
Pseudorandomness for Approximate Counting and Sampling

Ronen Shaltiel∗

Department of Computer Science
University of Haifa

Mount Carlel, Haifa 31905, Israel.
ronen@haifa.ac.il

Christopher Umans†

Department of Computer Science
California Institute of Technology

Pasadena, CA 91125.
umans@cs.caltech.edu .

October 4, 2006

Abstract

We study computational procedures that use both randomness and nondeterminism. Examples are
Arthur-Merlin games and approximate counting and sampling of NP-witnesses. The goal of this paper
is to derandomize such procedures under the weakest possible assumptions.

Our main technical contribution allows one to “boost” a given hardness assumption. One special
case is a proof that

EXP 6⊆ NP/poly⇒ EXP 6⊆ PNP
|| /poly.

In words, if there is a problem in EXP that cannot be computed by poly-size nondeterministic circuits
then there is one which cannot be computed by poly-size circuits that make non-adaptive NP oracle
queries. This in particular shows that the various assumptions used over the last few years by several
authors to derandomize Arthur-Merlin games (i.e., show AM= NP) are in fact allequivalent. In addition
to simplifying the framework of AM derandomization, we show that this “unified assumption” suffices
to derandomize several other probabilistic procedures.

For these results we define two new primitives that we regard as the natural pseudorandom objects
associated withapproximate countingandsamplingof NP-witnesses. We use the “boosting” theorem
and hashing techniques to construct these primitives using an assumption that is no stronger than that
used to derandomize AM. As a consequence, under this assumption, there aredeterministicpolynomial
time algorithms that usenon-adaptiveNP-queries and perform the following tasks:

• approximate counting of NP-witnesses: given a Boolean circuitA, outputr such that

(1− ε)|A−1(1)| ≤ r ≤ |A−1(1)|.

• pseudorandom sampling of NP-witnesses: given a Boolean circuitA, produce a polynomial-size
sample space that is computationally indistinguishable from the uniform distribution overA−1(1).

We also present applications. For example, we observe that Cai’s proof that SP
2 ⊆ ZPPNP and the

learning algorithm of Bshouty et al. can be seen as reductions to sampling that are not probabilistic. As
a consequence they can be derandomized under the assumption stated above, which is weaker than the
assumption that was previously known to suffice.

∗Some of this work was done while at the Weizmann Institute and supported by the Koshland Scholarship. This research was
also supported by BSF grant 2004329.

†This research was supported by NSF grant CCF-0346991, BSF grant 2004329, and an Alfred P. Sloan Research Fellowship.

1 Introduction

One of the major areas in complexity is the study of the power of randomness in various computational
settings. In certain contexts randomness affords additional power. But for broad classes of problems it has
been demonstrated over the last decade that randomness can be simulated deterministically, under widely
accepted complexity assumptions.

The central object used in these derandomization results is apseudorandom generator(PRG), which is
an efficient deterministic procedure that generates adiscrepancy set– a set of strings with the property that
no test (from a pre-specified class of tests) can distinguish a random string in the discrepancy set from a uni-
formly random string. We say that a PRGfoolsthis class of tests. A probabilistic procedure is derandomized
by replacing its random bits with strings from the discrepancy set; the procedure cannot behave noticeably
differently than it would with truly random bits, as then it would constitute a distinguishing test. As a con-
sequence derandomizing stronger probabilistic algorithms typically requires pseudorandom generators that
produce discrepancy sets for stronger classes of tests.

An efficient pseudorandom generator for some class of tests immediately implies an efficiently com-
putable function which is hard for these tests. More specifically, an efficient pseudorandom generator
that fools small circuits implies the existence of a language in a uniform complexity class (e.g., E=
DTIME(2O(n))) that lies outside a non-uniform complexity class (e.g. P/poly). Thus constructing such
pseudorandom generators amounts to proving circuit lower bounds for explicit functions, a task that is
currently beyond our reach. Consequently, this line of research focuses on constructing pseudorandom gen-
erators under ahardness assumption1. In this context the goal is to achieve derandomization results under
the weakest possible hardness assumptions.

One of the main efforts in derandomization over the last decade has focused on the class BPP which can
be derandomized given access to pseudorandom generators that fool small circuits. Here the appropriate
hardness assumption is that there exists a language in E that requires exponential size circuits (i.e., the lan-
guage cannot be computed by size2εn circuits, for someε > 0).2 A sequence of results [NW94, BFNW93,
Imp95, IW97] showed that under this hardness assumption BPP= P. A further sequence of papers achieved
aquantitatively optimalhardness vs. randomness tradeoff [ISW99, ISW00, SU01, Uma03].

An analogous line of work [AK01, KvM02, MV99, SU01] derandomized Arthur-Merlin games [Bab85,
GMR89]. (Recall that the class AM contains important and natural problems like graph non-isomorphism
that are not known to be in NP). These works achieved AM= NP under progressivelyqualitativelyweaker
hardness assumptions. The first results required average-case hardness for circuits that make non-adaptive
queries to an NP oracle, while the latest results require only hardness for SV-nondeterministic circuits.3 In
this paper we show that the various different assumptions used to derandomize AM are in fact equivalent.

A prior line of research [Sto83, JVV86, BGP00] addresses procedures which approximately count and
sample NP-witnesses. More precisely, given a Boolean circuitA the first task is to approximately count
the number of accepting inputs ofA, and the second is to sample a random accepting input. Note that both
problems are NP-hard and thus any such procedure must use nondeterminism unless NP=P. The current

1This “hardness vs. randomness paradigm” was initiated by [BM84, Yao82]. It should be noted that the notion of pseudorandom
generators in these papers is different than the one we use here. In particular, in this paper we follow a paradigm initiated by [NW94]
which allows pseudorandom generators which given a size bounds, run in time polynomial ins and output a discrepancy set for
sizes circuits. The reader is referred to [Gol98] for a survey on pseudorandomness and its applications and to [Kab02] for a recent
survey which focuses on derandomization.

2One of the confusing aspects of all the results in this area is that the assumptions involve “exponential time” classes. In
actual applications these assumptions are “scaled down” to say that there exists a function onO(log n) bits which is computable in
polynomial time and cannot be computed by sizenc circuits (for some constantc).

3SV-nondeterministic circuits are the nonuniform analog of the class NP∩ coNP (see definition 2.2).

2

known procedures for these tasks also use randomization: they are probabilistic algorithms that use an
NP-oracle. In this paper we show how to derandomize these procedures and show that under a hardness
assumption that is no stronger than that used to derandomize AM, both of these tasks can be performed by
polynomial timedeterministicalgorithms that makenon-adaptiveNP-queries.

In order to achieve these results we make a technical contribution and a conceptual contribution. Our
main technical result is a “downward collapse theorem” that implies (as a special case):4

E⊆ PNP
|| /poly⇒ E⊆ NP/poly.

This downward collapse shows that all of the various flavors of nondeterministic hardness assumptions
considered in the literature are equivalent. This unifies and simplifies a number of past results. This result is
also helpful when derandomizing other probabilistic procedures that involve randomness and nondetermin-
ism. It allows us to start from a weak hardness assumption, boost it to a stronger hardness assumption, and
then use pseudorandom generators for stronger classes of tests, namely circuits which make non-adaptive
NP-queries.

Our conceptual contribution lies in defining what we regard as the natural “derandomization objects” as-
sociated with approximate counting and sampling. These arerelative-error approximators(for approximate
counting) andconditional discrepancy sets(for sampling). The first is a strengthening of additive-error
approximators (which derandomize BPP), and the second is a generalization of discrepancy sets (which
“sample” from the uniform distribution). We show how to obtain relative-error approximators and condi-
tional discrepancy sets in polynomial time with non-adaptive NP oracle access, under a hardness assumption
no stronger than that used for derandomizing AM. Note that this suggests that the “true complexity” of these
problems is PNP

|| . Loosely speaking, our technique uses the strong pseudorandom generators obtained by
boosting the initial hardness assumption to derandomize the probabilistic procedures for approximate count-
ing and sampling. Some additional work is needed to obtain procedures that makenonadaptivequeries to
an NP-oracle.

We also give several applications of relative error approximators and conditional discrepancy sets. We
obtain the following collapses under a hardness assumption no stronger than that used for derandomizing
AM: SP

2 = PNP and BPPpath = PNP
|| . The first collapse comes from viewing Cai’s result [Cai01] (that

places SP2 in ZPPNP) as a reduction of SP2 to sampling that uses an NP oracle but isnot probabilistic. This
allows a derandomization via conditional discrepancy sets. Similarly, we view a fundamental result by
Bshouty et al. [BCG+96] (concerning the learning of circuits using equivalence queries) as a reduction to
sampling, and derandomize it in the same way.

Outline

In Section 2 we present definitions of the various types of nondeterministic circuits and hardness assump-
tions. In Section 3 we describe our main results and relation to prior work. In Section 4 we present corollar-
ies and applications of our main results. In Section 5 we describe the major ideas and techniques used in the
proofs; Sections 6 and 7 contain the full proofs. Finally in Section 8 we conclude with some open problems.

4The notationAB
|| says thatA usesnon-adaptivequeries to oracleB.

3

2 Nondeterministic circuits, hardness, and PRGs

We assume that the reader is familiar with (deterministic) Boolean circuits. We use the convention that the
size of a circuit is the total number of wires and gates. Nondeterministic circuits come in several flavors,
which we define below. We remark that a main contribution of this paper lies in showing that the several
hardness assumptions defined below are all equivalent – unfortunately, in order to show that, we need to be
able to discuss all of the various assumptions below.

Definition 2.1 (nondeterministic and co-nondeterministic circuits).A nondeterministic (resp. co-nonde-
terministic) circuit is a Boolean circuitC which receives two inputs:x of lengthn and a second inputy.
Thefunction computed byC, denotedfC : {0, 1}n → {0, 1} is defined byfC(x) = 1 iff ∃y C(x, y) = 1
(resp.∀y C(x, y) = 0).

The uniform analogue of poly-size nondeterministic circuit is the class NP. The uniform analogue
of poly-size co-nondeterministic circuits is coNP. Poly-size single-valued nondeterministic circuits have
NP∩ coNP as their uniform analogue.

Definition 2.2 (single-valued nondeterministic circuits).A single-valued nondeterministic (or SV-nondeter-
ministic) circuit is a Boolean circuitC which receives two inputs:x of lengthn and a second inputy, and
has two output gates:valueandflag. Circuit C computes the functionf : {0, 1}n → {0, 1} if the following
hold:

• for everyx, y, if C(x, y) has 1 at itsflag gate thenC(x, y) hasf(x) at itsvaluegate, and

• for everyx, there exists somey for whichC(x, y) has 1 at itsflag gate.

Note that a circuitC may meet the syntactic demands of this definition, and yet not compute any function
(if the two listedsemanticrequirements for “computing a function” are not met). When we refer to a SV-
nondeterministic circuit, we always mean a circuitC that in fact computes a function according to this
definition, and we refer to that unique function as thefunction computed byC. We also remark that a
function has a sizeO(s) SV-nondeterministic circuit if and only if it has both a sizeO(s) nondeterministic
circuits and a sizeO(s) co-nondeterministic circuit.

Definition 2.3 (adaptive and non-adaptive SAT-oracle circuits).A SAT-oracle circuit is a Boolean circuit
C that is also permitted to use SAT-oracle gates. A SAT-oracle gate is a gate with many inputs and a single
output that is 1 iff the input is in SAT.

A nonadaptive SAT-oracle circuit is a pair of Boolean circuitsCpre and Cpost. On inputx, Cpre
outputs a number of queriesq1, q2, . . . , qm. Circuit Cpost receivesx together withm bits a1, a2, . . . , am,
whereai = 1 iff qi is in SAT, and outputs a single answer bit.

We could also have defined nonadaptive SAT-oracle circuits to be SAT-oracle circuits in which no path
from the output gate to an input gate encounters more than one SAT-oracle gate; the above definition makes
explicit the pre- and post- processing phase. For nonadaptive SAT-oracle circuits so defined, their size is the
sum of the sizes ofCpreandCpost.

We will frequently speak of a languageL that is “hard for” a class of circuits. Of course this hardness
can be quantified by the size of the circuit. For clarity, we have chosen only to present the “high-end” results
that follow when this hardness is exponential, even though more general results are true using our methods.
Consequently, we only need the following definitions:

4

Definition 2.4 (worst-case hardness for exponential-size circuits).A languageL is worst-case hard
for exponential-size (deterministic, nondeterministic, co-nondeterministic, SV-nondeterministic, adaptive
or nonadaptive SAT-oracle -) circuits if there exists a constantε > 0 such that for every sufficiently largen,
every circuit of the prescribed type and size at most2εn, fails to computeL restricted to inputs of lengthn.

Definition 2.5 (average-case hardness for exponential-size circuits).A languageL isα-hard for exponential-
size (deterministic, nondeterministic, co-nondeterministic, SV-nondeterministic, adaptive or nonadaptive
SAT-oracle -) circuits if there exists a constantε > 0 such that for every sufficiently largen, every circuit of
the prescribed type and size at most2εn, succeeds to computeL restricted to inputs of lengthn on at most
α · 2n such inputs.

Note that the definition of(1− 2−n)-hard coincides with the definition of worst-case hard.

Definition 2.6 (worst-case and average-case hardness of complexity classes).A complexity classC is
worst-case hard (resp.α-hard) for exponential-size circuits of a given type if there exists a languageL ∈ C
that is worst-case hard (resp.α-hard) for exponential-size circuits of that type.

We also sometimes say “C requiresexponential-size circuits” of a given type to meanC is worst-case
hard for exponential-size circuits of that type.

2.1 Discrepancy sets and pseudorandom generators

In this paper we define pseudorandom generators in terms of discrepancy sets.

Definition 2.7 (discrepancy set).Let D be a subset of all functions from{0, 1}n to {0, 1}. A multiset
T ⊆ {0, 1}n is an(n, ε)-discrepancy setfor D if for everyD ∈ D,

∣∣∣∣ Pr
x∈{0,1}n

[D(x) = 1]− Pr
t∈T

[D(t) = 1]
∣∣∣∣ ≤ ε.

CommonlyD is the set of functions with sizes deterministic circuits; in this case we use the shorthand
(n, s, ε)-discrepancy set(as in subsection 3.2.2). A pseudorandom generator is a function whose output is a
discrepancy set5.

Definition 2.8 (pseudorandom generator).LetC be a complexity class. A pseudorandom generator (PRG)
for C is a procedure which on input1n outputs a(n, 1/n)-discrepancy set for the setD of all characteristic
functions of languages inC restricted to lengthn.

In this paperC will typically be the class of those languages with nondeterministic circuits of a given
type, and whose size is a fixed polynomial.

5A more standard formulation is that a pseudorandom generator “stretches” a short seed into a long pseudorandom string, with
the property that the set of all pseudorandom strings is a discrepancy set. Our definition asks the pseudorandom generator to output
all pseudorandom strings at once. This difference is immaterial in this paper as we will be concentrating on discrepancy sets with
polynomial size, and thus the entire set can be output in polynomial time if each individual string can be generated in polynomial
time.

5

3 Main results

Several of our results apply to any complexity class for which one can compute the low-degree extension
within that class. To make these results easier to state we introduce the following definition:

Definition 3.1. We say that a complexity classC allows low-degree extensionif EC
≤O(n) ⊆ C, where the

notationC≤O(n) means that the E oracle machine makes only linear-length queries.

Examples of complexity classesC that support low-degree extension are: E, NE∩ coNE, ENP, ENP
|| .

3.1 Unifying hardness assumptions

Several authors [AK01, KvM02] have observed that the PRG constructions intended to derandomize BPP
can be adapted to construct discrepancy sets that fool efficientnon-deterministictests under stronger hard-
ness assumptions. Just as PRGs that fool efficient deterministic tests imply BPP= P, PRGs that fool
efficient non-deterministic tests imply AM= NP.

Several hardness assumptions sufficient to achieve AM= NP have been considered in the literature. All
of these hardness assumptions (and the others we will consider in this paper) have the following form: there
exists a languageL in some “high” uniform class (examples are E, NE∩coNE, ENP

|| and ENP) that requires

exponential size circuits from some non-uniform circuit class6. Three non-uniform circuit classes have been
discussed in the literature in relation to AM. These are

• SV-nondeterministic circuits, used by Milersen and Vinodchandran [MV99] and later Shaltiel and
Umans [SU01],

• non-deterministic (and co-nondeterministic) circuits, used by Arvind and Kobler [AK01], and

• Nonadaptive SAT-oracle circuits, used by Klivans and van Melkebeek [KvM02]7,

listed in order from weaker to stronger. Perhaps the best way to understand these circuit classes is to think
of them as nonuniform analogs of NP∩ coNP, NP (and coNP), and PNP

|| , respectively. Figure 1 summarizes
the various hardness assumptions and pseudorandom objects implying AM= NP and known relationships
between them.

Notice that with the exception of the “AM= NP” box, prior to this work there were two strongly
connected components, consisting of the top row and the bottom two rows. In this paper we show that
all of the hardness assumptions considered in the literature are equivalent. In addition to clarifying the
situation, this result somewhat simplifies the task of building a PRG sufficient to derandomize AM. One
can replace previous constructions [MV99, SU01] that are specialized for derandomizing AM under an SV-
nondeterministic hardness assumption byanyrelativizing construction of ordinary pseudorandom generators
(designed to derandomize BPP).

6We stress that it is the choice of the nonuniform circuit class that typically plays an important role in the argument. Loosely
speaking, this choice determines the class of tests to be fooled by the generator. The choice of the uniform class determines the
efficiency of the generator. For example, choosing this class to beE gives a generator which runs inP , whereasNE ∩ coNE (or

ENP) give a generator which runs in NP∩ coNP (or PNP). We encourage the reader to ignore the precise choice of the uniform
class at a first reading and focus on the choice of the nonuniform class.

7Actually, the paper in question refers to SAT oracle circuits, but their argument works just as well for nonadaptive SAT-oracle
circuits, giving a stronger result.

6

worst case

this
paper

derandomizationderand. objectaverage case

[KvM02]

[SU01, AKRR03]

∃L worst-case
hard for SV-
non-det circts

∃L average-
case hard for
NP || circuits

∃L average-
case hard for
non-det circts

[KvM02]

[AK01]

[MV99]

[SU01]

∃L worst-case
hard for non-
det circuits

∃L worst-case
hard forNP ||
circuits

∃ PRG for
NP || circuits

∃ PRG for
(co-) non-det
circuits

∃ HSG for
co-non-det
circuits

AM
=
NP

Figure 1: Assumptions implying AM= NP. In all casesL is a language in NE∩ coNE. The phrase “L
worst-case (resp., average-case) hard for” means “L cannot be computed exactly by (resp., approximated
by) size2εn for someε > 0.” Arrows indicate implications; unlabelled arrows correspond to implications
that follow from standard arguments.

3.1.1 A downward collapse theorem

The equivalence of the various hardness assumptions is implied by the following downward collapse theo-
rem, which may be of independent interest:

Theorem 3.2 (downward collapse).Let C be any complexity class that allows low-degree extension. If
every language inC has nonadaptive SAT-oracle circuits of sizes(n) then every language inC has SV-
nondeterministic circuits of sizes(n)O(1).

A special case of Theorem 3.2 is:

E⊆ PNP
|| /poly⇒ E⊆ NP/poly∩ coNP/poly.

We remark that it is widely believed that PNP
|| is stronger than NP∩ coNP and that nonadaptive SAT-

oracle circuits are stronger than SV-nondeterministic circuits. Nevertheless, a collapse of E to the stronger
class implies a further collapse to the weaker class.

The following Corollary is the contrapositive version of Theorem 3.2 which states that a “weak” hardness
assumption implies a stronger one:

Corollary 3.3. For every classC that allows low-degree extension, ifC is worst-case hard for exponential-
size SV-nondeterministic circuits thenC is worst-case hard for exponential-size nonadaptive SAT-oracle
circuits.

Corollary 3.3 will allow us to derandomize many probabilistic algorithms and classes using hardness
for SV-nondeterministic circuits by first “boosting” this assumption to hardness for nonadaptive SAT-oracle
circuits, and then working with the pseudorandom generators obtained from the latter assumption.

7

3.2 Derandomization objects for approximate counting and sampling

In this section we define two generic computational objects – relative-error approximators, and conditional
discrepancy sets. These objects are natural and make no reference to nondeterminism. They are intended
to capture approximate counting and sampling, and they generalize and strengthen two existing and widely
used objects: additive-error approximators and (ordinary) discrepancy sets.

3.2.1 Relative-error approximators

Ordinary pseudo-random generators allow one to obtain anadditiveapproximation of the acceptance prob-
ability of circuits:

Definition 3.4. An (additive-error)approximatoris a procedure that takes as input a Boolean circuitA, and
ε > 0, and outputs a real numberρ for which

∣∣∣Pr
x

[A(x) = 1]− ρ
∣∣∣ ≤ ε.

Indeed additive approximation is in some sense theraison d’etreof ordinary PRGs, because additive
approximation of the acceptance probability of circuits allows one to derandomize BPP. Relative error ap-
proximation allowsapproximate counting, and is much more difficult (it is NP-hard). We will be concerned
with relative-errorapproximations of the acceptance probability of circuits:

Definition 3.5. A relative-error approximatoris a procedure that takes as input a Boolean circuitA, and
ε > 0, and outputs a real numberρ for which

(1− ε) Pr
x

[A(x) = 1] ≤ ρ ≤ Pr
x

[A(x) = 1].

We give a construction of deterministic relative-error approximators under a hardness assumption for
SV-nondeterministic circuits.

Theorem 3.6 (construction of relative-error approximators). If ENP
|| requires exponential size SV-nondeterministic

circuits, then there is a deterministicrelative-error approximatorthat runs in time polynomial in the length
of its input and1/ε, with non-adaptiveaccess to an NP oracle.

As an immediate corollary, we obtain

Corollary 3.7. If ENP
|| requires exponential size SV-nondeterministic circuits, then for every#P function

f : {0, 1}n → N, and everyε > 0, there is a deterministic procedureP running in poly(n, ε−1) time with
non-adaptive access to an NP-oracle for which (for allx):

(1− ε)f(x) ≤ P (x) ≤ f(x);

in other words, every problem in#P can be approximated in PNP
|| .

Note that it was shown in [Sto83, JVV86, BGP00] that using randomness and an NP-oracle, it is pos-
sible to uniformly sample NP-witnesses. This implies that every problem in#P has afully polynomial-
time randomized approximation scheme(FPRAS) with access to an NP-oracle. However, no deterministic
fully polynomial-time approximation schemes(FPAS’s) with access to an NP-oracle are known for any
#P -complete problem; the above corollary gives FPAS’s that make non-adaptive NP oracle queries for all
problems in#P , albeit under a complexity assumption.

8

3.2.2 Conditional discrepancy sets

Ordinary pseudo-random generators are sometimes called “discrepancy set generators,” since they produce
the following object:

Definition 3.8. An (n, s, ε)-discrepancy setis a subsetT ⊆ {0, 1}n with the property that for all Boolean
circuitsC of size at mosts: ∣∣∣∣Pr

x
[C(x) = 1]− Pr

t∈T
[C(t) = 1]

∣∣∣∣ ≤ ε.

A discrepancy set is a “good sample” ofstringsx ∈ {0, 1}n, with respect to any propertyP that is
decidable by small Boolean circuits. Of course one particularly useful such property is the property that a
BPP machine with a fixed input accepts when given stringx as its random coins.

Frequently one wishes to obtain a “good sample” ofstringsx ∈ S for some subsetS ⊆ {0, 1}n. Again,
the sample should be good with respect to any propertyP that is recognizable by small Boolean circuits.
For exampleS may be the set of proper 3-colorings of a given graph; a property of interest might be the
property of having two specified nodes colored with the same color. A large body of literature is devoted to
sampling various structures (e.g., colorings, matchings, contingency tables, etc...), often employing Markov
Chain Monte Carlo methods.

We defineconditional discrepancy setsas the derandomization object associated with such sampling in
its full generality. We will allow the setS to be any set recognizable by a small Boolean circuit; that is,
S = A−1(1) for some small circuitA. Conditional discrepancy sets capture “pseudorandomly sampling an
accepting input ofA” and can be seen to be a natural generalization of ordinary discrepancy sets.

Definition 3.9. Let S ⊆ {0, 1}n be some subset. AnS-conditional(n, s, ε)-discrepancy setis a subset
T ⊆ S with the property that for all Boolean circuitsC of size at mosts:

∣∣∣∣Pr
x

[C(x) = 1|x ∈ S]− Pr
t∈T

[C(t) = 1|t ∈ S]
∣∣∣∣ ≤ ε.

Our main result here is a procedure to efficiently generate conditional discrepancy sets under a hardness
assumption (which is no stronger than the hardness assumption used to derandomize AM):

Theorem 3.10 (construction of conditional discrepancy sets).If ENP
|| (resp. ENP) requires exponential

size SV-nondeterministic circuits, then there is a deterministic procedure that takes as input a Boolean
circuit A that accepts a subsetS ⊆ {0, 1}n, an integers, andε > 0, and outputs anS-conditional(n, s, ε)-
discrepancy setT ⊆ S. The procedure runs in poly(|A|, n, s, 1/ε) time withnon-adaptive(resp. adaptive)
access to an NP oracle.

4 Corollaries and Applications

In this section we show several applications of our main results (Theorems 3.2, 3.6, and 3.10). In most
of them we are able to achieve certain “derandomization tasks” under assumptions which are seemingly
weaker than previously known.

9

4.1 Derandomizing BPPNP
||

Using the downward collapse theorem (Theorem 3.2), we get that BPPNP
|| = PNP

|| under a hardness as-
sumption. Previously, this conclusion required hardness for non-adaptive SAT-oracle circuits [KvM02],
while here we use only hardness for SV-nondeterministic circuits:

Theorem 4.1. If ENP
|| requires exponential size SV-nondeterministic circuits, then BPPNP

|| = PNP
|| .

The proof follows after a brief discussion of relativizing PRGs. Klivans and van Melkebeek [KvM02]
formalized the notion of arelativizingPRG construction, and observed that such constructions can be used to
fool circuit classes that are stronger than deterministic circuits, if one is willing to make a similarly stronger
hardness assumption. One example is that assuming there exist languages that are hard for nonadaptive
SAT-oracle circuits, one can construct PRGs that fool nonadaptive SAT-oracle circuits. Our Corollary 3.3
states that hardness for SV-nondeterministic circuits implies hardness for nonadaptive SAT-oracle circuits.
As a consequence, existing relativizing PRG constructions (e.g. [IW97, STV01]) may be used directly to
fool nonadaptive SAT-oracle circuits, assuming only hardness for SV-nondeterministic circuits. As stated in
Theorem 4.1, this in turn derandomizes the class BPPNP

|| using a weaker assumption than previously known.
The exact details follow.

The following is a slight refinement of a theorem in [KvM02] (we use the additional fact that the NP
oracle access in their argument is always non-adaptive):

Theorem 4.2 ([KvM02]). If ENP
|| (resp. E) requires exponential size non-adaptive SAT-oracle circuits

then there is a PRG for linear-size non-adaptive SAT-oracle circuits that runs in polynomial time with non-
adaptive access to an NP oracle (resp. polynomial time).

We obtain the following improvement:

Theorem 4.3. If ENP
|| (resp.E) requires exponential size SV-nondeterministic circuits then there is a PRG

for linear-size non-adaptive SAT-oracle circuits that runs in polynomial time with non-adaptive access to an
NP oracle (resp. polynomial time).

Proof. Combine Theorem 4.2 with Corollary 3.3.

Theorem 4.1 now follows in a completely standard way, which we recount here for completeness:

Proof of Theorem 4.1.Given a BPPNP
|| algorithmA(x, y) for languageL and an inputx, defineCx(y) =

A(x, y). After padding with dummy inputs,Cx can be computed by a linear-size non-adaptive SAT-oracle
circuit. We run the PRG of Theorem 4.3 on input1|x| to produce a discrepancy setT that fools circuitCx.
We computeA(x, t) for eacht ∈ T in parallel, and output the majority. This constitutes a deterministic
algorithm that decides languageL in polynomial time with non-adaptive access to an NP oracle. Formally,
one must appeal to Lemma 7.2 (appearing in a later section) to ensure that the overall procedure can all be
done with non-adaptive queries.

Also, as explained in the introduction, Theorem 4.1 gives an alternative way of constructing PRGs
for nondeterministic circuits from an SV-nondeterministic hardness assumption. This permits the use of
“standard constructions” in this setting, whereas previous constructions [MV99, SU01] were specialized to
the nondeterministic case.

10

4.2 Finding NP witnesses in PNP
||

We now present an important additional application of the downward collapse Theorem (Theorem 3.2):

Theorem 4.4. If ENP
|| requires exponential size SV-nondeterministic circuits, then there is a procedure that,

given a circuitC, outputs a satisfying assignment forC if one exists, and runs in polynomial time with
non-adaptiveNP-oracle access.

Again, this is a conclusion that was known to hold under a hardness assumption for non-adaptive SAT-
oracle circuits [KvM02]. Applying Corollary 3.3 immediately gives us Theorem 4.4, which reaches the
same consequence from a weaker assumption. We highlight this particular application because we will
make use of it later, in the proof of Theorem 3.10.

For completeness, we describe the proof idea from [KvM02] (which builds on earlier work by [BDCGL90]).
They prove that if ENP

|| requires exponential size nonadaptive SAT-oracle circuits, then there is a polynomial-
time procedure toproducea satisfying assignment of a given circuitC that usesnon-adaptiveaccess to an
NP-oracle. Note that the standard method uses adaptive access. The non-adaptive procedure comes from
noting that there is a polynomial time algorithm that makes non-adaptive NP queries to test whether the
outcome of applying the Valiant-Vazirani reduction to a satisfiable circuitC (for a specific choice of random
bits) succeeds in producing a circuit that has a unique satisfying assignment. Using a PRG for nonadaptive
SAT-oracle circuits, it is then possible to deterministically produce a list of candidate circuits fromC, one of
which is guaranteed to have a unique satisfying assignment. For this circuitC ′, one can find the satisfying
assignment by making the following queries in parallel: “DoesC ′ have a satisfying assignment that assigns
xi true?” and “DoesC ′ have a satisfying assignment that assignsxi false?” for alli. The overall procedure
requires only non-adaptive NP-oracle access, as promised.

4.3 Hardness amplification for nondeterministic circuits

Hardness amplification results transform functions which are hard on the worst case into functions which
are hard on the average. In a sequence of works [BFNW93, Imp95, IW97, STV01] it was shown that for
every class which allows low degree extension if the class is hard on the worst case for smalldeterministic
circuits then the class is hard on average for smalldeterministiccircuits. The first hardness amplification
result for nondeterministic circuits was given in [SU01]:

Theorem 4.5 ([SU01]).LetC be a complexity class that allows low-degree extension. For everyε > 0, if C
is hard for sizes nondeterministic circuits thenC is (1/2+ε)-hard for sizes′ = (sε/n)Ω(1) nondeterministic
circuits.

Using Theorem 3.2 together with the “hardness amplification” results of [STV01] (for deterministic
circuits) gives a hardness amplification result fornondeterministiccircuits. Altogether this is a simpler and
more modular proof of Theorem 4.5.

We now present the new proof. We first restate the results of [STV01] in the following way:

Theorem 4.6 ([STV01]). Let C be a class which allows low degree extension. There exists a constant
c such that for every functionf : {0, 1}n → {0, 1} such thatf ∈ C and ε > 2−n there is a function
f̄ : {0, 1}n′=O(n) → {0, 1} such thatf̄ ∈ C and for every functionD : {0, 1}n′ → {0, 1} such that

Pr
x∈{0,1}n′

[D(x) = f̄(x)] ≥ 1/2 + ε

11

there is an oracle circuitC such thatCD computesf using only non-adaptive queries toD, and the size of
C is (n/ε)c.

Indeed, this is a complicated way to say that iff is hard for sizes deterministic circuits then̄f is hard
on average for slightly smaller deterministic circuits. We chose to state Theorem 4.6 this way, because in
this form it also gives a hardness amplification result for other classes of circuits. The following corollary is
an example.

Corollary 4.7. Let C be a class which allows low degree extension. IfC is hard for sizes non-adaptive
SAT-oracle circuits thenC is 1/2 + ε-hard for sizes′ = (sε/n)Ω(1) non-adaptive SAT-oracle circuits.

Proof. One only has to notice that ifD is a sizes′ non-adaptive SAT-oracle circuit thenCD (from Theorem
4.6) is a sizes′ · poly(n, 1/ε) non-adaptive SAT-oracle circuit.

It is important to note that this argument does not work directly for nondeterministic circuits. The
reason is that it does not follow that ifD is a nondeterministic circuit andC is a deterministic circuit then
CD is a nondeterministic circuit. (Consider for example the case whereD computes SAT andC flips the
result. The circuitCD computes co-SAT which is not believed to be computable by a small nondeterministic
circuit.) However, Theorem 3.2 allows us to convert hardness for nondeterministic circuits into hardness for
non-adaptive SAT-oracle circuits which can be used in Corollary 4.7. The exact details follow:

Proof of Theorem 4.5.We are assuming thatC is hard for sizes non-deterministic circuits (and hence
also for sizes SV-nondeterministic circuits). By Theorem 3.2 we have that there exists a functionf̄ :
{0, 1}O(n) → {0, 1} in C that is hard for sizes′ = sΩ(1) non-adaptive SAT-oracle circuits, and the theorem
then follows from Corollary 4.7, which gives thatC is hard on average even for non-adaptive SAT-oracle
circuits of size(sε/n)Ω(1).

4.4 Derandomizing BPPpath

The class BPPpath was defined by Han, Hemaspaandra and Theirauf [HHT97]. It is the class of languages
L for which there exists a non-deterministic polynomial-time Turing MachineM for which

x ∈ L ⇒ ≥ 2/3 of M ’s computation paths accept

x 6∈ L ⇒ ≥ 2/3 of M ’s computation paths reject.

Notice that the computation paths need not all make the same number of non-deterministic choices; if they
are required to, we just get BPP. In contrast to BPP, BPPpath is quite powerful: it is known to contain PNP

||
[HHT97]. The next theorem suggests it is probablyequalto PNP

|| .

Theorem 4.8. If ENP
|| requires exponential size SV-nondeterministic circuits, then BPPpath = PNP

|| .

Proof of Theorem 4.8.Let L be a language in BPPpath with associated non-deterministic Turing Machine
M . Let p(n) be an upper bound on the running time ofM on an input of lengthn.

Fix an inputx. Let Dx be a circuit outputting 1 iff the following procedure accepts: giveny ∈
{0, 1}p(|x|), simulateM using successive bits ofy asM ’s non-deterministic choices. WhenM halts, if
the remainder ofy is all-zeros, then accept, otherwise reject.

Let Cx be a circuit outputting 1 iff the following procedure accepts: giveny ∈ {0, 1}p(|x|), simulateM
using successive bits ofy asM ’s non-deterministic choices and accept if and only ifM accepts.

12

Observe that the probability over computation paths ofM thatM accepts inputx is exactly:

α = Pr
y

[Cx(y) = 1|Dx(y) = 1],

since each1 of Dx corresponds to a unique computation path.
We use the relative-error approximator of Theorem 3.6 twice (in parallel), once with inputCx, and once

with inputDx ∧ Cx, andε = 1/10. Let ρ1 andρ2 be the two approximations. Notice that

(1− ε)α ≤ (ρ2/ρ1) ≤ (1− ε)−1α.

We accept iffρ2/ρ1 > 1/2, which is guaranteed to happen iffPry[Cx(y) = 1|Dx(y) = 1] ≥ 2/3. The
entire procedure runs in time poly(|x|) with non-adaptive NP oracle access.

4.5 Collapsing SP2 to PNP

The class SP2 was defined by [Can96] and [RS98]. It is the class of languagesL for which there is a
polynomial-time predicateR for which:

x ∈ L ⇒ ∃y ∀z R(x, y, z) = 1 (1)

x 6∈ L ⇒ ∃z ∀y R(x, y, z) = 0. (2)

Cai [Cai01] recently showed that the class SP
2 (which contains PNP and MA) is contained in ZPPNP.

One consequence of this result is that under a hardness assumption sufficient to derandomize ZPPNP, the
class SP2 collapses to PNP. This is remarkable because SP

2 is defined by alternating quantifiers and has more
of the flavor of the Polynomial-Time Hierarchy than any randomized complexity class; yet derandomization
techniques yield a surprising collapse.

We view Cai’s result as a reduction of SP
2 to sampling, and thus obtain the following collapse as an

application of Theorem 3.10. Note that this result doesnot follow directly from SP
2 ⊆ ZPPNP using

straightforward derandomization techniques, as any derandomization via derandomizing ZPPNP requires a
stronger hardness assumption (given current technology) to cope with adaptive NP-queries.

Theorem 4.9. If ENP requires exponential size SV-nondeterministic circuits, then SP
2 = PNP.

Proof. Let L be a language in SP2 , and letR be the associated polynomial-time predicate for which Eqs. (1)
and (2) hold. By padding if necessary we may assume that|x| = |y| = |z| = n. Let s be the running time
of R.

The procedure to decide ifx ∈ L operates in rounds. Initially, we seti = 0, andS0 = {0, 1}n, and
observe thatS0 is clearly recognized by a trivial circuitC0. We now begin round 0.

In roundi we do the following:

1. In PNP, generate theSi-conditional(n, s3, 1/2)-discrepancy setTi ⊆ Si (using Theorem 3.10). The
size ofTi and the time to generate it are both at most poly(|Ci|, n, s) = poly(n, s, i).

2. If ∀z ∨
t∈Ti

R(x, t, z) = 1 then accept.

3. Otherwise, findzi for which
∨

t∈Ti
R(x, t, zi) = 0.

13

4. DefineSi+1 = {y : y ∈ Si ∧R(x, y, zi) = 1}, and observe thatSi+1 is recognized by a circuitCi+1

of sizeO(s2 + |Ci|).
5. If Si+1 = ∅, then reject; otherwise, begin roundi + 1.

Notice that step 2 requires a single NP-oracle query, as does step 5, and that step 3 involves finding an
NP-witness in the usual way with multiple adaptive NP-oracle queries.

For correctness, observe that if we accept, we have found that the complement of Eq. (2) holds; if we
reject, then∀y ∃zi R(x, y, zi) = 0, and thus the complement of Eq. (1) holds.

The main claim is that the number of rounds before this procedure either accepts or rejects is at most
n + 1. Notice that at step 3, we must have that

Pr
y

[R(x, y, zi) = 1|y ∈ Si] ≤ 1/2,

sincePrt∈Ti [R(x, t, zi) = 1|t ∈ Si] = 0 and the circuit computingR with x andzi hard-wired has size at
mostO(s2) < s3, andTi is anSi-conditional(n, s3, 1/2)-discrepancy set. Thus|Si+1| ≤ |Si|/2 for all i.
Since we start with|S0| = 2n, we have|Sn+1| ≤ 1/2 which implies|Sn+1| = 0, so we halt after at most
n + 1 rounds.

4.6 Learning circuits in PNP

A classical result by Bshouty et al. [BCG+96] is concerned with learning Boolean circuits, when given
access to an oracle for NP and an oracle that answers equivalence queries with respect to the unknown circuit
C to be learned. In anequivalence queryone supplies some circuitC ′ and receives an answer whetherC
andC ′ compute the same function. If the answer is negative the answer also includes acounterexample–
an inputx on whichC(x) 6= C ′(x).

Bshouty et al. [BCG+96] present a randomized algorithm that achieves this goal. In a similar manner
to the previous section, this learning algorithm may be also regarded as a non-randomized reduction to
sampling. We thus can derandomize this algorithm using Theorem 3.10 and obtain:

Theorem 4.10. If ENP requires exponential size SV-nondeterministic circuits, then there is a deterministic
procedure with access to an NP-oracle that learns an unknown Boolean circuitC of sizes on n inputs in
time poly(s, n) using equivalence queries.

Proof. We use the notation[y] to indicate the function computed by the Boolean circuit described by string
y. Define the functionR : {0, 1}s × {0, 1}n → {0, 1} by R(y, z) = [y](z).

The learning procedure is very similar to the algorithm in the proof of Theorem 4.9. The procedure
operates in rounds. Initially, we seti = 0, andS0 = {0, 1}s, and observe thatS0 is clearly recognized by a
trivial circuit C0. We now begin round 0.

In roundi we do the following:

1. In PNP, generate theSi-conditional(s, s3, 1/4)-discrepancy setTi ⊆ Si (using Theorem 3.10). The
size ofTi and the time to generate it are both at most poly(|Ci|, s) = poly(s, i).

2. Make the equivalence query: “majt∈Ti
R(t, z) ≡ C(z)?” If the answer is YES, then we are done.

3. If the answer is NO, then we are given a counterexamplezi for which majt∈Ti
R(t, zi) 6= C(zi).

14

4. DefineSi+1 = {y : y ∈ Si ∧ R(y, zi) = C(zi)}, and observe thatSi+1 is recognized by a circuit
Ci+1 of sizeO(s2 + |Ci|).

5. Begin roundi + 1.

As in the proof of Theorem 4.9 the main claim is that the number of rounds before completion is at most
O(s). At step 3, we claim that

Pr
y

[R(y, zi) = C(zi)|y ∈ Si] ≤ 3/4.

This is true because we knowPrt∈Ti [R(t, zi) = C(zi)|t ∈ Si] ≤ 1/2, and the circuit computingR with
zi hard-wired has size at mostO(s2) < s3, andTi is anSi-conditional(s, s3, 1/4)-discrepancy set, which
impliesPry[R(y, zi) = C(zi)|y ∈ Si] ≤ 1/2 + ε = 3/4, as claimed.

Thus|Si+1| ≤ (3/4)|Si| for all i. We start with|S0| = 2s, and for alli, Si is non-empty since it contains
y for which [y] = C, so we must halt after at mostO(s) rounds with a positively answered equivalence
query.

We remark that Theorem 4.9 and Theorem 4.10 are just two examples where a ZPPNP algorithm for
sampling is used as a critical subroutine (see, e.g., the discussion in [BGP00] regarding applications in inter-
active proofs). Often this is theonly randomness used in these procedures, and so conditional discrepancy
sets suffice for derandomization in a variety of settings.

5 Overview of the techniques

In this section we present the main technical ideas in the proofs of the main theorems in an informal manner;
the full proofs appear in later sections.

5.1 Proof of the downward collapse theorem

We show in Theorem 3.2 that for every sufficiently strong complexity classC, if C is computable by small
nonadaptive SAT-oracle circuits thenC is computable by small SV-nondeterministic circuits. This cer-
tainly doesnot mean that one can always transform small nonadaptive SAT-oracle circuits into small SV-
nondeterministic circuits. Note that the uniform versions of these classes are PNP

|| and NP∩ coNP and it is

widely believed that PNP
|| 6⊆ NP∩coNP. More precisely, there are small nonadaptive SAT-oracle circuits for

Satisfiability and we do not expect Satisfiability to have small SV-nondeterministic circuits, as this would
mean that NP⊆ coNP/poly and collapse the polynomial hierarchy.

Indeed, this observation demonstrates the main problem we need to overcome. Whenever a nonadap-
tive SAT-oracle circuit calls its NP-oracle, it gets a result no matter whether the query asked is answered
positively or negatively. An SV-nondeterministic circuit can attempt to simulate a nonadaptive SAT-oracle
circuit by guessing which queries are answered positively, together with witnesses for those queries – in
this way it can “verify” some queries that are answered positively. But it can not be sure that it has cor-
rectly guessedall of the positively answered queries, precisely because it is incapable of verifying negative
answers (assuming NP6⊆ coNP/poly).

The main idea in the proof is that when the function to be computed is a low degree multivariate poly-
nomial, a small SV-nondeterministic circuitcan in fact verify negative answers, in an indirect way. It is
known that every function in a sufficiently strong classC has a multivariate polynomial “low-degree exten-
sion” [BF90] that lies in the same class. Thus, we can without loss of generality concentrate on the case

15

where the function we are trying to compute by an SV-nondeterministic circuit is a low degree multivariate
polynomial.

We now describe the idea that exploits the low-degree extension8. We’re given a small nonadaptive
SAT-oracle circuit which computes some low degree multivariate polynomialf : Fd → F (for some field
F of sizeq). For simplicity, let’s assume that this circuit makes a single NP-query. We want to construct a
small SV-nondeterministic circuit forf . For every inputx in the domain off , let A(x) denote the answer
to the NP-query asked onx. Let p denote the fraction ofx’s for which the query is answered positively. We
hardwirep to our SV-nondeterministic circuit9. Now, on inputx the new circuit passes a random low degree
curve throughx (we denote the degree of this curve byr). Except forx, the otherq points on this curve
arer-wise independent and therefore with high probability the fraction of pointsy on the curve for which
A(y) = 1 is in the range(p− δ, p + δ) for some smallδ.10 The circuit now guesses(p− δ)q points on the
curve along with witnesses showing that the queries corresponding to these points are answered positively.
The circuit assumes that these queries are answered positively and the queries for the remaining points on
the curve are answered negatively. The critical observation is that this assumption can be incorrect on at
most a2δ fraction of the points on the curve. The circuit now simulates the nonadaptive SAT-oracle circuit
(which makes no further NP queries) on allq points on the curve, and the final evaluations it receives differ
from the correct evaluations on at most2δq points. Finally, because the functionf restricted to the curve
is a low-degree polynomial, the circuit can run a decoding algorithm for Reed-Solomon codes [WB86] to
correct the errors and obtain the correct answers for all points on the curve, and in particular the circuit
obtainsf(x).

5.2 Building relative-error approximators

Our relative-error approximators build on a line of work which gives probabilistic algorithms that use an
NP-oracle to approximately count NP-witnesses [Sto83, JVV86, BGP00] (for more information see the
discussion in [BGP00]). Such algorithms are given a deterministic circuitA onn bits and wish to produce a
relative approximation of the size of the setS = {x|A(x) = 1}. The algorithm presented in [BGP00] works
by finding a hash functionh : {0, 1}n → {0, 1}k with the property that for every imagey ∈ {0, 1}k the size
of the preimageSy = {x ∈ S|h(x) = y} is roughlyn2, which implies that|S| is approximatelyn22k.

To find such a hash function, one chooses a random hash functionh : {0, 1}n → {0, 1}k from ann-wise
independent hash family, and use the NP oracle to check whether there exists ay ∈ {0, 1}k whose preimage
has size greater thann2. This is done fork = 1, 2, 3, . . ., stopping with the firsth that is good in the sense
that there does not exist such ay whose preimage is “too large”. By the pigeonhole principle, a goodh
does not exist fork such thatn22k < |S|; for slightly largerk a randomh from then-wise independent
hash family is good with high probability. Thus, the algorithm stops with the “correct” value ofk, with high
probability.

We would like to derandomize this procedure. Since it is not a decision problem we cannot use PRGs
directly11. Instead we derandomize this procedure by using the particular way it operates (a general method

8A similar idea was used in [SU01] to build PRGs for nondeterministic circuits. It may also be viewed as a non-trivial “scaling

down” of EXPNP
|| ⊆ NEXP/poly∩ coNEXP/poly – a containment credited to Harry Buhrman on Lance Fortnow’s weblog.

9The same idea was used to obtain the main result of [FF93].
10By choosing the degreer large enough we can show that there existfixedpointsv1, · · · , vr ∈ F d such that for everyx the

fraction of pointsy such thatA(y) = 1 on the degreer curve that passes throughx; v1, · · · , vr is in the range(p − δ, p + δ). In
the final construction we also hardwire the pointsv1, · · · , vr to the circuit.

11For the case of decision problems every probabilistic algorithm can be derandomized if one has a sufficiently strong pseudo-
random generator. However, there are tasks (which are not decision problems) that can be easily solved by a probabilistic algorithm

16

that has been suggested by [KvM02] for such circumstances). Rather than choosing the hash functions
randomly, we try all of the hash functions that are described by outputs of a PRG for nondeterministic
circuits. For the “correct”k, one of the hash functions we try is good, because the generator fools the
nondeterministic circuit which, givenh, checks whether it is good. Having identified the “correct”k, we
can now output an estimate of|S|. In the full argument, some additional care must be taken to obtain
less-coarse approximations, and to ensure that the overall procedure runs in PNP

|| , rather than PNP.

5.3 Constructing conditional discrepancy sets

An S-conditional discrepancy set for small circuits is a setT ⊆ S such that no small (deterministic) circuit
can distinguish a random element fromT from a random element inS. This generalizes “regular” discrep-
ancy sets for small circuits (for which the setS is simply{0, 1}n). Given a setS, encoded by a circuitA
such thatS = {x|A(x) = 1}, our goal is to output anS-conditional discrepancy setT .

As with relative-error approximation, our approach is based on algorithms which uses an NP-oracle to
sample (or count) accepting inputs ofA [Sto83, JVV86, BGP00]. Fix a hash functionh : {0, 1}n → {0, 1}k

which is good in the sense defined above. To sample a random element fromS, one can choose a random
imagey, use the NP oracle to find all the preimages ofy (there are approximatelyn2 of them), and choose
a random one.

Our procedure for producing conditional discrepancy sets is a derandomization of this algorithm. It
relies on hardness for nondeterministic circuits, which by our results buys us a PRG for nonadaptive SAT-
oracle circuits. We first find a good hash functionh as explained above. Then, we include in the conditional
discrepancy setT the preimages inS of only thosey that are outputs of a PRGG for nonadaptive SAT-oracle
circuits. We stress that using Theorem 4.4 we can (under the hardness assumption) compute the preimages
making only nonadaptive NP oracle queries.

Here we make use of Theorem 4.4 to perform this step using only non-adaptive NP oracle access.
The proof thatT is in fact anS-conditional discrepancy set is somewhat subtle. Given a (deterministic)

circuit that distinguishes a random element inT from a random element inS, we need to construct a
nonadaptive SAT-oracle circuitD that is a distinguisher for the PRGG, thus leading to a contradiction.
Care is needed to ensure that the distinguisherD makes only non-adaptive NP oracle queries – and this is
especially crucial here because a distinguisher that makes adaptive queries is not guaranteed to be fooled by
the PRGG that is based on only an SV-nondeterministic hardness assumption.

6 Proof of Theorem 3.2

We begin with some definitions and preliminaries.

6.1 Preliminaries

Given a functionf : X → Y andS ⊆ X we usef(S) to denote the (multi-)set{f(x)|x ∈ S}.

6.1.1 Low-degree polynomials

The low-degree extension of a function embeds the function in a low-degree polynomial.

and cannot be solved by a deterministic algorithm. For example, a probabilistic algorithm can easily produce a string with high
Kolmogorov complexity whereas no deterministic algorithm can output such a string.

17

Definition 6.1 (low-degree extension).Letf : {0, 1}n → {0, 1} be a function,Fq the field withq elements,
and h and d integers for whichhd ≥ 2n. Let H be a subset ofFq of sizeh, and letI be an efficiently
computable injective mapping from{0, 1}n to Hd.

Thelow-degree extension off with respect toq, h, d is the (unique)d-variate polynomialf̂ : Fd
q → F

with degreeh − 1 in each variable, for whichf̂(I(x)) = f(x) for all x ∈ {0, 1}n and f̂(v) = 0 for
v ∈ (Hd \ Im(I)).

It is often helpful to think of field elements as binary strings of lengthlog q. From this viewpoint,
f̂ is a function fromd log q bits to log q bits. We will often consider a version of the low degree ex-
tension which outputs a single bit. Thisboolean versionof the low-degree extension is denotedf̂bool :
{0, 1}d log q+log log q → {0, 1} and is defined bŷfbool(x, i) = f̂(x)i.

The following properties of low-degree extensions are trivial and standard:

Proposition 6.2 (properties of the low-degree extension).For f̂ and f̂bool as defined above, the following
hold:

• f̂ has total degreehd, and

• f̂bool is computable in time poly(hd, log q, d) given oracle access tof .

Complexity classes that allow low-degree extension (see Definition 3.1) contain the (boolean) low-
degree extensions of every function in that class; Theorem 3.2 applies to all such classes.

Definition 6.3 (parametric curves). Let Fq be the field withq elements, and letf1, f2, . . . fq be an enu-
meration of the elements ofFq. Givenv1, v2, . . . , vr ∈ Fd

q , for r ≤ q, we define thecurve passing through
v1, v2, · · · , vr to be the unique degreer− 1 polynomial functionc : Fq → Fd

q for whichc(fi) = vi for all i.
A curvec is one to oneif i 6= j impliesc(fi) 6= c(fj).

The functionf̂ ◦ c is the restriction of f̂ to the curvec. It is a low-degree univariate polynomial; in
coding terms, it is a Reed-Solomon codeword.

Theorem 6.4 (decoding of Reed-Solomon codes [WB86]).Let Fq be the field withq elements. Givent
pairs (xi, yi) of elements ofFq, there is a at most one polynomialg : Fq → Fq of degree at mostu for which
g(xi) = yi for at leasta pairs, provideda > (t + u)/2. Furthermore, there is a polynomial time algorithm
that findsg or reports that such ag does not exist.

6.2 Random curves that pass through a fixed point

In this subsection we prepare some technical machinery needed for the proof of Theorem 3.2. We will
repeatedly use the following tail-inequality forr-wise independent random variables:

Lemma 6.5 ([BR94]). Let r ≥ 4 be an even integer. SupposeX1, X2, . . . , Xq are r-wise independent
random variables taking values in[0, 1]. LetX =

∑
Xi, andA > 0. Then:

Pr[|X − E[X]| ≥ A] ≤ 8 ·
(

r · E[X] + r2

A2

)r/2

.

18

We prove a technical lemma regarding the sampling properties of low-degree parametric curves. The
points on a random degreer parametric curve arer-wise independent; a well-known consequence of this fact
is that the points on such a curve are a good “oblivious sampler” (see the survey [Gol97]). This means that for
any functionh : Fd → [0, 1] the average ofh(x) over the points on a random curve is with high probability
close to the average over the whole space. We show below that this holds even if an adversary gets to choose
the first point on the curve, because the remaining points on the curve are stillr-wise independent, and so it
remains a good sampler.

We need the following notation:

Definition 6.6. LetW ⊆ Z be finite sets and leth : Z → [0, 1] be an arbitrary function. Theaverage ofh
overW is defined by:

µW (h) =
1
|W |

∑

i∈W

h(i)

We will usec(x,v1,v2,...,vr) to denote the curve passing throughx, v1, v2, . . . vr (see Definition 6.3). We
require thatc(x,v1,v2,...,vr)(0) = x; i.e., the enumeration of the field elements in Definition 6.3 starts with0.
Also, belowFq is the field of sizeq, andF∗q = Fq \ {0}.
Lemma 6.7. Let r be an integer for which2 ≤ r < q. For every pointx ∈ Fd

q , functionh : Fd
q → [0, 1],

andδ > 0, the following hold:

1. Prv1,...,vr∈Fd
q

[∣∣∣µc(x,v1,...,vr)(F∗q)(h)− µFd
q
(h)

∣∣∣ ≥ δ
]
≤ 8 ·

(
2r

(q−1)δ2

)r/2
, and

2. Prv1,...,vr∈Fd
q

[
c(x,v1,...,vr) isn’t one to one

] ≤ 1
qd−2 .

Proof. Fix x andh, and letv1, . . . , vr be chosen uniformly and independently fromFd
q . Define random

variablesYa by Ya = c(x,v1,...,vr)(a). It is standard that for everya ∈ F ∗
q , Ya is uniformly distributed over

Fd
q , and that the random variables{Ya}a∈F ∗q arer-wise independent. Now we define the random variables

Ra = h(Ya). It follows that for everya ∈ F ∗
q , E[Ri] = µFd

q
(h), and that{Ra}a∈F ∗q arer-wise independent.

Let R =
∑

a∈F ∗q
Ra. We apply Lemma 6.5 withA = |F ∗

q |δ = (q − 1)δ to conclude:

Pr
v1,··· ,vr∈Fd

q

[∣∣∣µc(x,v1,...,vr)(F∗q)(h)− µFd
q
(h)

∣∣∣ ≥ δ
]

= Pr[|R− E[R]| ≥ A] ≤ 8
(

2r

(q − 1)δ2

)r/2

.

This proves (1). For (2), we observe that for everya 6= a′ ∈ Fq,

Pr
v1,...,vr∈Fd

q

[c(x,v1,...,vr)(a) = c(x,v1,...,vr)(a
′)] =

1
qd

,

and taking a union bound over all (at mostq2) such pairs yields the desired result.

We will be interested in curves that are good samplers fork functions simultaneously. The following is
a corollary of the above lemma; it is an easy application of a union bound:

Corollary 6.8. Let r be an integer for which2 ≤ r < q. Leth1, h2, . . . , hk be functions fromFd
q to [0, 1].

For every pointx ∈ Fd
q and δ > 0, the probability over a random choice of pointsv1, . . . , vr ∈ Fd

q that
c(x,v1,...,vr) is one-to-one and ∣∣∣µc(x,v1,...,vr)(F∗q)(hi)− µFd

q
(hi)

∣∣∣ < δ

19

for all 1 ≤ i ≤ k, is at least

1−
(

8k

(
2r

(q − 1)δ2

)r/2

+
1

qd−2

)
.

6.3 Proof of the downward collapse theorem

In this subsection we prove Theorem 3.2. We refer the reader to the informal description of the technique in
section 5.1.

Let L be an arbitrary language inC, and letf : {0, 1}n → {0, 1} be the restriction of (the characteristic
function of) L to inputs of lengthn. Throughout the proof we assume thatn is sufficiently large,n ≤
s(n) ≤ 2n, and thats(O(n)) ≤ s(n)O(1).

Let f̂ be the low-degree extension off with respect to parametersq, h, d chosen as follows (they are
expressed in terms of a fourth parameterr):

• r = 2(n + log(32s(n)5))

• h = (4r)2(9s(n))4

• d = dn/ log he + 3

• q smallest prime power larger than9hdr.

Note thatC allows low-degree extension, and so by Proposition 6.2, the function family consisting of
(boolean versions of) the low-degree extensions ofL for each input length, with parameters as defined
above, lies inC.

Thus, by the hypothesis of the theorem,f̂bool has a nonadaptive SAT-oracle circuit of sizes(n′), where
n′ = log(qd)+log(q) = O(n) is the input length of̂fbool. We will construct aprobabilisticSV-nondeterministic
circuit C ′ computingf̂bool of size s′ = s(n′)c, for a constantc (it will be clear in the exposition be-
low what is meant by a “probabilistic SV-nondeterministic circuit”). We will then transformC ′ into an
SV-nondeterministic circuitC ′′ computingf by fixing a “good” random string, and using the functionI
that accompanies the low-degree extension (recall Definition 6.1). The resulting circuitC ′′ will have size
s(n′)c + poly(n). Sinces(n′)c = s(O(n))c = s(n)O(1), we will conclude thatL has circuits of size
s(n)O(1). As L was arbitrary, this will prove the theorem.

Let Cpre, Cpost be the Boolean circuits that describe the nonadaptive SAT-oracle circuit of sizes(n′)
that computesf̂bool (recall Definition 2.3). Withlog q parallel copies ofCpre and Cpost, we can con-
struct a nonadaptive SAT-oracle circuit withlog q outputs that computeŝf . Let Q1(x), . . . , Qk(x) and
A1(x), . . . , Ak(x) be the queries and answers associated with this circuit, respectively, on inputx ∈ Fd

q .
Without loss of generality we assume that exactlyk queries are made on every inputx. We definepi =
µFd

q
(Ai).
We focus first on constructingC ′, the probabilistic SV-nondeterministic circuit. CircuitC ′ makes use of

Cpre andCpost, as well asp1, p2, . . . , pk as non-uniform advice. We setδ = 1/(9k). On input(x, b), circuit
C ′ wants to computêfbool(x, b); it performs the following steps:

• Pick v1, v2, . . . , vr ∈ Fd
q uniformly at random, and setxa = c(x,v1,v2,...,vr)(a), so thexa are the

q points along a random curve passing throughx, v1, v2, . . . vr. SimulateCpre to compute queries
Qi(xa) for 1 ≤ i ≤ k anda ∈ F∗q .

20

• Setni = b(pi − δ)(q − 1)c. For 1 ≤ i ≤ k, guesszi ∈ {0, 1}F∗q with exactlyni ones, and strings
{wi,a}a∈F∗q .

• For 1 ≤ i ≤ k anda ∈ F∗q , check that(zi)a = 1 implies wi,a is a witness that queryQi(xa) is
answered positively; otherwise, set theflag output to 0 and halt.

• Computeya = Cpost(xa, (z1)a, (z2)a, . . . , (zk)a) for a ∈ F∗q .

• Run the algorithm of Theorem 6.4 on theq − 1 pairs(fa, ya) with u = hdr to obtain a polynomial
g : Fq → Fq of degreeu (if one exists). Set thevalue output to theb-th bit of g(0) (or 0 if g does not
exist), and set theflag output to 1.

The following claim will allow us to fix the coin-flips of circuitC ′, described above, to get an SV-
nondeterministic circuit computingf .

Claim 6.8.1. For everyx ∈ Fd
q and b ∈ [log q], with probability at least1 − 2−n

2 log q over the choice of
v1, . . . , vr, the following two conditions hold:

1. For all guesseszi, wi,a for which theflag output is set to one, thevalueoutput isf̂bool(x, b).

2. There exist guesseszi, wi,a such that theflag output is set to one.

Proof. Fix an x ∈ Fd
q . We apply Corollary 6.8 to conclude that the probability over a random choice of

pointsv1, . . . , vr ∈ Fd
q that

c(x,v1,...,vr) is one-to-one and∀1 ≤ i ≤ k
∣∣∣µc(x,v1,...,vr)(F∗q)(Ai)− µFd

q
(Ai)

∣∣∣ < δ (3)

is at least

1−
(

8k

(
2r

(q − 1)δ2

)r/2

+
1

qd−2

)
.

By our choice of parameters:
(

8k

(
2r

(q − 1)δ2

)r/2

+
1

qd−2

)
≤ 8s(n) log q

(
1
2

)r/2

+
1

qd−2
≤ 2−n

4 log q
+

2−n

4 log q
≤ 2−n

2 log q
.

The first inequality it true becausek ≤ s(n) log q, δ−2 = (9k)2 ≤ (9s(n) log q)2 and

(q − 1)/ log2 q ≥ √
q ≥

√
h ≥ (4r)(9s(n))2

(for sufficiently largeq). The second inequality follows from our choice ofr and d, and the fact that
log q = O(n) ≤ s(n)2 (for sufficiently largeq).

We will show that whenever (3) holds, the two items in the claim hold. We begin with the second item.
Since (3) holds, for eachi we know that there are at leastni distinct indices for whichAi(xa) = 1; we
choosezi to be a string with ones in exactlyni of these indices. For each indexa for which (zi)a = 1, there
is a witnesswi,a showing that queryQi(xa) is answered positively (sinceAi(xa) = 1). Thus there exists a
choice of thezi, wi,a for which theflag output is set to one.

Now, we turn to the first item. Once the verification in the third bullet above is complete, we know that
for all i, and alla ∈ F ∗

q , (zi)a = 1 implies Ai(xa) = 1, and that there are at leastni sucha for which

21

(zi)a = 1. We also know, by (3), that the number ofa for which Ai(xa) = 1 is at mostd(pi + δ)(q − 1)e.
Thus we can bound the number of “errors attributable to queryi” as follows:

|{a : a ∈ F∗q , Ai(xa) 6= (zi)a

} | ≤ d(pi + δ)(q − 1)e − b(pi − δ)(q − 1)c ≤ 2δq,

and the number of “errors” overall as follows:

|{a : a ∈ F∗q for which∃i Ai(xa) 6= (zi)a

} | ≤ 2δqk.

For everya that is not an “error,”ya = f̂(xa). We conclude that for at least(q−1)−2δqk = (1−2δk)q−1
of the pairs(a, ya), we haveya = p(a), wherep(w) is the degreehdr “restriction to the curve”p(w) =
f̂ ◦ c(x1,v1,v2,...,vr)(w).

If the number of pairs that agree withp(w) is greater than(q − 1 + hdr)/2, then the algorithm of
Theorem 6.4 returnsp(w), and our circuit outputs theb-th bit of p(0) = f̂(x) as desired. Thus to conclude
the proof we verify that

(1− 2δk)q − 1 =
7/9
q
− 1 >

q − 1 + hdr

2
,

which holds by our choice ofq.

Now, recall that the low-degree extension is accompanied by a polynomial-time computable functionI
from {0, 1}n into Fd

q . Consider the set of inputs toC ′ given by

S = {(x, b) : x ∈ I({0, 1}n), b ∈ [log q]}

and note that|S| = (log q)2n. Thus there must be a fixing of the coin-flips ofC ′ so that the two statements
in the above claim hold for all inputs inS.

Our SV-nondeterministic circuitC ′′ computingf is built as follows:

• on inputy ∈ {0, 1}n, computex = I(y)

• use circuitC ′ with the “good” random coin-flips hardwired to computêfbool(x, b) for every b ∈
[log q].

• theselog q bits give usf̂(x) = f̂(I(y)) = f(y). Outputf(y).

Because non-adaptive queries to an SV-nondeterministic circuit may be simulated by an SV-nondeterministic
circuit, the resulting circuitC ′′ is an SV-nondeterministic circuit. Finally, we can verify that its size is
poly(n) + s(n′)c for some constantc. This concludes the proof of Theorem 3.2.

We remark that in the proof above we used Theorem 6.4 to decode Reed-Solomon codes by an efficient
deterministicprocedure. However, in our setup we are allowed to use an efficient SV-nondeterministic
procedure for decoding (as we are shooting to construct an SV-nondeterministic circuit). And, an efficient
deterministic encoding algorithm immediately induces an efficient SV-nondeterministic decoding procedure
by guessing the appropriate codeword and verifying that it is indeed close to the given word.

7 Proofs of Theorem 3.6 and Theorem 3.10

We begin with a few preliminaries that will be needed later.

22

7.1 Preliminaries

First, we show (as in [BGP00]) that the preimages of a randomn-wise independent hash function partition
an arbitrary setS well:

Lemma 7.1. Let Hn,k be ann-wise independent family of hash functions mappingn bits tok bits, and let
S ⊆ {0, 1}n. Then for every1 ≥ δ > 0, and sufficiently largen:

Pr
h∈Hn,k

[
∃y for which|{x : h(x) = y ∧ x ∈ S}| > (1 + δ)

|S|
2k

]
≤ 1/2,

provided2k ≤ δ2n−3|S|.
Proof. Fix y ∈ {0, 1}k, and letIx be the indicator random variable for the eventh(x) = y. Notice that
E[Ix] = 2−k and that theIx aren-wise independent. DefineI =

∑
x∈S Ix; we have E[I] = |S|2−k by

linearity of expectation. Applying Lemma 6.5, we get:

Pr
[
|{x : h(x) = y ∧ x ∈ S}| > (1 + δ)

|S|
2k

]
≤ Pr [I − E[I] ≥ δE[I]] ≤ 8 ·

(
nE[I] + n2

(δE[I])2

)n/2

≤ 8 ·
(

2n

δ2E[I]

)n/2

≤ 8 ·
(

2
n2

)n/2

< 2−(n+1).

Applying a union bound over all2k < 2n differenty, we obtain the stated result.

We will also need the following fact about composing functions computable withnon-adaptiveNP
oracle access:

Lemma 7.2. Let f = {fn} andg = {gn} be length-preserving function families in FTIME(t(n))NP
|| and

FTIME(s(n))NP
|| respectively. Then the function family(f ◦ g) defined by(f ◦ g)(x) = f(g(x)) is in

FTIME(poly(t(n)s(n)n))NP
|| .

Proof. We are given an inputx of lengthn, and we wish to computef(g(x)). Let Mf andMg be the
deterministic oracle Turing Machines associated withf andg.

We describe how to determine if thej-th bit of f(g(x)) is 1, using non-adaptive NP oracle queries. Sup-
pose we know that out of all of the non-adaptive NP oracle queriesMg(x) makes, exactlyng are answered
positively; similarly, suppose that we know that on inputg(x), out of all of the non-adaptive NP oracle
queriesMf (g(x)) makes, exactlynf are answered positively. Then with asingleNP oracle query, we can
guess:

• an n-bit stringy, and

• which ng oracle queries in the computationMg(x) are answered positively, and whichnf oracle
queries in the computationMf (y) are answered positively, and

• witnesses for theng positively answered oracle queries made byMg(x), and witnesses for thenf

positively answered oracle queries made byMf (y),

23

and verify that the witnesses are all valid, thatMg(x) with the guessed yes/no answers outputsy, and that
Mf (y) with the guessed yes/no answers outputs a string whosej-th bit is 1.

Assumingng andnf are correct, this NP query will be answered positively iff thej-th bit of f(g(x)) =
1: it is easy to see thatng being correct means that the only valid witnesses will havey = g(x), and that
nf being correct means that the only valid witnesses correctly simulateMf (y) and thus are accepted iff the
j-th bit of f(y) is 1.

We could try making this single NP oracle query for each value ofnf andng, in parallel. The only
problem is that we don’t know which answer is the correct one. This can easily be fixed by making the
following two NP oracle queries for each possible value ofnf andng.

1. guess whichng oracle queries in the computationMg(x) are answered positively, together with wit-
nesses for them, and verify that the witnesses are all valid.

2. guess ann-bit stringy, which ng oracle queries in the computationMg(x) are answered positively,
which nf oracle queries in the computationMf (y) are answered positively, and witnesses for all the
positively answered queries; verify that the witnesses are all valid and thatMg(x) with the guessed
yes/no answers outputsy.

It is easy to see that the largest value ofng for which the first query above is answered positively is the
correct value. Then, the largest value ofnf (paired with the correct value ofng) for which the second
query above is answered positively is the correct value fornf . From this information we know which of the
original set of queries to trust, and we successfully determine thej-th bit of f(g(x)).

Sincet(n) is an upper bound onnf ands(n) is an upper bound onng, the procedure above entails
3(t(n) + 1)(s(n) + 1) non-adaptive NP oracle queries, and we perform it inn times in parallel to compute
each of then output bits off(g(x)). Overall the running time is poly(s(n)t(n)n) as claimed.

Finally, we will use the following variant of Theorem 4.2 several times below.

Lemma 7.3 ([KvM02]). There exist constantsγ, c > 0, for which the following holds for all sufficiently
large t: given the truth tableT of a function ont bits that cannot be computed by non-adaptive SAT-oracle
circuits of size2γt there is a polynomial-time procedure that produces a(2ct, 2−ct) discrepancy set for
non-adaptive SAT-oracle circuits of size2ct.

7.2 The main lemma

The main procedure that is used in the proofs of Theorem 3.10 and Theorem 3.6 is encapsulated in the next
lemma. It takes a circuitC that accepts a subsetS of {0, 1}n, and outputs a hash function fromn bits tok
bits whose preimages partitionS nearly evenly. Additionally, it outputs anS-conditional discrepancy set, in
implicit form.

Lemma 7.4. There is a function family that takes as input:

• a parameterδ such that1/32 > δ > 0, and

• a circuit C onn bits that accepts at least16dδ−2n3e inputs, and

• an integers, and

• the truth tableT of a function ont = O(log |C|, log n, 1/δ, log s) bits that cannot be computed by
non-adaptive SAT-oracle circuits of size2γt for some constantγ > 0,

24

and outputs:

• an integerk, and

• a hash functionh : {0, 1}n → {0, 1}k, and

• an integerB with B = poly(n, 1/δ), and

• a multisetR

for which the following hold:

• ∀y ∈ {0, 1}k |{x : h(x) = y ∧ C(x) = 1}| ≤ B, and

• 2kB
1+2δ ≤ |C−1(1)|, and

• the multisetS = {x : h(x) ∈ R ∧ C(x) = 1} is aC−1(1)-conditional(n, s, 3δ)-discrepancy set12.

This function family is in FTIME(2O(t))NP
|| .

The proof appears in subsection 7.3. We first show how this lemma easily gives us both Theorem 3.6
and Theorem 3.10.

Proof of Theorem 3.6.We are given a circuitA onn bits, andε > 0. Setδ = ε/(2− 2ε) and sett as in the
statement of Lemma 7.4. We describe our procedure in several steps, and then apply Lemma 7.2 to assemble
them into a single procedure that uses non-adaptive NP-oracle access.

• We check whether|A−1(1)| < 16dδ−2n3e, and if so, we compute its size exactly using that many
parallel NP queries, and setρ = Prx[A(x) = 1] which is exact in this case.

• We are assuming that ENP
|| requires exponential size SV-nondeterministic circuits. By Corollary 3.3,

ENP
|| also contains languages that require exponential size non-adaptive SAT-oracle circuits. LetL

be such a language in ENP
|| . We produce the truth tableT of L restricted to lengtht inputs. Since

L ∈ ENP
|| this procedure is in FTIME(2O(t))NP

|| .

• Apply the function family of Lemma 7.4, with inputsA, δ, n, T . This produces outputk, h,B andR,
and runs in time FTIME(2O(t))NP

|| .

• The resulting output has integersk andB for which

2kB

1 + 2δ
≤ |A−1(1)| ≤ 2kB.

We can then outputρ = (1− ε)(2kB)/(2n), and the above equation implies:

(1− ε) Pr
x

[A(x) = 1] ≤ ρ ≤ Pr
x

[A(x) = 1]

as required.

12Recall thatR is a multiset, and we intend eachx ∈ S to be reproduced as many times ash(x) appears inR.

25

After applying Lemma 7.2, the overall running time of the procedure is polynomial in|A|, n and1/ε and it
uses only non-adaptive NP oracle access.

Proof of Theorem 3.10.We are given a circuitA onn bits, an integers, andε > 0, and we want to produce
aA−1(1)-conditional(n, s, ε)-discrepancy set. Setδ = ε/3 and sett as in the statement of Lemma 7.4. We
describe our procedure in several steps, and then apply Lemma 7.2 to assemble them into a single procedure
that uses non-adaptive NP-oracle access.

• We check whether|A−1(1)| < 16dδ−2n3e, and if so, we compute the entire setA−1(1), which is triv-
ially anA−1(1)-conditional(n, s, ε)-discrepancy set. By Theorem 4.4, we can do this in poly(n, 1/δ)
time with nonadaptive NP queries (since we are assuming that ENP

|| requires exponential size SV-
nondeterministic circuits).

• We are assuming that ENP
|| requires exponential size SV-nondeterministic circuits. By Theorem 3.2,

ENP
|| also contains languages that require exponential size non-adaptive SAT-oracle circuits. LetL be

such a language in ENP
|| . We first produce the truth tableT of L restricted to lengtht inputs. Since

L ∈ ENP
|| this procedure is in FTIME(2O(t))NP

|| .

• Apply the function family of Lemma 7.4, with inputsA, δ, s, T . This produces outputk, h, B andR,
and runs in time FTIME(2O(t))NP

|| .

• Finally, we produce fromR an enumeration of the multisetS = {x : h(x) ∈ R ∧ A(x) = 1}. This
can be accomplished by making queries of the form “Is there a setSi of sizei for which Si ⊆ {x :
h(x) ∈ R∧A(x) = 1}?” for eachi up to2O(t)B (which is an upper bound on|S|). By Theorem 4.4,
we can actually produce such setsSi using non-adaptive NP oracle queries, and we find all of theSi

in parallel. The largest set identified contains all of the distinct elements of the multisetS, and we can
duplicate them as needed according to the multiplicity of their image (underh) in R. This multiset is
S, the desiredA−1(1)-conditional(n, s, ε)-discrepancy set.

After applying Lemma 7.2, the overall running time of the procedure is polynomial in|A|, n, s and1/ε
and it uses only non-adaptive NP oracle access.

If we assume instead that ENP requires exponential-size SV-nondeterministic circuits then step 2 runs
in FTIME(2O(t))NP and the first and last step can use an NP oracle adaptively to find witnesses in the usual
way. In this case the procedure has the same overall running time but uses adaptive NP oracle access.

7.3 Proof of Lemma 7.4

SetN = 8dδ−2n3e. For eachk = 1, 2, . . . , n, let Hn,k be ann-wise independent family of hash functions
mappingn bits tok bits. For all1 ≤ k ≤ n and all0 ≤ e < N , given a description of someh ∈ Hn,k

(which, using standard constructions, requires poly(n) bits) we can test if

∃y for which |{x : h(x) = y ∧ C(x) = 1}| > (N + e) (4)

in nondeterministic timem = poly(N, |C|).
Using Lemma 7.3, we produce fromT a (m, 1/4)-discrepancy setU ⊆ {0, 1}m for non-adaptive SAT-

oracle circuits of sizem. Let Mk be an efficiently computable mapping from strings of lengthm to Hn,k

26

such thatMk is uniform onHn,k when its input is chosen uniformly (by which we may view the strings in
{0, 1}m as “descriptions” of members of the hash familyHn,k). For all pairs(k, e) with k = 1, 2, . . . n,
e = 0, 1, . . . N − 1, we test whether Eq. (4) holds for all hash functions{h = Mk(u) : u ∈ U}. Each such
test entails|U | parallel NP queries, and there arenN tests performed, in parallel. We label each of these
tests with a pair(k, e), and order the pairs lexicographically (withk changing the slowest).

Now, we select thefirst (k, e) in the lexicographic order for which the test fails, together with the hash
functionh = Mk(u) that witnesses that failure, i.e.,h for which:

∀y |{x : h(x) = y ∧ C(x) = 1}| ≤ (N + e). (5)

We setB = (N + e).
Finally, let s′ be some fixed polynomial inB, |C|, s to be determined later. Using Lemma 7.3, we

produce fromT a (k, δ)-discrepancy setR ⊆ {0, 1}k for non-adaptive SAT-oracle circuits of sizem. We
outputk, the hash functionh, the integerB, and the multisetR.

We break the remainder of the proof into two halves; the first verifies thath, k, andB satisfy the
properties stated in the Lemma, and the second verifies thatR implicitly defines a conditional discrepancy
set as claimed in the Lemma.

7.3.1 First half: the hash functionh, k, and B

In this half of the proof we show that the integerk, the hash functionh, and the integerB = (N + e) satisfy
the properties stated in the Lemma.

Observe that there is a unique pair(k∗, e∗) with k∗ ∈ {1, 2, . . . , n} ande∗ ∈ {0, 1, . . . , N − 1} for
which

N + e∗ ≤ |C−1(1)|
2k∗ < N + e∗ + 1, (6)

which can be seen by choosingk∗ = blog2(|C−1(1)|/N)c, and thene∗ to satisfy the above inequalities.
We have three claims; the first says that for all(k, e) before(k∗, e∗) in the lexicographic order the test

must succeed, and the next two show that for some(k, e) not too much beyond(k∗, e∗) in the lexicographic
order, the test must fail. In this way we obtain an “approximation” of(k∗, e∗). Observe that by our choice
of k∗, |C−1(1)|/2k∗ lies betweenN and2N . Thusk gives us an approximation to within granularity2;
determininge as well gives us a finer approximation, to within granularity(1 + 2δ).

Claim 7.4.1. For all (k, e) such that2k(N + e) < 2k∗(N + e∗), Eq. (4) holds for all hash functions
{h = Mk(u) : u ∈ U}.
Proof. For every hash functionh : {0, 1}n → {0, 1}k, by the pigeonhole principle, one of the2k disjoint
setsSy = {x : h(x) = y ∧ C(x) = 1} has size greater than(N + e), because

∑
y

|Sy| = |C−1(1)| ≥ 2k∗(N + e∗) > 2k(N + e).

Claim 7.4.2. The first(k, e) in the lexicographic order for which2k(N + e) > (1 + δ)2k∗(N + e∗ + 1)
satisfies

2k(N + e)− 2k ≤ (1 + δ)2k∗(N + e∗ + 1) (7)

27

Proof. Since(k, e) is thefirst such pair, we know that the previous pair(k′, e′) in the lexicographic order
fails to satisfy2k(N + e) > (1 + δ)2k∗(N + e∗ + 1); i.e., it holds that

2k′(N + e′) ≤ (1 + δ)2k∗(N + e∗ + 1).

If e ≥ 1, then(k′, e′) = (k, e − 1), and so the left-hand-side equals2k(N + e) − 2k; if e = 0, then
(k′, e′) = (k − 1, N − 1), and so the left-hand-side equals2k−1(2N − 1) = 2k(N + e) − 2k−1. In both
cases, Eq. (7) follows.

Claim 7.4.3. For the first(k, e) in the lexicographic order for which2k(N + e) > (1 + δ)2k∗(N + e∗+ 1),
it is not the case that Eq. (4) holds for all hash functions{h = Mk(u) : u ∈ U}.
Proof. Using Eq. (6) and the premise of the Claim, we have

(N + e) > (1 + δ)2k∗(N + e∗ + 1)/2k ≥ (1 + δ)|C−1(1)|/2k

and thus, using Lemma 7.1,

Pr
h∈Hn,k

[∃y for which |{x : h(x) = y ∧ C(x) = 1}| > (N + e)]

≤ Pr
h∈Hn,k

[∃y for which |{x : h(x) = y ∧ C(x) = 1}| > (1 + δ)|C−1(1)|/2k] ≤ 1/2,

provided that2k ≤ δ2n−3|C−1(1)| (so that Lemma 7.1 applies). In other words, subject to this condition,
Lemma 7.1 states that Eq. (4) holds for at most half of theh ∈ Hn,k. SinceU is a discrepancy set, it must
be that for someu ∈ U , Eq. (4) does not hold forh = Mk(u).

We just need to check that the condition required for Lemma 7.1 is satisfied. This follows from Claim
7.4.2. The right-hand-side of Eq. (7) is at most4|C−1(1)| by Eq. (6), while the left-hand-side is at least
2k(N − 1), which is at least2k(4δ−2n3) by our choice ofN . We thus have2k(4δ−2n3) ≤ 4|C−1(1)|, as
required.

Finally, we verify thatB = (N + e) satisfies the statement of the Lemma. Using Eq. (6) and Eq. (7),
we get:

2k(N + e) ≤ (1 + δ)|C−1(1)|+ 2 · 2k∗ + 2k.

Now, Eq. (7) implies2k < 16 · 2k∗ , and Eq. (6) gives2k∗ ≤ |C−1(1)|/N . Lastly,1/N ≤ δ2 (for n > 16).
Therefore the right hand side is at most(1 + δ + 18δ2)|C−1(1)|. Sinceδ < 1/18, we conclude that

2k(N + e)
1 + 2δ

≤ |C−1(1)|,

as required.

7.3.2 Second half: the multisetR

In this second half of the proof, we show that

S = {x : h(x) ∈ R ∧ C(x) = 1}

is aC−1(1)-conditional(n, s, 3δ)-discrepancy set as required by the statement of the Lemma.

28

Suppose for the purpose of contradiction that there is a distinguisherf : {0, 1}n → {0, 1} computable
by a sizes circuit for which

∣∣∣∣Pr
x

[f(x) = 1|C(x) = 1]− Pr
t∈S

[f(t) = 1|C(t) = 1]
∣∣∣∣ > 3δ. (8)

We usef to describe a distinguisherg : {0, 1}k → {0, 1} computable by a sizes′ non-adaptive SAT-oracle
circuit that “catches” the discrepancy setR. On inputy ∈ {0, 1}k, g usesB non-adaptiveNP queries to
determinè y = |{x : h(x) = y ∧C(x) = 1∧ f(x) = 1}| (which is guaranteed to be at mostB), andg then
outputs1 with probability`y/B (and 0 with the remaining probability).

We know that2kB ≤ (1 + 2δ)|C−1(1)|. Thus

Pr
x

[f(x) = 1|C(x) = 1] =

∑
y `y

|C−1(1)| ≤
(1 + 2δ)

∑
y `y

2kB
=

1 + 2δ
2k

∑
y

`y

B
= (1 + 2δ) Pr

y
[g(y) = 1]

We also know using Eq. (5), that|S| ≤ B|R|. Thus

Pr
r∈R

[g(r) = 1] =
1
|R|

∑

r∈R

`r

B
≤

∑
r∈R `r

|S| = Pr
t∈S

[f(t) = 1|C(t) = 1].

We may assume that Eq. (8) holds without the absolute value, by complementingf if necessary. Then we
get:

Pr
r∈R

[g(r) = 1] ≤ Pr
t∈S

[f(t) = 1|C(x) = 1] < Pr
x

[f(x) = 1|C(x) = 1]− 3δ ≤ (1 + 2δ) Pr
y

[g(y) = 1]− 3δ

and sog distinguishes a random element fromR from a truly random element with advantage greater than
δ. We may fixg’s random coins to preserve this advantage, and notice thatg is computable by a size
s′ = poly(B, |C|, s) non-adaptive SAT-oracle circuit. This contradicts the fact thatR is a discrepancy set
for sizes′ non-adaptive SAT-oracle circuits, and soS must indeed be anC−1(1)-conditional(n, s, 3δ)-
discrepancy set, as desired.

This concludes the proof of Lemma 7.4.

8 Conclusions and open problems

All known “hardness versus randomness tradeoffs” work by using a hard function to construct a PRG that
derandomizes the given probabilistic procedure. The proofs show that if the derandomization fails, this
probabilistic procedure can be used as a subroutine to efficiently compute the supposedly hard function,
which is a contradiction. One consequence of this type of argument is that to derandomize some class of
probabilistic proceduresA, one requires a function that is hard for procedures that areat least as strong
asA. This paper gives several results that break this “barrier” by derandomizing “strong” classes using
“weak” lower bounds. The most striking result in this vein is perhaps Theorem 4.9. Since it is known that
PNP ⊆ SP

2 (in other words that SP2 is strong enough to simulateadaptiveNP-queries) it is highly unlikely

that SP2 is computable by small nondeterministic circuits, and yet we show that SP
2 = PNP using “only”

hardness for nondeterministic circuits.
One can ask how far this “weakening” of hardness assumptions can go. For example we do not know

whether the existence of relative error approximators, or conditional discrepancy set generators, imply the

29

nondeterminstic hardness assumption that we have used to construct them in this paper. The standard argu-
ment that shows that “pseudorandomness entails hardness” only gives hardness fordeterministiccircuits. Is
it possible to construct these objects using a weaker hardness assumption? Constructing them from hardness
for deterministic circuits would have some interesting consequences, like placing approximate counting in
ZPPNP unconditionally.

Our downward collapse theorem states that for every sufficiently strong classC if C has small nonadap-
tive SAT-oracle circuits thenC has small SV-nondeterministic circuits. A very natural open problem is try to
extend the downward collapse theorem to handleadaptiveNP queries. That is, show that ifE is computable
by small adaptive SAT-oracle circuits thenE is computable by small nonadaptive SAT-oracle circuits.

Another interesting open problem is to give auniform version of the downward collapse theorem, or
more precisely, to prove that EXP⊆ PNP

|| ⇒ EXP = AM. We remark that the argument of this paper can

be slightly modified to give EXP⊆ PNP
|| ⇒ EXP⊆ AM/ log. In a subsequent work Fortnow and Klivans

[FK05] also consider starting from the uniform assumption: EXP⊆ PNP
|| . They build on the main result of

this paper and are able to get a stronger conclusion, namely: EXP⊆ NP/ log.

Acknowledgements

We thank Lance Fortnow, Oded Goldreich, Russell Impagliazzo, Rahul Santhanam, Amnon Ta-Shma and
Salil Vadhan for helpful comments. We also thank the anonymous referees for numerous helpful comments
and suggestions.

References

[AK01] V. Arvind and J. Kobler. On pseudorandomness and resource-bounded measure.Theoretical
Computer Science, 255, 2001.

[AKRR03] E. Allender, M. Koucky, D. Ronneburger, and S. Roy. Derandomization and distinguishing
complexity. InProceedings of the 18th Annual IEEE Conference on Computational Complex-
ity, pages 209–220, 2003.

[Bab85] L. Babai. Trading group theory for randomness. InProceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, 1985.

[BCG+96] N. H. Bshouty, R. Cleve, R. Gavalda, S. Kannan, and C. Tamon. Oracles and queries that are
sufficient for exact learning.Journal of Computer and System Sciences, 52(3):421–433, 1996.

[BDCGL90] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 379–386,
1990.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In7th Annual Sym-
posium on Theoretical Aspects of Computer Science, volume 415 ofLNCS, pages 37–48.
Springer, 1990.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations
unless EXPTIME has publishable proofs.Computational Complexity, 3(4):307–318, 1993.

30

[BGP00] M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses using an NP-
oracle.Information and Computation (formerly Information and Control), 163, 2000.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits.SIAM Journal on Computing, 13(4):850–864, November 1984.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Shafi Goldwasser,
editor,Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages
276–287, 1994.

[Cai01] J.-Y. Cai. SP2 ⊆ ZPPNP. In Proceedings of the 42nd Annual Symposium on Foundations of
Computer Science, pages 620–629, 2001.

[Can96] R. Canetti. On BPP and the polynomial-time hierarchy.Information Processing Letters,
57:237–241, 1996.

[FF93] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets.SIAM J. Comput.,
22(5):994–1005, 1993.

[FK05] L. Fortnow and A. Klivans. NP with small advice. InProceedings of the 20th Annual IEEE
Conference on Computational Complexity, pages 228–234, 2005.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems.SIAM Journal of Computing, 18(1):186–208, 1989.

[Gol97] O. Goldreich. A sample of samplers – A computational perspective on sampling (survey). In
Electronic Colloquium on Computational Complexity, technical report TR 97-020, 1997.

[Gol98] O. Goldreich.Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer-
Verlag, Algorithms and Combinatorics, 1998.

[HHT97] Y. Han, L.A. Hemaspaandra, and T. Thierauf. Threshold computation and cryptographic se-
curity. SIAM J. Comput., 26(1):59–78, 1997.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In36th Annual Sympo-
sium on Foundations of Computer Science, pages 538–545, 1995.

[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness into
pseudo-randomness. In40th Annual Symposium on Foundations of Computer Science, pages
181–190, 1999.

[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random generators
with optimal seed length. InProceedings of the thirty second annual Symposium on Theory
of Computing, pages 1–10, 2000.

[IW97] R. Impagliazzo and A. Wigderson. P= BPP if E requires exponential circuits: Derandomizing
the XOR lemma. InProceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, pages 220–229, 1997.

[JVV86] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures
from a uniform distribution.Theoretical Computer Science, 43(2-3):169–188, 1986.

31

[Kab02] V. Kabanets. Derandomization: A brief overview. InElectronic Colloquium on Computational
Complexity, technical report, TR 02-008, 2002.

[KvM02] A. R. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses.SIAM Journal on Computing, 31(5):1501–
1526, October 2002.

[MV99] P. B. Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin games using hitting
sets. In40th Annual Symposium on Foundations of Computer Science, pages 71–80, 1999.

[NW94] N. Nisan and A. Wigderson. Hardness vs randomness.Journal of Computer and System
Sciences, 49(2):149–167, October 1994.

[RS98] A. Russell and R. Sundaram. Symmetric alternation captures BPP.Computational Complex-
ity, 7(2):152–162, 1998.

[Sto83] L. Stockmeyer. The complexity of approximate counting. InProceedings of the fifteenth
annual Symposium on Theory of Computing, pages 118–126, 1983.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma.
Journal of Computer and System Sciences, 62:236–266, 2001.

[SU01] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random
generator. InProceedings of the 42nd Symposium on Foundations of Computer Science, pages
648–657, 2001.

[Uma03] C. Umans. Pseudo-random generators for all hardnesses.Journal of Computer and System
Sciences, 67:419–440, 2003.

[WB86] L.R. Welch and E.R. Berlekamp. Error correction for algebraic block codes. U.S. Patent No.
4,633,470, issued December 30, 1986.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions. InProceedings of the 23th Annual
Symposium on Foundations of Computer Science, pages 80–91, 1982.

32

