV99, SU01] derandomized Arthur-Merlin games [Bab85,
GMR89]. (Recall that the class AM contains important and natural problems like graph non-isomorphism
that are not known to be in NP). These works achieved-AMP under progressivelyualitativelyweaker
hardness assumptions. The first results required average-case hardness for circuits that make non-adaptive
queries to an NP oracle, while the latest results require only hardness for SV-nondeterministicircuits.
this paper we show that the various different assumptions used to derandomize AM are in fact equivalent.

A prior line of research [Sto83, JVV86, BGP00] addresses procedures which approximately count and
sample NP-witnesses. More precisely, given a Boolean cirtuite first task is to approximately count
the number of accepting inputs df and the second is to sample a random accepting input. Note that both
problems are NP-hard and thus any such procedure must use nondeterminism unless NP=P. The current

1This “hardness vs. randomness paradigm” was initiated by [BM84, Ya082]. It should be noted that the notion of pseudorandom
generators in these papers is different than the one we use here. In particular, in this paper we follow a paradigm initiated by [NW94]
which allows pseudorandom generators which given a size beunuh in time polynomial ins and output a discrepancy set for
sizes circuits. The reader is referred to [Gol98] for a survey on pseudorandomness and its applications and to [Kab02] for a recent
survey which focuses on derandomization.

20ne of the confusing aspects of all the results in this area is that the assumptions involve “exponential time” classes. In
actual applications these assumptions are “scaled down” to say that there exists a fun€lidoeon) bits which is computable in
polynomial time and cannot be computed by siZecircuits (for some constar).

3SV-nondeterministic circuits are the nonuniform analog of the class/NENP (see definition 2.2).



known procedures for these tasks also use randomization: they are probabilistic algorithms that use an
NP-oracle. In this paper we show how to derandomize these procedures and show that under a hardness
assumption that is no stronger than that used to derandomize AM, both of these tasks can be performed by
polynomial timedeterministicalgorithms that makaon-adaptiveNP-queries.

In order to achieve these results we make a technical contribution and a conceptual contribution. Our
main technical result is a “downward collapse theorem” that implies (as a speciaf case):

E C PP /poly = E C NP/poly.

This downward collapse shows that all of the various flavors of nondeterministic hardness assumptions
considered in the literature are equivalent. This unifies and simplifies a number of past results. This result is
also helpful when derandomizing other probabilistic procedures that involve randomness and nondetermin-
ism. It allows us to start from a weak hardness assumption, boost it to a stronger hardness assumption, and
then use pseudorandom generators for stronger classes of tests, namely circuits which make non-adaptive
NP-queries.

Our conceptual contribution lies in defining what we regard as the natural “derandomization objects” as-
sociated with approximate counting and sampling. Thesestatve-error approximatorgfor approximate
counting) andconditional discrepancy set$or sampling). The first is a strengthening of additive-error
approximators (which derandomize BPP), and the second is a generalization of discrepancy sets (which
“sample” from the uniform distribution). We show how to obtain relative-error approximators and condi-
tional discrepancy sets in polynomial time with non-adaptive NP oracle access, under a hardness assumption
no stronger than that used for derandomizing AM. Note that this suggests that the “true complexity” of these
problems is IB"P. Loosely speaking, our technique uses the strong pseudorandom generators obtained by
boosting the Initial hardness assumption to derandomize the probabilistic procedures for approximate count-
ing and sampling. Some additional work is needed to obtain procedures thanhoraeaptivegqueries to
an NP-oracle.

We also give several applications of relative error approximators and conditional discrepancy sets. We
obtain the following collapses under a hardness assumption no stronger than that used for derandomizing
AM: SQP — PNP angd BPRun, = P|’|\IP. The first collapse comes from viewing Cai’'s result [Cai01] (that

places § in ZPFNP) as a reduction ofgto sampling that uses an NP oracle buhdd probabilistic This

allows a derandomization via conditional discrepancy sets. Similarly, we view a fundamental result by
Bshouty et al. [BCG96] (concerning the learning of circuits using equivalence queries) as a reduction to
sampling, and derandomize it in the same way.

Outline

In Section 2 we present definitions of the various types of nondeterministic circuits and hardness assump-
tions. In Section 3 we describe our main results and relation to prior work. In Section 4 we present corollar-
ies and applications of our main results. In Section 5 we describe the major ideas and techniques used in the
proofs; Sections 6 and 7 contain the full proofs. Finally in Section 8 we conclude with some open problems.

“The notationAﬁ says thatd usesnon-adaptivaueries to oraclé.



2 Nondeterministic circuits, hardness, and PRGs

We assume that the reader is familiar with (deterministic) Boolean circuits. We use the convention that the
size of a circuit is the total number of wires and gates. Nondeterministic circuits come in several flavors,
which we define below. We remark that a main contribution of this paper lies in showing that the several
hardness assumptions defined below are all equivalent — unfortunately, in order to show that, we need to be
able to discuss all of the various assumptions below.

Definition 2.1 (nondeterministic and co-nondeterministic circuits). A nondeterministic (resp. co-nonde-
terministic) circuit is a Boolean circui€’ which receives two inputst of lengthn and a second inpuj.
Thefunction computed by, denotedf : {0,1}" — {0,1} is defined byfo(z) = 1iff 3y C(x,y) =1
(resp.Vy C(x,y) = 0).

The uniform analogue of poly-size nondeterministic circuit is the class NP. The uniform analogue
of poly-size co-nondeterministic circuits is cONP. Poly-size single-valued nondeterministic circuits have
NP N coNP as their uniform analogue.

Definition 2.2 (single-valued nondeterministic circuits).A single-valued nondeterministic (or SV-nondeter-
ministic) circuit is a Boolean circuiC which receives two inputs: of lengthn and a second inpug, and

has two output gateszalue andflag. Circuit C' computes the functiofi: {0,1}" — {0, 1} if the following
hold:

e for everyz,y, if C(z,y) has 1 at itsflag gate thenC'(z, y) has f(x) at its value gate, and
e for everyz, there exists somgfor whichC'(x, y) has 1 at itsflag gate.

Note that a circuiC may meet the syntactic demands of this definition, and yet not compute any function
(if the two listedsemantiaequirements for “computing a function” are not met). When we refer to a SV-
nondeterministic circuit, we always mean a circditthat in fact computes a function according to this
definition, and we refer to that unique function as fhaction computed b¢’. We also remark that a
function has a siz€&(s) SV-nondeterministic circuit if and only if it has both a si2¢s) nondeterministic
circuits and a siz€(s) co-nondeterministic circuit.

Definition 2.3 (adaptive and non-adaptive SAT-oracle circuits).A SAT-oracle circuit is a Boolean circuit
C that is also permitted to use SAT-oracle gates. A SAT-oracle gate is a gate with many inputs and a single
output that is 1 iff the input is in SAT.
A nonadaptive SAT-oracle circuit is a pair of Boolean circuitgre and Cpost On inputx, Cpre
outputs a number of querieg, g2, . . ., gm. Circuit Cpostreceivesr together withm bits ay, as, . . ., am,
whereq; = 1 iff ¢; is in SAT, and outputs a single answer bit.

We could also have defined nonadaptive SAT-oracle circuits to be SAT-oracle circuits in which no path
from the output gate to an input gate encounters more than one SAT-oracle gate; the above definition makes
explicit the pre- and post- processing phase. For nonadaptive SAT-oracle circuits so defined, their size is the
sum of the sizes af'pre andCpost

We will frequently speak of a languadethat is “hard for” a class of circuits. Of course this hardness
can be quantified by the size of the circuit. For clarity, we have chosen only to present the “high-end” results
that follow when this hardness is exponential, even though more general results are true using our methods.
Consequently, we only need the following definitions:



Definition 2.4 (worst-case hardness for exponential-size circuits)A languagel is worst-case hard

for exponential-size (deterministic, nondeterministic, co-nondeterministic, SV-nondeterministic, adaptive
or nonadaptive SAT-oracle -) circuits if there exists a constant0 such that for every sufficiently large

every circuit of the prescribed type and size at n¥5%t fails to computd. restricted to inputs of length.

Definition 2.5 (average-case hardness for exponential-size circuité).languagel is a-hard for exponential-
size (deterministic, nondeterministic, co-nondeterministic, SV-nondeterministic, adaptive or nonadaptive
SAT-oracle -) circuits if there exists a constant 0 such that for every sufficiently large every circuit of

the prescribed type and size at m@st, succeeds to compuferestricted to inputs of length on at most

« - 2™ such inputs.

Note that the definition ofl — 27")-hard coincides with the definition of worst-case hard.

Definition 2.6 (worst-case and average-case hardness of complexity classes)omplexity clasg is
worst-case hard (respx-hard) for exponential-size circuits of a given type if there exists a langliage®
that is worst-case hard (respe-hard) for exponential-size circuits of that type.

We also sometimes say ‘requiresexponential-size circuits” of a given type to me@rs worst-case
hard for exponential-size circuits of that type.
2.1 Discrepancy sets and pseudorandom generators

In this paper we define pseudorandom generators in terms of discrepancy sets.

Definition 2.7 (discrepancy set).Let D be a subset of all functions frof0, 1}" to {0,1}. A multiset
T C {0,1}™is an(n, ¢)-discrepancy sdor D if for everyD € D,

Pr [D(x) =1] — Pr[D(t) =1]| <e.
seiyP@) = 1= PrD(#) = 1] < €
CommonlyD is the set of functions with sizedeterministic circuits; in this case we use the shorthand
(n, s, €)-discrepancy sdas in subsection 3.2.2). A pseudorandom generator is a function whose output is a
discrepancy sét

Definition 2.8 (pseudorandom generator).LetC be a complexity class. A pseudorandom generator (PRG)
for C is a procedure which on input® outputs a(n, 1 /n)-discrepancy set for the sét of all characteristic
functions of languages i@ restricted to lengt.

In this paperC will typically be the class of those languages with nondeterministic circuits of a given
type, and whose size is a fixed polynomial.

5A more standard formulation is that a pseudorandom generator “stretches” a short seed into a long pseudorandom string, with
the property that the set of all pseudorandom strings is a discrepancy set. Our definition asks the pseudorandom generator to output
all pseudorandom strings at once. This difference is immaterial in this paper as we will be concentrating on discrepancy sets with
polynomial size, and thus the entire set can be output in polynomial time if each individual string can be generated in polynomial
time.



3 Main results

Several of our results apply to any complexity class for which one can compute the low-degree extension
within that class. To make these results easier to state we introduce the following definition:

Definition 3.1. We say that a complexity clagsallows low-degree extensiah gCc=o™

notationC=°(") means that the E oracle machine makes only linear-length queries.

C C, where the

Examples of complexity class€sthat support low-degree extension are: E,NEONE, F_NP, Eh\lp.

3.1 Unifying hardness assumptions

Several authors [AKO1, KvM02] have observed that the PRG constructions intended to derandomize BPP
can be adapted to construct discrepancy sets that fool effinigntieterministicdests under stronger hard-
ness assumptions. Just as PRGs that fool efficient deterministic tests imply=BPPPRGs that fool
efficient non-deterministic tests imply AM NP.

Several hardness assumptions sufficient to achieve-ANP have been considered in the literature. All
of these hardness assumptions (and the others we will consider in this paper) have the following form: there
exists a languagg in some “high” uniform class (examples are E, NEoONE, ET'|\IP and F_NP) that requires

exponential size circuits from some non-uniform circuit da3iree non-uniform circuit classes have been
discussed in the literature in relation to AM. These are

e SV-nondeterministic circuits, used by Milersen and Vinodchandran [MV99] and later Shaltiel and
Umans [SUO01],

e non-deterministic (and co-nondeterministic) circuits, used by Arvind and Kobler [AKO1], and
e Nonadaptive SAT-oracle circuits, used by Klivans and van Melkebeek [KvM02]

listed in order from weaker to stronger. Perhaps the best way to understand these circuit classes is to think
of them as nonuniform analogs of NREoNP, NP (and coNP), ancj‘\w, respectively. Figure 1 summarizes

the various hardness assumptions and pseudorandom objects implyirg MRland known relationships
between them.

Notice that with the exception of the “AM= NP” box, prior to this work there were two strongly
connected components, consisting of the top row and the bottom two rows. In this paper we show that
all of the hardness assumptions considered in the literature are equivaleraddition to clarifying the
situation, this result somewhat simplifies the task of building a PRG sufficient to derandomize AM. One
can replace previous constructions [MV99, SUO1] that are specialized for derandomizing AM under an SV-
nondeterministic hardness assumptiorahyrelativizing construction of ordinary pseudorandom generators
(designed to derandomize BPP).

We stress that it is the choice of the nonuniform circuit class that typically plays an important role in the argument. Loosely
speaking, this choice determines the class of tests to be fooled by the generator. The choice of the uniform class determines the
efficiency of the generator. For example, choosing this class # giges a generator which runs i, whereasvVE N coN E (or
ENP) give a generator which runs in N®PcoNP (or INP). We encourage the reader to ignore the precise choice of the uniform
class at a first reading and focus on the choice of the nonuniform class.

"Actually, the paper in question refers to SAT oracle circuits, but their argument works just as well for nonadaptive SAT-oracle
circuits, giving a stronger result.



worst case average case derand. object derandomization

3L worst-case| [KvM02] | 3L average-| [KvM02] | o oo o
hard forNp|| [~ | case hard for— N P|| circuits
circuits NP|| circuits
Y Y Y
3L worst-case L average-| [AKOI] | 3 PRG for
hard for non- case hard for (co-) non-det
det circuits [ non-det circts = circuits
A
this Y [SUO01, AKRRO3] [SUO01] Y
paper 3L worst-case [MV99] 3 HSG for AM
hard for SV- co-non-det =
non-det circts [~ circuits NP

Figure 1: Assumptions implying AM= NP. In all cased. is a language in NEE coNE. The phrasel
worst-case (resp., average-case) hard for” meansahnot be computed exactly by (resp., approximated
by) size2" for somee > 0.” Arrows indicate implications; unlabelled arrows correspond to implications
that follow from standard arguments.

3.1.1 A downward collapse theorem

The equivalence of the various hardness assumptions is implied by the following downward collapse theo-
rem, which may be of independent interest:

Theorem 3.2 (downward collapse).Let C be any complexity class that allows low-degree extension. If
every language i€ has nonadaptive SAT-oracle circuits of siger) then every language i6 has SV-
nondeterministic circuits of sizen)°™),

A special case of Theorem 3.2 is:
EC P"‘\lp/poly = E C NP/poly N coNP/poly.

We remark that it is widely believed thah\llg is stronger than NPy coNP and that nonadaptive SAT-
oracle circuits are stronger than SV-nondeterministic circuits. Nevertheless, a collapse of E to the stronger
class implies a further collapse to the weaker class.

The following Corollary is the contrapositive version of Theorem 3.2 which states that a “weak” hardness
assumption implies a stronger one:

Corollary 3.3. For every clasg that allows low-degree extension(ifis worst-case hard for exponential-
size SV-nondeterministic circuits thénis worst-case hard for exponential-size nonadaptive SAT-oracle
circuits.

Corollary 3.3 will allow us to derandomize many probabilistic algorithms and classes using hardness
for SV-nondeterministic circuits by first “boosting” this assumption to hardness for nonadaptive SAT-oracle
circuits, and then working with the pseudorandom generators obtained from the latter assumption.



3.2 Derandomization objects for approximate counting and sampling

In this section we define two generic computational objects — relative-error approximators, and conditional
discrepancy sets. These objects are natural and make no reference to nondeterminism. They are intended
to capture approximate counting and sampling, and they generalize and strengthen two existing and widely
used objects: additive-error approximators and (ordinary) discrepancy sets.

3.2.1 Relative-error approximators

Ordinary pseudo-random generators allow one to obtaidalitiveapproximation of the acceptance prob-
ability of circuits:

Definition 3.4. An (additive-errorjapproximatoiis a procedure that takes as input a Boolean circdiiand
e > 0, and outputs a real numberfor which

Indeed additive approximation is in some senser#ligon d’etreof ordinary PRGs, because additive
approximation of the acceptance probability of circuits allows one to derandomize BPP. Relative error ap-
proximation allowsapproximate countingand is much more difficult (it is NP-hard). We will be concerned
with relative-errorapproximations of the acceptance probability of circuits:

Definition 3.5. A relative-error approximatas a procedure that takes as input a Boolean circdijtand
€ > 0, and outputs a real numberfor which

(1 - Pr[Ax) = 1] < p < Pr[A(z) = 1].

We give a construction of deterministic relative-error approximators under a hardness assumption for
SV-nondeterministic circuits.

Theorem 3.6 (construction of relative-error approximators). If E|'|\IP requires exponential size SV-nondeterministic

circuits, then there is a deterministielative-error approximatdhat runs in time polynomial in the length
of its input andl /¢, with non-adaptiveaccess to an NP oracle.

As an immediate corollary, we obtain

Corollary 3.7. If E|’|\IP requires exponential size SV-nondeterministic circuits, then for egdtyfunction
f:{0,1}" — N, and every > 0, there is a deterministic procedu#@ running in polyn, e~!) time with
non-adaptive access to an NP-oracle for which (for:gtl

(I—-e)f(x) < P(z) < f(z);
in other words, every problem i P can be approximated in”ip.

Note that it was shown in [Sto83, JVV86, BGP0O0] that using randomness and an NP-oracle, it is pos-
sible to uniformly sample NP-witnesses. This implies that every problegafihhas afully polynomial-
time randomized approximation sche(@®RAS) with access to an NP-oracle. However, no deterministic
fully polynomial-time approximation schem@PAS’s) with access to an NP-oracle are known for any
# P-complete problem; the above corollary gives FPAS’s that make non-adaptive NP oracle queries for all
problems in# P, albeit under a complexity assumption.

8



3.2.2 Conditional discrepancy sets

Ordinary pseudo-random generators are sometimes called “discrepancy set generators,” since they produce
the following object:

Definition 3.8. An (n, s, ¢)-discrepancy st a subsefl” C {0, 1}" with the property that for all Boolean
circuits C of size at most:

A discrepancy set is a “good sample” sifingsz € {0, 1}", with respect to any propert® that is
decidable by small Boolean circuits. Of course one particularly useful such property is the property that a
BPP machine with a fixed input accepts when given stii@g its random coins.

Frequently one wishes to obtain a “good samplestoingsz € S for some subset C {0,1}". Again,
the sample should be good with respect to any progertiaat is recognizable by small Boolean circuits.

For exampleS may be the set of proper 3-colorings of a given graph; a property of interest might be the
property of having two specified nodes colored with the same color. A large body of literature is devoted to
sampling various structures (e.g., colorings, matchings, contingency tables, etc...), often employing Markov
Chain Monte Carlo methods.

We defineconditional discrepancy sets the derandomization object associated with such sampling in
its full generality. We will allow the seb to be any set recognizable by a small Boolean circuit; that is,

S = A~1(1) for some small circuitd. Conditional discrepancy sets capture “pseudorandomly sampling an
accepting input ofA” and can be seen to be a natural generalization of ordinary discrepancy sets.

Definition 3.9. Let S C {0,1}" be some subset. Astconditional(n, s, €)-discrepancy seis a subset
T C S with the property that for all Boolean circuits of size at most:

f;r[C(:v) =1llz e S| — tfe’%[C(t) =1jte S| <e.

Our main result here is a procedure to efficiently generate conditional discrepancy sets under a hardness
assumption (which is no stronger than the hardness assumption used to derandomize AM):

Theorem 3.10 (construction of conditional discrepancy sets)if E"‘\'P (resp. ENP) requires exponential

size SV-nondeterministic circuits, then there is a deterministic procedure that takes as input a Boolean
circuit A that accepts a subsétC {0, 1}", an integers, ande > 0, and outputs arb-conditional(n, s, ¢)-
discrepancy sef’ C S. The procedure runs in palyA|, n, s, 1/¢) time withnon-adaptivgresp. adaptive)
access to an NP oracle.

4 Corollaries and Applications

In this section we show several applications of our main results (Theorems 3.2, 3.6, and 3.10). In most
of them we are able to achieve certain “derandomization tasks” under assumptions which are seemingly
weaker than previously known.



4.1 Derandomizing BPlﬂﬂ\lP

Using the downward collapse theorem (Theorem 3.2), we get thah\'BP_LP P"\IP under a hardness as-
sumption. Previously, this conclusion required hardness for non-adaptive SAT-oracle circuits [KvMO02],
while here we use only hardness for SV-nondeterministic circuits:

Theorem 4.1. If E|'|\IP requires exponential size SV-nondeterministic circuits, thenh\‘.ﬁ’ﬂ P|'|\|P.

The proof follows after a brief discussion of relativizing PRGs. Klivans and van Melkebeek [KvM02]
formalized the notion of eelativizingPRG construction, and observed that such constructions can be used to
fool circuit classes that are stronger than deterministic circuits, if one is willing to make a similarly stronger
hardness assumption. One example is that assuming there exist languages that are hard for nonadaptive
SAT-oracle circuits, one can construct PRGs that fool nonadaptive SAT-oracle circuits. Our Corollary 3.3
states that hardness for SV-nondeterministic circuits implies hardness for nonadaptive SAT-oracle circuits.
As a consequence, existing relativizing PRG constructions (e.g. [IW97, STV01]) may be used directly to
fool nonadaptive SAT-oracle circuits, assuming only hardness for SV-nondeterministic circuits. As stated in
Theorem 4.1, this in turn derandomizes the cIasst%EPsing a weaker assumption than previously known.
The exact details follow.

The following is a slight refinement of a theorem in [KvM02] (we use the additional fact that the NP
oracle access in their argument is always non-adaptive):

Theorem 4.2 ([KvM02]). If EII‘\‘P (resp. E) requires exponential size non-adaptive SAT-oracle circuits
then there is a PRG for linear-size non-adaptive SAT-oracle circuits that runs in polynomial time with non-
adaptive access to an NP oracle (resp. polynomial time).

We obtain the following improvement:

Theorem 4.3. If E|'\IP (resp. E) requires exponential size SV-nondeterministic circuits then there is a PRG
for linear-size non-adaptive SAT-oracle circuits that runs in polynomial time with non-adaptive access to an
NP oracle (resp. polynomial time).

Proof. Combine Theorem 4.2 with Corollary 3.3. O
Theorem 4.1 now follows in a completely standard way, which we recount here for completeness:

Proof of Theorem 4.1Given a BPIﬁ'P algorithm A(z, y) for languageL and an inpute, defineC,(y) =

A(z,y). After padding with dummy inputg}’, can be computed by a linear-size non-adaptive SAT-oracle
circuit. We run the PRG of Theorem 4.3 on inglit to produce a discrepancy sEtthat fools circuitC,.

We computeA(z,t) for eacht € T in parallel, and output the majority. This constitutes a deterministic
algorithm that decides languadein polynomial time with non-adaptive access to an NP oracle. Formally,

one must appeal to Lemma 7.2 (appearing in a later section) to ensure that the overall procedure can all be
done with non-adaptive queries. O

Also, as explained in the introduction, Theorem 4.1 gives an alternative way of constructing PRGs
for nondeterministic circuits from an SV-nondeterministic hardness assumption. This permits the use of
“standard constructions” in this setting, whereas previous constructions [MV99, SUO01] were specialized to
the nondeterministic case.

10



4.2 Finding NP witnesses in ﬁyp

We now present an important additional application of the downward collapse Theorem (Theorem 3.2):

Theorem 4.4. If Eh\lp requires exponential size SV-nondeterministic circuits, then there is a procedure that,
given a circuitC, outputs a satisfying assignment forif one exists, and runs in polynomial time with
non-adaptivé\P-oracle access.

Again, this is a conclusion that was known to hold under a hardness assumption for non-adaptive SAT-
oracle circuits [KvMO02]. Applying Corollary 3.3 immediately gives us Theorem 4.4, which reaches the
same consequence from a weaker assumption. We highlight this particular application because we will
make use of it later, in the proof of Theorem 3.10.

For completeness, we describe the proof idea from [KvMO02] (which builds on earlier work by [BDCGL90]).
They prove that if I%‘IP requires exponential size nonadaptive SAT-oracle circuits, then there is a polynomial-
time procedure tproducea satisfying assignment of a given circdltthat usesion-adaptiveaccess to an
NP-oracle. Note that the standard method uses adaptive access. The non-adaptive procedure comes from
noting that there is a polynomial time algorithm that makes non-adaptive NP queries to test whether the
outcome of applying the Valiant-Vazirani reduction to a satisfiable cit€for a specific choice of random
bits) succeeds in producing a circuit that has a unigue satisfying assignment. Using a PRG for nonadaptive
SAT-oracle circuits, it is then possible to deterministically produce a list of candidate circuit€frome of
which is guaranteed to have a unique satisfying assignment. For this ¢ifcwihe can find the satisfying
assignment by making the following queries in parallel: “D68$ave a satisfying assignment that assigns
x; true?” and “Doe<”” have a satisfying assignment that assignfalse?” for alli. The overall procedure
requires only non-adaptive NP-oracle access, as promised.

4.3 Hardness amplification for nondeterministic circuits

Hardness amplification results transform functions which are hard on the worst case into functions which
are hard on the average. In a sequence of works [BFNW93, Imp95, IW97, STVO01] it was shown that for
every class which allows low degree extension if the class is hard on the worst case falederafiinistic
circuits then the class is hard on average for smelerministiccircuits. The first hardness amplification
result for nondeterministic circuits was given in [SUO1]:

Theorem 4.5 ([SUO1]).LetC be a complexity class that allows low-degree extension. For every, if C
is hard for sizes nondeterministic circuits thefis (1/2+ ¢)-hard for sizes’ = (se/n)*()) nondeterministic
circuits.

Using Theorem 3.2 together with the “hardness amplification” results of [STVO01] (for deterministic
circuits) gives a hardness amplification resultfiondeterministicircuits. Altogether this is a simpler and
more modular proof of Theorem 4.5.

We now present the new proof. We first restate the results of [STV01] in the following way:

Theorem 4.6 ([STVO01]). Let C be a class which allows low degree extension. There exists a constant
c such that for every functioif : {0,1}" — {0,1} such thatf € C ande > 27" there is a function
f:{0,1}%'=C) — (0,1} such thatf € C and for every functiorD : {0,1}" — {0, 1} such that

Pr [D(z) = f@)]>1/2+¢€
ze{0,1}™



there is an oracle circuit” such thatC'” computesf using only non-adaptive queries 1@, and the size of
Cis(n/e)C.

Indeed, this is a complicated way to say thaf is hard for sizes deterministic circuits therf is hard
on average for slightly smaller deterministic circuits. We chose to state Theorem 4.6 this way, because in
this form it also gives a hardness amplification result for other classes of circuits. The following corollary is
an example.

Corollary 4.7. LetC be a class which allows low degree extensionC 1§ hard for sizes non-adaptive
SAT-oracle circuits the is 1/2 + e-hard for sizes’ = (se/n)*(1) non-adaptive SAT-oracle circuits.

Proof. One only has to notice that id is a sizes’ non-adaptive SAT-oracle circuit then” (from Theorem
4.6) is a sizes’ - poly(n, 1/¢) non-adaptive SAT-oracle circuit. O

It is important to note that this argument does not work directly for nondeterministic circuits. The
reason is that it does not follow thati? is a nondeterministic circuit and is a deterministic circuit then
CP is a nondeterministic circuit. (Consider for example the case whecemputes SAT and’ flips the
result. The circuiC'’” computes co-SAT which is not believed to be computable by a small nondeterministic
circuit.) However, Theorem 3.2 allows us to convert hardness for nondeterministic circuits into hardness for
non-adaptive SAT-oracle circuits which can be used in Corollary 4.7. The exact details follow:

Proof of Theorem 4.5We are assuming that is hard for sizes non-deterministic circuits (and hence
also for sizes SV-nondeterministic circuits). By Theorem 3.2 we have that there exists a fungtion
{0,139 — {0,1} in C that is hard for size’ = s*(1) non-adaptive SAT-oracle circuits, and the theorem
then follows from Corollary 4.7, which gives thétis hard on average even for non-adaptive SAT-oracle
circuits of size(se/n)®W). O

4.4 Derandomizing BPR,,

The class BPR,;, was defined by Han, Hemaspaandra and Theirauf [HHT97]. It is the class of languages
L for which there exists a non-deterministic polynomial-time Turing MacBih&r which

x €L = >2/30of M'scomputation paths accept
x¢ L = >2/3of M'scomputation paths reject

Notice that the computation paths need not all make the same number of non-deterministic choices; if they
are required to, we just get BPP. In contrast to BPP, BRHs quite powerful: it is known to containwﬂa

[HHT97]. The next theorem suggests it is probadpialto IJH\'P.

Theorem 4.8. If E|'|\IP requires exponential size SV-nondeterministic circuits, then,BRP- P"‘\lp.
Proof of Theorem 4.8Let L be a language in BRR;, with associated non-deterministic Turing Machine
M. Letp(n) be an upper bound on the running timeldfon an input of lengtt.

Fix an inputz. Let D, be a circuit outputting 1 iff the following procedure accepts: givere
{0,1}(=D simulateM using successive bits af as M’s non-deterministic choices. WheW halts, if
the remainder of is all-zeros, then accept, otherwise reject.

Let C, be a circuit outputting 1 iff the following procedure accepts: giyen {0, 1}7(2) simulaters
using successive bits gfasM’s non-deterministic choices and accept if and onlyfifaccepts.
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Observe that the probability over computation patha/othat A/ accepts inpuk is exactly:
= f;r[C'x(y) = 1‘Dx(y) = 1]7

since each of D, corresponds to a unique computation path.
We use the relative-error approximator of Theorem 3.6 twice (in parallel), once withdhpand once
with input D, A C,,, ande = 1/10. Let p; andp, be the two approximations. Notice that

(1—6)a < (pa/p1) < (1— ) e

We accept iffpo/p1 > 1/2, which is guaranteed to happen Ki,[C.(y) = 1|D,(y) = 1] > 2/3. The
entire procedure runs in time pd@|y:|) with non-adaptive NP oracle access. O]

4.5 Collapsing §to pNP

The class gwas defined by [Can96] and [RS98]. It is the class of langudgésr which there is a
polynomial-time predicaté for which:

xel = JyVzR(x,y,z)=1 1)
x¢ L = 3JzVy R(z,y,z) =0. 2

Cai [Cai01] recently showed that the cla§§ @®vhich contains PP and MA) is contained in ZPpP.
One consequence of this result is that under a hardness assumption sufficient to derandoiZzettzPP
class § collapses to PP This is remarkable becausgis defined by alternating quantifiers and has more
of the flavor of the Polynomial-Time Hierarchy than any randomized complexity class; yet derandomization
techniques yield a surprising collapse.

We view Cai’s result as a reduction 0530 sampling, and thus obtain the following collapse as an
application of Theorem 3.10. Note that this result doesfollow directly from § c zpp\P using

straightforward derandomization technigues, as any derandomization via derandomizh‘l@ HeRires a
stronger hardness assumption (given current technology) to cope with adaptive NP-queries.

Theorem 4.9. If ENP requires exponential size SV-nondeterministic circuits, tffe&SDNP.

Proof. Let L be a language in% and letR be the associated polynomial-time predicate for which Egs. (1)
and (2) hold. By padding if necessary we may assume|ihat |y| = |z| = n. Let s be the running time
of R.

The procedure to decide if € L operates in rounds. Initially, we sét= 0, andS, = {0,1}", and
observe thabj is clearly recognized by a trivial circuit,. We now begin round 0.

In round: we do the following:

1. 1In PNP, generate thé;-conditional(n, s3, 1/2)-discrepancy sef; C S; (using Theorem 3.10). The
size of T; and the time to generate it are both at most palyl, n, s) = poly(n, s, 7).

2. IfVz V,er, R(z,t, 2) = 1then accept.

3. Otherwise, find:; for which\/, .. R(z,t,z;) = 0.
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4. DefineS;11 = {y:y € Si A R(x,y, z;) = 1}, and observe th&f; ; is recognized by a circutt’; 1,
of sizeO(s? + |Cy).

5. If S;11 = 0, then reject; otherwise, begin round- 1.

Notice that step 2 requires a single NP-oracle query, as does step 5, and that step 3 involves finding an
NP-witness in the usual way with multiple adaptive NP-oracle queries.

For correctness, observe that if we accept, we have found that the complement of Eq. (2) holds; if we
reject, thervy 3z; R(z,vy, z;) = 0, and thus the complement of Eq. (1) holds.

The main claim is that the number of rounds before this procedure either accepts or rejects is at most
n + 1. Notice that at step 3, we must have that

Pr[R(x,y, z) = 1|y € Si] < 1/2,
y

sincePricr, [R(z,t,z;) = 1]t € S;] = 0 and the circuit computing? with = andz; hard-wired has size at
mostO(s?) < s3, andT; is anS;-conditional(n, s3, 1/2)-discrepancy set. Thys; 1| < |S;|/2 for all 4.
Since we start withSy| = 2", we have|S,,+1| < 1/2 which implies|S,+1| = 0, so we halt after at most
n + 1 rounds. O
4.6 Learning circuits in pNP
A classical result by Bshouty et al. [BC®6] is concerned with learning Boolean circuits, when given
access to an oracle for NP and an oracle that answers equivalence queries with respect to the unknown circuit
C' to be learned. In arquivalence quergne supplies some circuit’ and receives an answer whetlder
andC’ compute the same function. If the answer is negative the answer also includestarexample-
an inputz on whichC'(z) # C'(z).

Bshouty et al. [BCG96] present a randomized algorithm that achieves this goal. In a similar manner
to the previous section, this learning algorithm may be also regarded as a non-randomized reduction to
sampling. We thus can derandomize this algorithm using Theorem 3.10 and obtain:

Theorem 4.10. If ENP requires exponential size SV-nondeterministic circuits, then there is a deterministic
procedure with access to an NP-oracle that learns an unknown Boolean dironfitsizes on n inputs in
time poly s, n) using equivalence queries.

Proof. We use the notatiofy] to indicate the function computed by the Boolean circuit described by string
y. Define the functiom? : {0,1}* x {0,1}" — {0,1} by R(y, 2) = [y](2).

The learning procedure is very similar to the algorithm in the proof of Theorem 4.9. The procedure
operates in rounds. Initially, we set= 0, andSy = {0,1}°, and observe th&f is clearly recognized by a
trivial circuit Cy. We now begin round O.

In roundi we do the following:

1. In PNP, generate theé;-conditional(s, s, 1/4)-discrepancy set; C S; (using Theorem 3.10). The
size of T; and the time to generate it are both at most pdlyi, s) = poly(s, 7).

2. Make the equivalence query: “maj. R(t, z) = C(2)?” If the answer is YES, then we are done.

3. If the answer is NO, then we are given a counterexampler which maj . R(t, z;) # C(z;).
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4. DefineS; 11 = {y : y € Si A R(y,zi) = C(z;)}, and observe thai;, is recognized by a circuit
Cy41 Of sizeO(s% + |Cy)).

5. Begin round + 1.

As in the proof of Theorem 4.9 the main claim is that the number of rounds before completion is at most
O(s). At step 3, we claim that
E;I[R(yv z;) = C(z)|y € Si] < 3/4.

This is true because we kndticr, [R(t, z;) = C(z)|t € S;] < 1/2, and the circuit computind? with
z; hard-wired has size at most(s?) < s3, and7; is anS;-conditional(s, s, 1/4)-discrepancy set, which
impliesPry[R(y, zi) = C(z)|y € S;] < 1/2+ € = 3/4, as claimed.

Thus|S;+1| < (3/4)|S;| for all i. We start with|.Sy| = 2°, and for allz, S; is non-empty since it contains
y for which [y] = C, so we must halt after at moél(s) rounds with a positively answered equivalence
query. O

We remark that Theorem 4.9 and Theorem 4.10 are just two examples Wheré\lghlﬂ%rithm for
sampling is used as a critical subroutine (see, e.g., the discussion in [BGP0Q] regarding applications in inter-
active proofs). Often this is thenly randomness used in these procedures, and so conditional discrepancy
sets suffice for derandomization in a variety of settings.

5 Overview of the techniques

In this section we present the main technical ideas in the proofs of the main theorems in an informal manner;
the full proofs appear in later sections.

5.1 Proof of the downward collapse theorem

We show in Theorem 3.2 that for every sufficiently strong complexity dassC is computable by small
nonadaptive SAT-oracle circuits théhis computable by small SV-nondeterministic circuits. This cer-
tainly doesnot mean that one can always transform small nonadaptive SAT-oracle circuits into small SV-
nondeterministic circuits. Note that the uniform versions of these classeﬁlgrarm NPN coNP and it is

widely believed that PP Z NPNcoNP. More precisely, there are small nonadaptive SAT-oracle circuits for
Satisfiability and we do not expect Satisfiability to have small SV-nondeterministic circuits, as this would
mean that NFC coNP/poly and collapse the polynomial hierarchy.

Indeed, this observation demonstrates the main problem we need to overcome. Whenever a nonadap-
tive SAT-oracle circuit calls its NP-oracle, it gets a result no matter whether the query asked is answered
positively or negatively. An SV-nondeterministic circuit can attempt to simulate a nonadaptive SAT-oracle
circuit by guessing which queries are answered positively, together with witnesses for those queries — in
this way it can “verify” some queries that are answered positively. But it can not be sure that it has cor-
rectly guessedll of the positively answered queries, precisely because it is incapable of verifying negative
answers (assuming N@ coNP/poly).

The main idea in the proof is that when the function to be computed is a low degree multivariate poly-
nomial, a small SV-nondeterministic circuiain in fact verify negative answers, in an indirect way. It is
known that every function in a sufficiently strong cl@shas a multivariate polynomial “low-degree exten-
sion” [BF90] that lies in the same class. Thus, we can without loss of generality concentrate on the case
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where the function we are trying to compute by an SV-nondeterministic circuit is a low degree multivariate
polynomial.

We now describe the idea that exploits the low-degree extéhsidfe’re given a small nonadaptive
SAT-oracle circuit which computes some low degree multivariate polynofniaf¢ — F (for some field
IF of sizeq). For simplicity, let's assume that this circuit makes a single NP-query. We want to construct a
small SV-nondeterministic circuit fof. For every inputz in the domain off, let A(z) denote the answer
to the NP-query asked on Let p denote the fraction of’s for which the query is answered positively. We
hardwirep to our SV-nondeterministic circdit Now, on inputz the new circuit passes a random low degree
curve throughz (we denote the degree of this curve By Except forz, the otherg points on this curve
arer-wise independent and therefore with high probability the fraction of pgimts the curve for which
A(y) = lisinthe rangdp — §,p + §) for some smalb.2° The circuit now guesse® — §)q points on the
curve along with witnesses showing that the queries corresponding to these points are answered positively.
The circuit assumes that these queries are answered positively and the queries for the remaining points on
the curve are answered negatively. The critical observation is that this assumption can be incorrect on at
most a24 fraction of the points on the curve. The circuit now simulates the nonadaptive SAT-oracle circuit
(which makes no further NP queries) on@loints on the curve, and the final evaluations it receives differ
from the correct evaluations on at m@st; points. Finally, because the functighrestricted to the curve
is a low-degree polynomial, the circuit can run a decoding algorithm for Reed-Solomon codes [WB86] to
correct the errors and obtain the correct answers for all points on the curve, and in particular the circuit
obtainsf(z).

5.2 Building relative-error approximators

Our relative-error approximators build on a line of work which gives probabilistic algorithms that use an
NP-oracle to approximately count NP-witnesses [Sto83, JVV86, BGPO00] (for more information see the
discussion in [BGPO00]). Such algorithms are given a deterministic cifcaitn bits and wish to produce a
relative approximation of the size of the et {x|A(x) = 1}. The algorithm presented in [BGP00] works
by finding a hash functioh : {0,1}" — {0, 1}* with the property that for every imagec {0, 1}* the size
of the preimageS, = {x € S|h(x) = y} is roughlyn?, which implies thatS| is approximately.22*.

To find such a hash function, one chooses a random hash funhctiéf, 1} — {0, 1}* from ann-wise
independent hash family, and use the NP oracle to check whether there existilal }* whose preimage
has size greater thar?. This is done fok = 1,2, 3, . .., stopping with the first that is good in the sense
that there does not exist suchyavhose preimage is “too large”. By the pigeonhole principle, a good
does not exist fok such that?2* < |S|; for slightly largerk a randomh, from then-wise independent
hash family is good with high probability. Thus, the algorithm stops with the “correct” valiewith high
probability.

We would like to derandomize this procedure. Since it is not a decision problem we cannot use PRGs
directly!®. Instead we derandomize this procedure by using the particular way it operates (a general method

8A similar idea was used in [SUO01] to build PRGs for nondeterministic circuits. It may also be viewed as a non-trivial “scaling
down” of EXP"\“P C NEXP/poly N coNEXP/poly — a containment credited to Harry Buhrman on Lance Fortnow’s weblog.

°The same idea was used to obtain the main result of [FF93].

9By choosing the degreelarge enough we can show that there efiigédpointsv, - - - ,v, € F¢ such that for every the
fraction of pointsy such thatAd(y) = 1 on the degree curve that passes throughv1, - - - , v, is in the rangdp — 0, p + 6). In
the final construction we also hardwire the points- - - , v,- to the circuit.

1For the case of decision problems every probabilistic algorithm can be derandomized if one has a sufficiently strong pseudo-
random generator. However, there are tasks (which are not decision problems) that can be easily solved by a probabilistic algorithm
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that has been suggested by [KvMO02] for such circumstances). Rather than choosing the hash functions
randomly, we try all of the hash functions that are described by outputs of a PRG for nondeterministic
circuits. For the “correct’k, one of the hash functions we try is good, because the generator fools the
nondeterministic circuit which, giveh, checks whether it is good. Having identified the “corrective

can now output an estimate ¢f|. In the full argument, some additional care must be taken to obtain
less-coarse approximations, and to ensure that the overall procedure rqm% irafher than PP.

5.3 Constructing conditional discrepancy sets

An S-conditional discrepancy set for small circuits is a’Bet S such that no small (deterministic) circuit
can distinguish a random element franfrom a random element ifi. This generalizes “regular” discrep-
ancy sets for small circuits (for which the sgis simply {0,1}"). Given a setS, encoded by a circuitl
such thatS = {x|A(x) = 1}, our goal is to output aly-conditional discrepancy sét

As with relative-error approximation, our approach is based on algorithms which uses an NP-oracle to
sample (or count) accepting inputs4{Sto83, JVV86, BGP00]. Fix a hash functién {0,1}"* — {0,1}*
which is good in the sense defined above. To sample a random element flmme can choose a random
imagey, use the NP oracle to find all the preimageg ¢there are approximately’ of them), and choose
a random one.

Our procedure for producing conditional discrepancy sets is a derandomization of this algorithm. It
relies on hardness for nondeterministic circuits, which by our results buys us a PRG for nonadaptive SAT-
oracle circuits. We first find a good hash functioas explained above. Then, we include in the conditional
discrepancy séf the preimages i¥ of onlythosey that are outputs of a PRG for nonadaptive SAT-oracle
circuits. We stress that using Theorem 4.4 we can (under the hardness assumption) compute the preimages
making only nonadaptive NP oracle queries.

Here we make use of Theorem 4.4 to perform this step using only non-adaptive NP oracle access.

The proof thafl” is in fact anS-conditional discrepancy set is somewhat subtle. Given a (deterministic)
circuit that distinguishes a random elementZinfrom a random element ¥, we need to construct a
nonadaptive SAT-oracle circui® that is a distinguisher for the PRG, thus leading to a contradiction.

Care is needed to ensure that the distinguidhenakes only non-adaptive NP oracle queries — and this is
especially crucial here because a distinguisher that makes adaptive queries is not guaranteed to be fooled by
the PRGG that is based on only an SV-nondeterministic hardness assumption.

6 Proof of Theorem 3.2
We begin with some definitions and preliminaries.

6.1 Preliminaries
Given a functionf : X — Y andS C X we usef(S) to denote the (multi-)setf(z)|x € S}.

6.1.1 Low-degree polynomials

The low-degree extension of a function embeds the function in a low-degree polynomial.

and cannot be solved by a deterministic algorithm. For example, a probabilistic algorithm can easily produce a string with high
Kolmogorov complexity whereas no deterministic algorithm can output such a string.
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Definition 6.1 (low-degree extension)Let f : {0,1}" — {0, 1} be a functionF, the field withg elements,
and h and d integers for whichh® > 27, Let H be a subset oF, of sizeh, and letI be an efficiently
computable injective mapping frof, 1} to H¢.

Thelow-degree extension of with respect tay, h, d is the (unique)-variate polynomialf : ]Fg —F
with degreeh — 1 in each variable, for whichf(I(z)) = f(x) for all z € {0,1}" and f(v) = 0 for
ve (H\ Im(I)).

It is often helpful to think of field elements as binary strings of lenlgifg. From this viewpoint,
f is a function fromdlog ¢ bits to log ¢ bits. We will often consider a version of the low degree ex-
tension which outputs a single bit. Thimolean versiorof the low-degree extension is denotﬁgol :
{0,1}dloggtlogloga _, £0 1} and is defined byyoo (1) = f(z);.

The following properties of low-degree extensions are trivial and standard:

Proposition 6.2 (properties of the low-degree extension)or f and f,,.; as defined above, the following
hold:

e f has total degreéd, and

e fho0 IS cOMputable in time poiyr?, log ¢, d) given oracle access tf.

Complexity classes that allow low-degree extension (see Definition 3.1) contain the (boolean) low-
degree extensions of every function in that class; Theorem 3.2 applies to all such classes.

Definition 6.3 (parametric curves). Let[F, be the field withy elements, and lef;, fo, ... f, be an enu-
meration of the elements Bf,. Givenvy,vo,...,v, € IE‘gl, for r < ¢, we define theurve passing through
v1,v2, - -+ , v, 10 be the unique degree— 1 polynomial functiore : F, — Fg for whiche(f;) = v; for all 4.
A curvecis one to onef ¢ # j impliesc(f;) # c(f;).

The functionf o ¢ is therestriction off to the curvec. It is a low-degree univariate polynomial; in
coding terms, it is a Reed-Solomon codeword.

Theorem 6.4 (decoding of Reed-Solomon codes [WB86])et F, be the field withy elements. Given
pairs (z;, y;) of elements df,, there is a at most one polynomiat IF, — I, of degree at most for which
g(z;) = y; for at leasta pairs, providedu > (¢ + u)/2. Furthermore, there is a polynomial time algorithm
that findsg or reports that such g does not exist.

6.2 Random curves that pass through a fixed point

In this subsection we prepare some technical machinery needed for the proof of Theorem 3.2. We will
repeatedly use the following tail-inequality fetwise independent random variables:

Lemma 6.5 ([BR94]). Letr > 4 be an even integer. Supposg, Xo,..., X, are r-wise independent
random variables taking values jf, 1]. LetX = > X;, andA > 0. Then:

r- E[X] +r2>T/2

Pl B[ 2 4) < 8- (T E
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We prove a technical lemma regarding the sampling properties of low-degree parametric curves. The
points on a random degregparametric curve arewise independent; a well-known consequence of this fact
is that the points on such a curve are a good “oblivious sampler” (see the survey [Gol97]). This means that for
any functionh : F¢ — [0, 1] the average ofi(x) over the points on a random curve is with high probability
close to the average over the whole space. We show below that this holds even if an adversary gets to choose
the first point on the curve, because the remaining points on the curve arevsskk independent, and so it
remains a good sampler.

We need the following notation:

Definition 6.6. LetWW C Z be finite sets and Iét : Z — [0, 1] be an arbitrary function. Thaverage of:
over WV is defined by:
1
pw (h) = —— > h(i)
P>
We will usec, y, v,.....,) t0 denote the curve passing throughy, vs, . . . v, (see Definition 6.3). We

require that, ,, v,,...,)(0) = ; i.e., the enumeration of the field elements in Definition 6.3 starts vith
Also, belowF is the field of size, andF;, = IF, \ {0}.

Lemma 6.7. Letr be an integer for whicl < r < ¢. For every pointz € F¢, functionh : Iﬁ‘g — [0,1],
andé > 0, the following hold:

e (8) — sg()] = 8] <8 ()" ane

q

[¢(s,01,...0,) STt ONE tO ONE < qu_z

Proof. Fix x andh, and letvy, ..., v, be chosen uniformly and independently frdﬁ’ﬁ]. Define random
variablesY; by Y, = c(;.,,..4,)(a). Itis standard that for every € Fy, Y, is uniformly distributed over
IFgl, and that the random variablék’a}aepg arer-wise independent. Now we define the random variables
R, = h(Y,). Itfollows that for everys € F¥, E[R;] = qu(h), and thaf{ R, } e r; arer-wise independent.
LetR = ZQGF; R,. We apply Lemma 6.5 withl = |F7|§ = (¢ — 1)d to conclude:

2r r/2
et 00— g0 2 8] =Pl = Bl = ) <8 ()

Pr [ (-1

U1, 7erFg

This proves (1). For (2), we observe that for every o’ € F,

1
P Z,v v = C(zo . ! = —,
1)17...71]17:6%,?[6( sULyeey 7)(a) C( UL yeeey 7)(@ )] qd
and taking a union bound over all (at m@$) such pairs yields the desired resuit. B

We will be interested in curves that are good samplerg fiamctions simultaneously. The following is
a corollary of the above lemma; it is an easy application of a union bound:

Corollary 6.8. Letr be an integer for whicl2 < » < ¢. Lethq, ho, ..., hy be functions fromFg to [0, 1].
For every pointz € IF;’ andd > 0, the probability over a random choice of points, ..., v, € Fg that
C(z,01,...,0,) IS ONE-tO-ONEe and

Hetp s omy ) (i) = pima(hi) | <6

LLU)
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forall 1 <i <k, is at least
o \"? 1
1— (8| ——m—= — .
(8 (1% *W)

6.3 Proof of the downward collapse theorem

In this subsection we prove Theorem 3.2. We refer the reader to the informal description of the technique in
section 5.1.

Let L be an arbitrary language @& and letf : {0,1}" — {0, 1} be the restriction of (the characteristic
function of) L to inputs of lengthn. Throughout the proof we assume thais sufficiently large,n <
s(n) < 27, and thats(O(n)) < s(n)°M.

Let f be the low-degree extension gfwith respect to parametegsh, d chosen as follows (they are
expressed in terms of a fourth parameter

o 7 =2(n+log(32s(n)°))

o h=(4r)2(95(n))*

o d=[n/logh] +3

e g smallest prime power larger th@ndr.

Note thatC allows low-degree extension, and so by Proposition 6.2, the function family consisting of
(boolean versions of) the low-degree extensiond.dbr each input length, with parameters as defined
above, liesirC.

Thus, by the hypothesis of the theorefy,,; has a nonadaptive SAT-oracle circuit of side’), where
n' = log(¢%)+log(q) = O(n) is the input length of,,.;. We will construct arobabilisticSV-nondeterministic
circuit C’ computing fy.; of sizes’ = s(n), for a constant: (it will be clear in the exposition be-
low what is meant by a “probabilistic SV-nondeterministic circuit”). We will then transférfrinto an
SV-nondeterministic circuiC” computing f by fixing a “good” random string, and using the functién
that accompanies the low-degree extension (recall Definition 6.1). The resulting Cifcuiill have size
s(n')¢ + poly(n). Sinces(n’)® = s(O(n))¢ = s(n)°M, we will conclude thatl, has circuits of size
s(n)°M). As L was arbitrary, this will prove the theorem.

Let Cpre, Cpost be the Boolean circuits that describe the nonadaptive SAT-oracle circuit of(size
that computeggbool (recall Definition 2.3). Withlog ¢ parallel copies ofC,,. and Cp,s, we can con-
struct a nonadaptive SAT-oracle circuit with ¢ outputs that computeg. Let Q1(x),...,Qk(x) and
Ai(x),..., Ar(z) be the queries and answers associated with this circuit, respectively, ormirwuﬂg.
Without loss of generality we assume that exaétlgueries are made on every input We definep;, =
HFg(Ai)-

We focus first on constructing’, the probabilistic SV-nondeterministic circuit. Circait makes use of
Cpre andCy,qt, as well a1, pa, . . ., pr, @s non-uniform advice. We sét= 1/(9k). On input(z, b), circuit
C’ wants to computgfbool(:z, b); it performs the following steps:

e Pick vi,vg,...,0,. € Fg uniformly at random, and set, = c(; v, u,...0,)(a), SO thex, are the
g points along a random curve passing through;, vo, ... v,. SimulateC,,. to compute queries
Qi(z,) forl <i < kanda € .
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e Setn; = |(pi — 0)(q —1)|. Forl < i < k, guessy; € {0,1}" with exactlyn; ones, and strings

{wi,a}aEF’g-

e Forl <i < kanda € Fy, check that(z;), = 1 implies w; , is a witness that quer§);(z,) is
answered positively; otherwise, set flag output to 0 and halt.

e Computey, = Cpost(Za; (21)a; (#2)a, - - -+ (2)a) fOra € .

e Run the algorithm of Theorem 6.4 on the- 1 pairs(f,, y,) With u = hdr to obtain a polynomial
g : F, — F, of degreeu (if one exists). Set thealue output to theb-th bit of g(0) (or O if g does not
exist), and set thélag output to 1.

The following claim will allow us to fix the coin-flips of circui€’, described above, to get an SV-
nondeterministic circuit computing.

Claim 6.8.1. For everyz € F? andb € [log q], with probability at leastl — 53— over the choice of

v, ..., v, the following two conditions hold: Hoad
1. For all guesses;, w; , for which theflag output is set to one, thealue output isfbool(x, b).
2. There exist guesses w; , such that theélag output is set to one.
Proof. Fix anx € Fg. We apply Corollary 6.8 to conclude that the probability over a random choice of

pointsvy, ..., v, € IF;I that

Cz,1,ey0r) is one-to-one and/1 <i < k

Heiy oy ) (Ai) — ppa(A)| <6 3)

q

2r  \"? 1
1‘<8k<<q1>62) *w)'
By our choice of parameters:

- o 7"/2+ 1 < 85(n) o 1 ’“/2+ 1 2 2t 2
—_— — s(n - :
(g —1)62 qi-2 ) — 84\ 3 q¥=2 ~ 4logq 4logq — 2logq

The first inequality it true becauge< s(n)logq, =2 = (9%)? < (9s(n) log q)? and

is at least

(¢ —1)/log?q > /g > Vh > (4r)(9s(n))?

(for sufficiently largeq). The second inequality follows from our choice ofand d, and the fact that
log g = O(n) < s(n)? (for sufficiently largey).

We will show that whenever (3) holds, the two items in the claim hold. We begin with the second item.
Since (3) holds, for eachwe know that there are at least distinct indices for which4;(z,) = 1; we
choosez; to be a string with ones in exacthy of these indices. For each indexor which (z;), = 1, there
is a witnessw; , showing that query);(z,) is answered positively (sincé;(z,) = 1). Thus there exists a
choice of thez;, w; o for which theflag output is set to one.

Now, we turn to the first item. Once the verification in the third bullet above is complete, we know that
for all 4, and alla € Fy, (zi)e = 1 implies A;(z,) = 1, and that there are at least sucha for which
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(zi)a = 1. We also know, by (3), that the number®for which 4;(x,) = 1 is at most[(p; + d)(¢ — 1)].
Thus we can bound the number of “errors attributable to qilemg follows:

[{a:aeF Ai(wa) # (z)a} | < [(pi+8) (g —1)] = L(pi = 0)(g — 1)) < 25q,
and the number of “errors” overall as follows:

| {a : a € F} forwhich3i A;(z,) # (2i)a} | < 20gk.

For everya that is not an “error,}, = f(x,). We conclude that for at leagf — 1) — 26¢k = (1 —26k)q—
of the pairs(a, y,), we havey, = p(a), wherep(w) is the degreéwdr “restriction to the curve’p(w) =

f © C(xl,vl,vg,...,vr)(w)-
If the number of pairs that agree wifi{w) is greater tharig — 1 + hdr)/2, then the algorithm of

A~

Theorem 6.4 returng(w), and our circuit outputs thieth bit of p(0) = f(z) as desired. Thus to conclude

the proof we verify that

7/9

1+ hd
(1—20k)g—1=L2 15 - 1Fhdr
q

2 )
which holds by our choice af. O

Now, recall that the low-degree extension is accompanied by a polynomial-time computable function
from {0,1}" into IFZ. Consider the set of inputs t@’ given by

S = {(x,b) : z € 1({0,1}"),b € [logq]}

and note thatS| = (log ¢)2". Thus there must be a fixing of the coin-flips@f so that the two statements
in the above claim hold for all inputs ifi.
Our SV-nondeterministic circu®” computingy is built as follows:

e oninputy € {0,1}", computer = I(y)

e use circuitC’ with the “good” random coin-flips hardwired to compuf@ol(x,b) for everyb €
[log q].

e theselog ¢ bits give usf(z) = f(I(y)) = f(y). Outputf(y).

Because non-adaptive queries to an SV-nondeterministic circuit may be simulated by an SV-nondeterministic
circuit, the resulting circuitC” is an SV-nondeterministic circuit. Finally, we can verify that its size is
poly(n) + s(n’)¢ for some constant This concludes the proof of Theorem 3.2.

We remark that in the proof above we used Theorem 6.4 to decode Reed-Solomon codes by an efficient
deterministicprocedure. However, in our setup we are allowed to use an efficient SV-nondeterministic
procedure for decoding (as we are shooting to construct an SV-nondeterministic circuit). And, an efficient
deterministic encoding algorithm immediately induces an efficient SV-nondeterministic decoding procedure
by guessing the appropriate codeword and verifying that it is indeed close to the given word.

7 Proofs of Theorem 3.6 and Theorem 3.10

We begin with a few preliminaries that will be needed later.
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7.1 Preliminaries

First, we show (as in [BGPO0OQ]) that the preimages of a randewise independent hash function partition
an arbitrary sef well:

Lemma 7.1. Let H,, ;, be ann-wise independent family of hash functions mappirgts to £ bits, and let
S C {0,1}™. Then for everyt > ¢ > 0, and sufficiently large::

hfl’{r Ty for which |[{z : h(z )—y/\xES}|>(1—|—5)Lk| <1/2,
€ n,k

provided2® < §2n=3|9|.

Proof. Fix y € {0,1}*, and letl, be the indicator random variable for the evérit) = y. Notice that
E[I.] = 2% and that thel, aren-wise independent. Define = 5" _. I,; we have EI] = |S|27% by
linearity of expectation. Applying Lemma 6.5, we get:

z€eS

(0E[])?

om n/2 9 n/2
< Y i <8. (= —(n+1)
< s (zam) < (m) <

Applying a union bound over ali* < 2" differenty, we obtain the stated resullt. O

n/2
LG )—yAvaS}I>(1+5)|S|] < Pr[I—E[I]zaE[I]]§8~<W>

We will also need the following fact about composing functions computable matiradaptiveNP
oracle access:

Lemma 7.2. Letf = {fn} andg = {g,} be length-preserving function families in FTIK/HEz)) 1 P and
FTIME(s(n ))|| respectively. Then the function family o g) defined by(f o g)(x) = f(g(z)) is in

FTIME(poly((n)s(n)n))|IP.

Proof. We are given an input of lengthn, and we wish to computg(g(x)). Let M and M, be the
deterministic oracle Turing Machines associated vfitmdg.

We describe how to determine if theth bit of f(g(x)) is 1, using non-adaptive NP oracle queries. Sup-
pose we know that out of all of the non-adaptive NP oracle quédigs:) makes, exactly,, are answered
positively; similarly, suppose that we know that on inpit), out of all of the non-adaptive NP oracle
queriesM(g(x)) makes, exactly.; are answered positively. Then witrsangleNP oracle query, we can
guess:

e an n-bit stringy, and

e which n, oracle queries in the computatiavi, (=) are answered positively, and whiety oracle
queries in the computatiol/;(y) are answered positively, and

¢ witnesses for they, positively answered oracle queries madeMy(z), and witnesses for the;
positively answered oracle queries madeMdy(y),
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and verify that the witnesses are all valid, thdf(x) with the guessed yes/no answers outpytand that
M (y) with the guessed yes/no answers outputs a string wiitiseit is 1.
Assumingn, andn ¢ are correct, this NP query will be answered positively iff b bit of f(g(x)) =
1: it is easy to see that, being correct means that the only valid witnesses will have g(z), and that
ny being correct means that the only valid witnesses correctly simifatg) and thus are accepted iff the
j-th bit of f(y) is 1.
We could try making this single NP oracle query for each value pofndn,, in parallel. The only
problem is that we don’'t know which answer is the correct one. This can easily be fixed by making the
following two NP oracle queries for each possible value pndn,.

1. guess whicn, oracle queries in the computatidd, (z) are answered positively, together with wit-
nesses for them, and verify that the withesses are all valid.

2. guess am-bit string y, which n, oracle queries in the computatidid, (<) are answered positively,
whichn oracle queries in the computatidd,(y) are answered positively, and witnesses for all the
positively answered queries; verify that the witnesses are all valid andfpat) with the guessed
yes/no answers outpugs

It is easy to see that the largest valuengffor which the first query above is answered positively is the
correct value. Then, the largest valuerof (paired with the correct value of,) for which the second
query above is answered positively is the correct value forFrom this information we know which of the
original set of queries to trust, and we successfully determing-theit of f(g(z)).

Sincet(n) is an upper bound on; ands(n) is an upper bound on,, the procedure above entails
3(t(n) + 1)(s(n) + 1) non-adaptive NP oracle queries, and we perform it times in parallel to compute
each of then output bits off (g(x)). Overall the running time is polg(n)t(n)n) as claimed. O

Finally, we will use the following variant of Theorem 4.2 several times below.

Lemma 7.3 ([KvMO02]). There exist constantg, ¢ > 0, for which the following holds for all sufficiently
large t: given the truth tablél” of a function ort bits that cannot be computed by non-adaptive SAT-oracle
circuits of size27 there is a polynomial-time procedure that produce$2é,2-*) discrepancy set for
non-adaptive SAT-oracle circuits of sizé.

7.2 The mainlemma

The main procedure that is used in the proofs of Theorem 3.10 and Theorem 3.6 is encapsulated in the next
lemma. It takes a circuif’ that accepts a subss&tof {0, 1}", and outputs a hash function frombits to &

bits whose preimages partitighnearly evenly. Additionally, it outputs ast-conditional discrepancy set, in
implicit form.

Lemma 7.4. There is a function family that takes as input:
e a parametew such thatl /32 > § > 0, and
e acircuit C onn bits that accepts at leagt[§—2n3] inputs, and
e an integers, and

e the truth tableT of a function ont = O(log|C|,logn, 1/6,log s) bits that cannot be computed by
non-adaptive SAT-oracle circuits of si2& for some constant > 0,
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and outputs:

e an integerk, and

e ahash functiorh : {0,1}" — {0, 1}*, and

e an integerB with B = poly(n, 1/4), and

e a multisetR
for which the following hold:

e vy c{0,1}* [{z:h(x)=yAC(z)=1} < B,and

o 2B <|C7(1)], and

e the multisetS = {z : h(z) € R A C(x) = 1} is aC~!(1)-conditional(n, s, 30)-discrepancy sét.
This function family is in FTIMEZO(t))h\'P.

The proof appears in subsection 7.3. We first show how this lemma easily gives us both Theorem 3.6
and Theorem 3.10.

Proof of Theorem 3.6We are given a circuitl onn bits, ande > 0. Setd = ¢/(2 — 2¢) and set as in the
statement of Lemma 7.4. We describe our procedure in several steps, and then apply Lemma 7.2 to assemble
them into a single procedure that uses non-adaptive NP-oracle access.

e We check whethefA=1(1)| < 16[§~2n3], and if so, we compute its size exactly using that many
parallel NP queries, and set= Pr,[A(z) = 1] which is exact in this case.

e We are assuming thatﬁﬁD requires exponential size SV-nondeterministic circuits. By Corollary 3.3,
Eh\'P also contains languages that require exponential size non-adaptive SAT-oracle circuits. Let
be such a language iq’TLP. We produce the truth tablg of L restricted to length inputs. Since

Le Eh\lpthis procedure is in FTIMEQO(t))"l\IP.

e Apply the function family of Lemma 7.4, with input4, §, n, T. This produces output, », B andR,
and runs in time FTIMEQO“))"‘\'P.

e The resulting output has integetrsand B for which

2kB 1 k
<A (1) £ 2°B.
1+25_’ (=2

We can then outpyi = (1 — €)(2¥B)/(2"), and the above equation implies:

(1 - ) Pr[A(x) = 1] < p < Pr[A(z) = 1

T

as required.

2Recall thatR is a multiset, and we intend eache S to be reproduced as many timesfds:) appears inR.
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After applying Lemma 7.2, the overall running time of the procedure is polynomijal|im and1/e and it
uses only non-adaptive NP oracle access. O

Proof of Theorem 3.10We are given a circuifl onn bits, an integes, ande > 0, and we want to produce

a A~1(1)-conditional(n, s, €)-discrepancy set. Sét= ¢/3 and set as in the statement of Lemma 7.4. We
describe our procedure in several steps, and then apply Lemma 7.2 to assemble them into a single procedure
that uses non-adaptive NP-oracle access.

e We check whethelid—1(1)| < 16[62n3], and if so, we compute the entire s&t!(1), which is triv-
ially an A~ (1)-conditional(n, s, ¢)-discrepancy set. By Theorem 4.4, we can do this in @oly/?)
time with nonadaptive NP queries (since we are assuming t{Hgt fequires exponential size SV-
nondeterministic circuits).

e We are assuming thaﬂﬂf requires exponential size SV-nondeterministic circuits. By Theorem 3.2,

E|'|\IID also contains languages that require exponential size non-adaptive SAT-oracle circuitel et

such a language inhﬁa. We first produce the truth tablg of L restricted to length inputs. Since

Le E{‘\'Pthis procedure is in FTIMEO(t))"l\'P.

e Apply the function family of Lemma 7.4, with input4, §, s, T. This produces output, i, B andR,
and runs in time FTIMIEZO“))"‘\'P.

e Finally, we produce fronz an enumeration of the multisét= {z : h(z) € R A A(xz) = 1}. This
can be accomplished by making queries of the form “Is there &;set size: for which S; C {z :
h(z) € RA A(x) = 1}?” for eachi up to2°) B (which is an upper bound di§|). By Theorem 4.4,
we can actually produce such sétsusing non-adaptive NP oracle queries, and we find all ofSthe
in parallel. The largest set identified contains all of the distinct elements of the mSltiartl we can
duplicate them as needed according to the multiplicity of their image (urjderR. This multiset is
S, the desiredd —!(1)-conditional(n, s, €)-discrepancy set.

After applying Lemma 7.2, the overall running time of the procedure is polynomijal|im, s and1/e
and it uses only non-adaptive NP oracle access.

If we assume instead thal\E requires exponential-size SV-nondeterministic circuits then step 2 runs
in FTIME(QO(t))NP and the first and last step can use an NP oracle adaptively to find witnesses in the usual
way. In this case the procedure has the same overall running time but uses adaptive NP oracle actess.

7.3 Proof of Lemma 7.4

SetN = 8[62n3]. Foreachk = 1,2,...,n, let H, ;, be ann-wise independent family of hash functions
mappingn bits to & bits. For alll < k£ < n andall0 < e < N, given a description of some € H,, ;.
(which, using standard constructions, requires foj\pits) we can test if

Jy for which|{z : h(z) =y AC(z) =1} > (N +e) 4)

in nondeterministic timen = poly(N, |C).
Using Lemma 7.3, we produce frofa (m, 1/4)-discrepancy sdt/ C {0, 1} for non-adaptive SAT-
oracle circuits of sizen. Let M}, be an efficiently computable mapping from strings of lengttio H,, ;.
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such thath/;, is uniform onH,, ;. when its input is chosen uniformly (by which we may view the strings in
{0,1}™ as “descriptions” of members of the hash famify, ;). For all pairs(k,e) with &k = 1,2,...n,
e=0,1,... N — 1, we test whether Eq. (4) holds for all hash functighs= M} (u) : © € U}. Each such
test entail§U| parallel NP queries, and there até&/ tests performed, in parallel. We label each of these
tests with a pai(k, e), and order the pairs lexicographically (witrchanging the slowest).

Now, we select théirst (k, ) in the lexicographic order for which the test fails, together with the hash
functionh = M. (u) that witnesses that failure, i.é. for which:

Vy H{a: h(e) =y A Cla) = 13| < (N + ). (5)

We setB = (N +e).

Finally, let s’ be some fixed polynomial i, |C|, s to be determined later. Using Lemma 7.3, we
produce from a (k, §)-discrepancy sek C {0, 1}* for non-adaptive SAT-oracle circuits of size. We
outputk, the hash function, the integerB, and the multiseR.

We break the remainder of the proof into two halves; the first verifies/that and B satisfy the
properties stated in the Lemma, and the second verifiedinaiplicitly defines a conditional discrepancy
set as claimed in the Lemma.

7.3.1 First half: the hash functionh, k&, and B

In this half of the proof we show that the intederthe hash function, and the integeB = (N + e) satisfy
the properties stated in the Lemma.

Observe that there is a unique péir, e*) with &* € {1,2,...,n} ande* € {0,1,...,N — 1} for
which

c1(1
N+e*<’2k£)‘<N+€*+1, (6)

which can be seen by choosiht = |log,(|C~1(1)|/N)], and there* to satisfy the above inequalities.

We have three claims; the first says that for(&lle) before(k*, ¢*) in the lexicographic order the test
must succeed, and the next two show that for sokme) not too much beyon¢:*, e*) in the lexicographic
order, the test must fail. In this way we obtain an “approximation{/of ¢*). Observe that by our choice
of k*, |[C~1(1)|/2*" lies betweenV and2N. Thusk gives us an approximation to within granularity
determininge as well gives us a finer approximation, to within granulafity+ 20).

Claim 7.4.1. For all (k,e) such that2®(N +e) < 2K (N + ¢*), Eq. (4) holds for all hash functions
{h=Mjy(u) :ueU}.

Proof. For every hash functioh : {0,1}" — {0, 1}*, by the pigeonhole principle, one of tR& disjoint
setsS, = {x : h(xz) = y A C(x) = 1} has size greater thdiv + ¢), because

SIS, = 107N )] 2 28 (N + ¢) > 25(N + o).

O]

Claim 7.4.2. The first(k, e) in the lexicographic order for whicB* (N +¢) > (1 + §)2¥" (N +e* + 1)
satisfies
(N 4e) =28 < (1+6)2F (N +e* +1) 7)
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Proof. Since(k, e) is thefirst such pair, we know that the previous péif, ¢’) in the lexicographic order
fails to satisfy2*(IV + ) > (1 + 6)2¥" (N + e* 4 1); i.e., it holds that

(N +¢) < (14 0)2F (N +e* +1).

If e > 1, then(k',¢’) = (k,e — 1), and so the left-hand-side equafs(N + ¢) — 2F; if e = 0, then
(K',e’) = (k — 1, N — 1), and so the left-hand-side equals' (2N — 1) = 2¥(N + ¢) — 21, In both
cases, Eq. (7) follows. O

Claim 7.4.3. For the first(k, e) in the lexicographic order for whick* (N 4-¢) > (14 6)2*" (N 4+ e* + 1),
it is notthe case that Eq. (4) holds for all hash functidiis= M} (u) : u € U}.

Proof. Using Eq. (6) and the premise of the Claim, we have
(N +e)>(1+0)28 (N +e* +1)/2F > 1 +8)Cct(1)|/2F
and thus, using Lemma 7.1,

he%r [Jy for which|{z : h(z) =y A C(x) =1} > (N + €)]

< b [3y for which |{z : h(z) =y A C(x) = 1} > (1 + §)|C~H(1)]/2"] < 1/2,

provided tha® < §2n=3|C~1(1)| (so that Lemma 7.1 applies). In other words, subject to this condition,
Lemma 7.1 states that Eq. (4) holds for at most half ofithe H,, ;.. SinceU is a discrepancy set, it must
be that for somes € U, Eq. (4) does not hold fot = My (u).

We just need to check that the condition required for Lemma 7.1 is satisfied. This follows from Claim
7.4.2. The right-hand-side of Eq. (7) is at md&P'—'(1)| by Eq. (6), while the left-hand-side is at least
2k(N — 1), which is at leas2”*(46~2n3) by our choice ofN. We thus have*(46—2n?) < 4|C~1(1)], as
required. O

Finally, we verify thatB = (N + e) satisfies the statement of the Lemma. Using Eq. (6) and Eq. (7),
we get:
(N +e) <A +0)|C7IH1)| +2-2F 428,

Now, Eqg. (7) implie* < 16 - 2¥", and Eq. (6) give@*" < |C~1(1)|/N. Lastly,1/N < §2 (for n > 16).
Therefore the right hand side is at most+ § + 1856%)|C~1(1)|. Sinces < 1/18, we conclude that

28(N +e)

< -1

as required.

7.3.2 Second half: the multiseiR
In this second half of the proof, we show that
S={x:h(x) e RANC(z) =1}

is aC~!(1)-conditional(n, s, 36)-discrepancy set as required by the statement of the Lemma.
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Suppose for the purpose of contradiction that there is a distingujsh¢6, 1} — {0, 1} computable
by a sizes circuit for which

Prif(z) = 1|C(z) = 1] = Pr[f(t) = 1|C(t) = 1]| > 34. (8)
We usef to describe a distinguisher: {0,1}* — {0, 1} computable by a siz& non-adaptive SAT-oracle
circuit that “catches” the discrepancy set On inputy € {0, 1}*, g usesB non-adaptiveNP queries to
determine/y, = [{z : h(z) =y AC(x) = 1 A f(z) = 1}| (which is guaranteed to be at mds}, andg then
outputsl with probabilityZ, /B (and 0 with the remaining probability).

We know tha* B < (1 + 26)|C~1(1)|. Thus

Xyly (1420034 1+2526y

Prif() = 110(x) = 1] = =S4 < g = g

= (1+26) f;r[g(y) =1]

B
Y
We also know using Eq. (5), tha®| < B|R|. Thus
Ly
P TER Pr =1
SoRlor) IR ¢ Z B= "5 s/ =tem =1

We may assume that Eqg. (8) holds without the absolute value, by complemérifingcessary. Then we
get:

Prg(r) =1] < Pr[f(t) = 1|C(x) = 1] < Pr[f(x) = 1|C(x) = 1] =35 < (1 +20) Prlg(y) = 1] - 35
and sog distinguishes a random element fragfrom a truly random element with advantage greater than
0. We may fixg's random coins to preserve this advantage, and noticegtligtcomputable by a size
s’ = poly(B,|C], s) non-adaptive SAT-oracle circuit. This contradicts the fact fRa$ a discrepancy set
for size s’ non-adaptive SAT-oracle circuits, and Somust indeed be ad'~!(1)-conditional (n, s, 36)-
discrepancy set, as desired.

This concludes the proof of Lemma 7.4.

8 Conclusions and open problems

All known “hardness versus randomness tradeoffs” work by using a hard function to construct a PRG that
derandomizes the given probabilistic procedure. The proofs show that if the derandomization fails, this
probabilistic procedure can be used as a subroutine to efficiently compute the supposedly hard function,
which is a contradiction. One consequence of this type of argument is that to derandomize some class of
probabilistic proceduregl, one requires a function that is hard for procedures thattteast as strong
as A. This paper gives several results that break this “barrier” by derandomizing “strong” classes using
“weak” lower bounds. The most striking result in this vein is perhaps Theorem 4.9. Since it is known that
pNP - SQP (in other words that ; is strong enough to simulatalaptiveNP-queries) it is highly unlikely
that § is computable by small nondeterministic circuits, and yet we show tgat:SPNP using “only”
hardness for nondeterministic circuits.

One can ask how far this “weakening” of hardness assumptions can go. For example we do not know
whether the existence of relative error approximators, or conditional discrepancy set generators, imply the
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nondeterminstic hardness assumption that we have used to construct them in this paper. The standard argu-
ment that shows that “pseudorandomness entails hardness” only gives harddessrfomisticcircuits. Is
it possible to construct these objects using a weaker hardness assumption? Constructing them from hardness
for deterministic circuits would have some interesting consequences, like placing approximate counting in
zpp\P unconditionally.

Our downward collapse theorem states that for every sufficiently strongtlagshas small nonadap-
tive SAT-oracle circuits thet has small SV-nondeterministic circuits. A very natural open problem is try to
extend the downward collapse theorem to haadigptiveNP queries. That is, show thatf is computable
by small adaptive SAT-oracle circuits théhis computable by small nonadaptive SAT-oracle circuits.

Another interesting open problem is to givauaiform version of the downward collapse theorem, or
more precisely, to prove that EXE Ph\'P = EXP = AM. We remark that the argument of this paper can

be slightly modified to give EXRC P|'|\”:> = EXP C AM/log. In a subsequent work Fortnow and Klivans

[FKO5] also consider starting from the uniform assumption: E(_XIP|'|\|P. They build on the main result of

this paper and are able to get a stronger conclusion, namely:ENP/ log.
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