Unbalanced Expanders and Randomness Extractors from
Parvaresh—Vardy Code$

VENKATESAN GURUSWAMIT CHRISTOPHERUMANS?
Dept. of Computer Science & Engineering  Computer Science Department
University of Washington California Institute of Technology
Seattle, WA 98195 Pasadena, CA 91125
venkat@cs.washington.edu umans@cs.caltech.edu

SALIL VADHANS
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
salil@eecs.harvard.edu

June 13, 2008

Abstract

We give an improved explicit construction of highly unbalanced bipartite expander graphs with ex-
pansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the
degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous
constructions of Ta-Shma, Umans, and Zuckerman (STOC ‘01) required at least one of these to be
quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis,
based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy
(FOCS ‘05).

Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of
extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources
of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain
a new, self-contained construction of randomness extractors that is optimal up to constant factors, while
being much simpler than the previous construction of Lu et al. (STOC ‘03) and improving upon it when
the error parameter is small (e.g. 1/poly(n)).
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1 Introduction

One of the exciting developments in the theory of pseudorandomness has been the discovery of intimate
connections between a number of fundamental and widely studied objects — expander graphs, random-
ness extractors, list-decodable error-correcting codes, pseudorandom generators, and randomness-efficient
samplers. Indeed, substantial advances have been made in our understanding of each of these objects by
translating intuitions and techniques from the study of one to the study of another. In this work, we continue

in this tradition. Specifically, we use ideas from recent breakthrough constructions of list-decodable codes,
due to Parvaresh and Vard®V], to give improved and simplified constructions of both unbalanced bipartite
expander graphs and randomness extractors.

1.1 Unbalanced expander graphs

Expanders are graphs that are sparse yet very highly connected. They have a wide variety of applications in
theoretical computer science, and there is a rich body of work on constructions and properties of expanders.
(See the surveyHLW]). The classic measure of the connectivity of an expandegritex expansigrwhich

asks that every sét of vertices that is not too large have significantly more thi#meighbors. This property

is formalized for bipartite graphs through the following definitions.

Definition 1.1. A bipartite (multi)graptwith NV left-vertices M right-vertices, and left-degreP is specified
by a functionl" : [N] x [D] — [M], whereI'(x,y) denotes the'th neighbor ofz. For a setS C [N], we
write I'(.S) to denote its set of neighbof§'(x,y) : x € S,y € [D]}.

Definition 1.2. A bipartite graphl’ : [N] x [D] — [M] is a (K, A) expandeif for every setS C [N] of
sizeK,we havel'(S)| > A- K. ltis a(<Knmq, A) expandeif itis a (K, A) expander for all’ < Kq4.

The typical goals in constructing expanders are to maximize the expansion faatad minimize the
degreeD. In this work, we are also interested minimizing the the dizef the right-hand side, st/ < N
and the graph is highly unbalanced. Intuitively, this makes expansion harder to achieve because there is less
room in which to expand. Using the probabilistic method, it can be shown that very good expanders exist —
with expansiord = (1 — ¢) - D, degreeD = O(log(N/M)/e), andM = O(K ez D/c) = O(Kpmaz A/<)
right vertices. Thus, ifM < N¢ for some constant < 1, then the degree is logarithmic iN, and
logarithmic degree is in fact necessaryif = O(K,,.. A).X However, applications of expanders require
explicit constructions— ones where the neighbor functibris computable in polynomial time (in its input
length,log V + log D) — and the best known explicit constructions still do not match the ones given by the
probabilistic method.

Most classic constructions of expanders, suchMarl, GG, LPS, Mar2], focus on the balanced (or
non-bipartite) case (i.eM = N), and thus are able to achieve constant dedree O(1). The expan-
sion properties of these constructions are typically proven by bounding the second-largest eigenvalue of
the adjacency matrix of the graph. While such ‘spectral’ expansion implies various combinatorial forms
of expansion (e.g., vertex expansion) and many other useful properties, it seems insufficient for deducing
vertex expansion beyon® /2 [Kah] or for obtaining highly imbalanced expanders with polylogarithmic
degree WZ|]. This is unfortunate, because some applications of expanders require these properties. A

"More generally, the degree must be at l€@@iog(N/ K na:)/ log(M /(K mazA))), as follows from the lower bounds on the
degree of disperser&T].



beautiful example of such an application was given by Buhrman et.BMRV]. They showed that a

(<K maz, A) expander withV left-vertices,M right-vertices, and expansioh= (1 —¢) D yields a method

for storing any sef C [N] of size at mosf#s,,,,; /2 in an M -bit data structure so that membershigsican

be probabilistically tested by reading ordye bitof the data structure. An optimal expander would give

M = O(Knalog N), only a constant factor more than what is needed to represent an arbitrary set of size
K42 /2 (even without supporting efficient membership queries).

Explicit constructions of expanders with expansibr= (1 — ¢) D were obtained by Ta-Shma, Umans,
and ZuckermanTUZ] for the highly imbalanced (and nonconstant-degree) case and Capalb@GR\AW]
for the balanced (and constant-degree) case. The constructions of Ta-ShmaléZhtdn make either one
of the degree or right-hand side polynomially larger than the nonconstructive bounds mentioned above,

at the price of making the other quasipolynomially larger. That is, one of their constructionsigjives

poly(log N) and M = quasipoly (K 4. D) def exp(poly(log(K e D))), Whereas the other gived =

quasipoly(log N) andM = poly(K .. D). The quasipolynomial bounds were improved recentlifid]|
but remained superpolynomial.

We are able to simultaneously achieldle= poly(log N) and M = poly(K D), in fact with a good
tradeoff between the degrees of these two polynomials.

Theorem 1.3. For all constantsa: > 0: for everyN € N, K,,.. < N, ande > 0, there is an explicit
(<K maz, (1 — €)D) expander : [N] x [D] — [M] with degreeD = O((log N)(log K az) /) T'/* and
M < D? . Klte,

The construction of our expanders is based on the recent list-decodable codes of Parvaresh aR¥jvardy [
and can be described quite simply. The proof of the expansion property is inspired by the list-decoding al-
gorithm for the PV codes, and is short and self-contained. An overview of this ‘list-decoding approach’ to
proving expansion is provided in Sectigr.

1.2 Randomness extractors

One of the main motivations and applications of our expander construction is the constructiodarhness
extractors These are functions that convert weak random sources, which may have biases and correlations,
into almost-perfect random sources. For general models of weak random sources, this is impossible, so the
extractor is also provided with a short ‘seed’ of truly random bits to help with the extra®licjy This seed

can be so short (e.g. of logarithmic length) that one can often eliminate the need for any truly random bits by
enumerating all choices for the seed. For example, this allows extractors to be used for efficiently simulating
randomized algorithms using only a weak random sowee], NZ]. Extractors have also found a wide
variety of other applications in theoretical computer science beyond their original motivating application,
and thus a long body of work has been devoted to providing efficient constructions of extractors. (See the
survey of Shaltiel$hd.)

To formalize the notion of an extractor, we need a few definitions. Follow@1@, Zucl], the ran-
domness in a source is measuredrbin-entropy a random variabléX has min-entropy at least iff
Pr[X = 7] < 27% for all z. Sometimes we refer to such a random variable assaurce A random
variableZ is e-closeto a distributionD if for all events A, Pr[Z € A] differs from the probability ofA
under the distributiorD by at most. Then an extractor is defined as follows:

Definition 1.4 ([NZ]). A functionE : {0,1}" x {0,1}* — {0,1}™ is a (k, ) extractorif for every X
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with min-entropy at least, E(X,Y) is e-close to uniform, whelY is uniformly distributed o0, 1}%. An
extractor isexplicit if it is computable in polynomial time.

The competing goals when constructing extractors are to obtain a short seed length and to obtain a
long output length. Nonconstructively, it is possible to simultaneously have a seed tergtlogn +
2log(1/e) + O(1) and an output length of: = k + d — 2log(1/¢) — O(1), and both of these bounds are
optimal up to additive constants (fér < n/2) [RT]. It remains open to match these parameters with an
explicit construction.

Building on a long line of work, Lu et allLRVW] achieved seed length and output length that are
within constant factors of optimal, provided that the error parameisrmnot too small. More precisely,
they achieve seed length = O(logn) and output lengthn = (1 — a)k for e > n=/108" " where
a andc are any two positive constants. For generathey pay with either a larger seed lengthdof=
O((log* n)?log n + log(1/¢)), or a smaller output length of, = k/ log'®) n for any constant.

In this work, we also achieve extractors that are optimal up to constant factors, but are able to handle the
full range of error parametets

Theorem 1.5. For every constante > 0, and all positive integers, k and alle > 0, there is an explicit
construction of a(k, ) extractor £ : {0,1}" x {0,1} — {0,1}™ with d = O(logn + log(1/¢)) and
m > (1 — a)k.

Our extractor is also substantially simpler than thalé®VW], which is a complex recursive construc-
tion involving many tools. The key component in our construction is the interpretation of our expander
graph as aandomness condenser

Definition 1.6. A functionC' : {0,1}" x {0,1} — {0,1}™ is ank —. k' condenseif for every X
with min-entropy at least, C'(X,Y) is e-closeto a distribution with min-entrop¥’, whenY is uniformly

losslessf &' = k + d.

Observe that & —. k' condenser with output lengith = £’ is an extractor, because the unique distri-
bution on{0, 1}"" with min-entropym is the uniform distribution. Condensers are a natural stepping-stone
to constructing extractors, as they can be used to increasmtipy rate(the ratio of the min-entropy in
a random variable to the length of the strings over which it is distributed), and it is often easier to construct
extractors when the entropy rate is high. Condensers have also been used extensively in less obvious ways
to build extractors, often as part of complex recursive constructions (Kg#V, RSW, LRVW]). Noncon-
structively, there exidbsslessondensers with seed length= log n + log(1/¢) + O(1), and output length
m=k+d-+log(l/e) + O(1).

As shown by TUZ|, lossless condensers are equivalent to bipartite expanders with expansion close to
the degree. Applying this connection to Theoi&r§ we obtain the following condenser:

Theorem 1.7. For all constantsae € (0,1): for everyn € N, k < n, ande > 0, there is an explicit
k —. k + d (lossless) condensér : {0,1}" x {0,1}¢ — {0,1}™ withd = (1 + 1/a) - (logn + logk +
log(1/¢)) + O(1) andm < 2d + (1 + «a)k.

Consider the case that is a constant close to 0. Then the condenser has seed l&xtf(n /<))
and output min-entropy rate roughly (1 + «). Thus, the task of constructing extractors for arbitrary
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seed lengtlal output length Thm.
log n + O(log(k/¢)) 1=k 4.19
logn + O(logk - log(k/e)) | k+d —2log(1/e) — O(1) | 4.21

Figure 1:Extractors in this paper for min-entrogyand error=. Above,y € (0, 1) is an arbitrary constant.

seed lengthl output length output entropy Thm.
(14+~)log(nk/e)+OQ) | (1+1/y)k+2d | k+d (lossless) 4.3
log(nk/e) + O(1) d-(k+2) k+d (lossless) 4.4

Figure 2:Condensers in this paper for min-entrdpgnd error=. Above,y > 0 is an arbitrary constant.

min-entropy is reduced to that of constructing extractors for min-entropy rate close to 1, which is a much
easier task. Indeed, wheris constant, we can use a well-known and simple extractor based on expander
walks. Where is sub-constant, we can use Zuckerman’s extractor for constant entropguafktp obtain

the proper dependence eras long as > exp(—k/290°2" %)) Moreover, by combining our condenser
with ideas from the early constructions of extractors (the Leftover Hash Lemma, block-source extraction,
and simple compositions), we are able to give a completely self-contained proof of Thé&renth no
constraint on the error parameteat all.

Our main extractors and condensers are summarized in Fif)jamed2.

1.3 Organization and pointers to main results

We begin with a high level overview of our construction and proof method in Se2tidkle describe and
analyze our expander construction in SecBx@ur main Theorerni.3 concerning expanders is proved as
Theorem3.E). We then interpret our expander as a lossless condenser and use it to obtain our extractors in a
self-contained way in Sectiofi(our main Theorerd.5 concerning extractors is proved as Theoredt).

In Section6, we analyze a variant of our main condenser that has a simpler description in terms of just
Reed-Solomon codes and is a univariate analogu&Udf, and whose analysis is based @H]. We give
two variants of such condensers, both of which have parameters slightly worse than our main condenser.
Specifically, one is lossless but limited to achieving entropy tdfe and the other can achieve entropy
rate close to 1 but loses a constant fraction of the source min-entropy. The latter is analyzed using a list-
decoding view of lossy condensers that we describe in SeGtibm Sectiori7, we describe an application
of our lossless expanders to dictionary data structures for answering set membership queries in the bitprobe
model, following BMRV] who first made this beautiful connection. Finally we conclude in Se@iatith
some open problems.

1.4 Notation

Throughout this paper, we use boldface capital letters for random variables (¥.9,,capital letters
for indeterminates, and lower case letters for elements of a set. Also throughout the (3aperthe

random variable uniformly distributed of0, 1}. The supportof a random variabl& is supp(X) def



{z : Pr[X =z| > 0}. Thestatistical distancéetween random variables (or distributio®)andY is
maxy | Pr[X € T] - Pr[Y € T]|. We sayX andY aree-closeif their statistical distance is at maostAll
logs are base 2.

2 Overview of our approach

In this section we give a high level overview of our construction and the proof technique.

2.1 Expansion via list-decoding

Before explaining our approach, we briefly review the basics of list-decodable codesiefs mapping

C : [N] — [M]P, encoding messages of bit-length= log, N to D symbols over the alphabét/].
(Contrary to the usual convention in coding theory, we use different alphabets for the message and the
encoding.) Theate of such a code ip = n/(Dlog, M). We say thaC is (¢, K) list-decodablef for
everyr € [M]P, the setLIST(r,¢) o {z : Pry[C(x), = ry] > ¢} is of size at most#. We think of

r as areceived wordbtained by corrupting all but anfraction of symbols in some codeword. The list-
decodability property says that there are not too many messatipas could have led to the received word
r. The goal in constructing list-decodable codes is to optimize the tradeoff between the agreement
the ratep, which are typically constants independent of the message lengBoth the alphabet siz&f
and the list-sizek” should be relatively small (e.g. constantpery(n)). Computationally, we would like
efficient algorithms both for computing(z) givenz and for enumerating the message&IST(r, ) given

a received word.

The classic Reed-Solomon codes were shown to achieve these properties with polynomial-time list-
decoding in the seminal work of Sudé®ud. The tradeoff between andp was improved by Guruswami
and Sudan&S], and no better result was known for a number of years. Indeed, their result remains the best
known for decoding Reed-Solomon codes. Recently, Parvaresh and ¥arHgdve an ingenious variant
of Reed-Solomon codes for which the agreement-rate tradeoff is even better, leading finallpptrtis
tradeoff (hamelyp = ¢ — o(1)) achieved by Guruswami and Rudi@R] using “folded” Reed-Solomon
codes.

Our expanders are based on the Parvaresh-Vardy codes. Specifically, for a leftaverté¥’| and
y € [D], we define they'th neighbor ofz to beT'(z,y) = (y,C(z),), whereC : [N] — [M]P is a
Parvaresh-Vardy code with a somewhat unusual setting of parameters. (Note that here we take the right-
hand vertex set to bg)| x [M].) To prove that this graph is an expander, we adopt a ‘list-decoding’ view
of expanders. Specifically, for a right-SBtC [D] x [M], we define

LIST(T) & {z € [N] : T'(z) C T'}.
Then the property of being a(K, A) expander can be reformulated as follows:
for all right-setsT” of size less thanl K, we havg LIST(T)| < K.

We note that a similar formulation of expansion appear§&if [(where it is restricted to sefB of the form
I'(S) for setsS C [N] of size at mosK).



Let us compare this to the standard list-decodability property for error-correcting codes. Notice that for
a received word € [M]P,

LIST(r,e) = {z: f;r[C(x)y =7y > €}
= {z: f;r[l“(x,y) e T, > e},

whereT, = {(y,ry) : y € [D]}. Thus, the two list-decoding problems are related, but have the following
key differences:

¢ In the coding setting, we only need to consider gétsf the form7,.. In particular, these sets are all
very small — containing onlyp of the possibleD M right vertices.

¢ In the expander setting, we only need to bound the number of left-vertices whose neighborhood is
entirely contained ifT", whereas in the coding setting we need to consider left-vertices for which even
ane fraction of neighbors are i, .

¢ Inthe coding setting, it is desirable for the alphabet dizé be small (constant groly(n)), whereas
our expanders are most interesting and useful wheis in the range between, say.!) and2"/2,

¢ In the coding setting, the exact size bIST(r, ) is not important, and generally amply(n/ec)
bound is considered sufficient. In the expander setting, however, the relation between the list size and
the size ofI’ is crucial. A factor of 2 increase in the list size (fbrof the same size) would change
our expansion factad from (1 —e)D to (1 —e)D/2.

For these reasons, we cannot use the analysis of Parvaresh andR&d}a [a black box. Indeed, in light
of the last item, it is somewhat of a surprise that we can optimize the bound on list size to yield such a tight
relationship betweef¥’| and|LIST(T")| and thereby provide near-optimal expansion.

This list-decoding view of expanders is related to the list-decoding view of randomness extractors that
was implicit in Trevisan’'s breakthrough extractor constructiore] and was crystallized by Ta-Shma and

ZuckermanTZ]. There one considesdl setsT" C [D] x [M] (not just ones of bounded size) and bounds the

size OfLIST(T, u(T) +¢) = {x : Pr,[[(,y) € T] > u(T)+<}, whereu(T) < |T|/(DM) is the density

of T'. Indeed, our work began by observing a strong similarity between a natural ‘univariate’ analog of the
Shaltiel-Umans extractcElJ] and the Guruswami—Rudra cod&3H], and by hoping that the list-decoding
algorithm for the Guruswami—Rudra codes could be used to prove that the univariate analog of the Shaltiel—
Umans construction is indeed a good extractor (as conjecturdfUj).] However, we were only able to
bound|LIST(T), ¢)| for “small” setsT’, which led to constructions ddssycondensers, as in the preliminary
version of our pape@UV1]. In the present version, we instead bound the siZel8T'(7") = LIST(7, 1),

and this bound is strong enough to yield expanders with exparisiens) - D and thus directly implies
lossless condensers, as discussed above. (We still consider lossy condensers irb®éthimnpaper for

the purpose of analyzing a variant of our main construction.)

It is also interesting to compare our construction and analysis to recent constructions of extractors based
on algebraic error-correcting codes, namely those of Ta-Shma, Zuckerman, and 38frar{d Shaltiel and
Umans [BEU]. Both of those constructions use multivariate polynomials (Reed—Muller codes) as a starting
point, and rely on the fact that these codeslacally decodablein the sense that any bit of the message can
be recovered by reading only a small portion of the received word. While the advantage of local decodability
is clear in the computational setting (i.e., constructions of pseudorandom gene&id;sSU, (Umg)),



where it enables efficient reductions, it is less clear why it is needed in the information-theoretic setting of
extractors, where the ‘decoding’ only occurs in the analysis. Indeed, Trevisan’s extiaetla@drresponds

to the pseudorandom generator constructioi®diM], but with the locally list-decodable code replaced by a
standard list-decodable code. However, the extractor analys€Z€ffnd SU] seem to rely essentially on
multivariate polynomials and local (list-)decodability. Our construction works with univariate polynomials
and the analysis does not require any local decoding — indeed, univariate polynomial (Reed-Solomon) codes
are not locally decodable.

2.2 Parvaresh-Vardy codes and the proof technique

Our constructions are based on Parvaresh-Vardy c@éf hich in turn are based on Reed-Solomon
codes. A Reed-Solomon codeword is a univariate degreel polynomial f € F,[Y], evaluated at all
points in the field. A Parvaresh-Vardy codeword is a bundle of several related degrdepolynomials
fo, f1, f2, ..., fm—1, €ach evaluated at all points in the field. The evaluations of the vafi@is given field
element are packaged into a symbol from the larger alpHapet The purpose of this extra redundancy is
to enable a better list-decoding algorithm than is possible for Reed-Solomon codes.

The main idea inRV] is to view degreen — 1 polynomials as elements of the extension figld=
F,[Y]/E(Y), whereE is some irreducible polynomial of degree The f; (now viewed as elements &)
are chosen so thgt = f7 fori > 1, and a positive integer parameterAs explained in SectioB.1, our
expander is constructed directly from Parvaresh-Vardy codes as follows:

L(fo,y) = [y, fo(), f1(y)s - -+, frm—1(y)]-

In the analysis, our task is to show that for anyBetdf size L, the seLIST(T') = {fo : I'(fo) C T} is
small. To do this we follow the list-decoding analysis/BM], which in turn has the same general structure
as the list-decoding algorithms for Reed—Solomon cc8as| [GS]. We first produce a non-zero polynomial
Q: Fé*m — IF, that vanishes off’. Now, for everyf, € LIST(T"), we have

Q(y7 fo(y)v .. '7fm—1(y)) =0 Vy € an

and by ensuring tha® has small degree (which is possible becalisis not too large), we will be able
to argue that the univariate polynomi@(Y, fo(Y),..., fm—1(Y)) is the zero polynomial. Recalling the
definition of thef;, and viewing thef; as elements of the extension fi#ld= F,[Y]/E(Y '), we observe that
fo is aroot of the univariate polynomial

Q(2)=
This is because when simplifying the formal polynomial(fo(Y")) mod E(Y), we can first take each
fo(Y)"" term moduloE(Y), resulting inf;(Y), and we have just argued th@(Y, fo(Y), ..., fr_1(Y))
is the zero polynomial, so it is still the zero polynomial mod#¢Y’). This argument holds for every
fo € LIST(T'), and so we can upper-boufidlST(7")| by the degree of)*.

Q,z,z", z",...,Z"" ") mod E(Y).

3 Expander Graphs
We first formally develop the list-decoding view of expanders described in Séttion
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Definition 3.1. For a bipartite graphl” : [N] x [D] — [M] and a sefl’ C [M], define

LIST(T) = {z € [N] : I'(z) C T}.

The proof of the next lemma follows from the definitions:

Lemma 3.2. A graphT'is a (K, A) expander iff for every séf of size at mos K — 1, LIST(T) is of size
at mostK — 1.

3.1 The construction

Fix the field[F, and letE(Y") be an irreducible polynomial of degreeoverF,,. We identify elements dfy,
with univariate polynomials ovef, with degree at most — 1. Fix an integer parametér.

Our expander is the bipartite graph Fy x F, — IFg”l defined as:

ef
L(f,9) < [y, F), (" mod E)(y), (f** mod E)(y),--, (f*" " mod E)(y)]. (1)
In other words, the bipartite graph has “message” polynonfi¥s) on the left, and the’th neighbor of
f(Y) is simply they'th symbol of the Parvaresh-Vardy encoding fft"). For ease of notation, we will
refer to(f* mod E) as “f;.”

hm—l

Theorem 3.3. The graphl” : Fy x F, — IF‘;”“ defined inll) is a (<K nas, A) expander fork ., = h™
andA=q— (n—1)(h—1)m.

Proof. Let K be any integer less than or equal&g,,, = h", and letA = ¢ — (n — 1)(h — 1)m. By
Lemma3.2, it suffices to show that for every sétC ]Fg”*l of size at mosi K — 1, we haveLIST(T)| <
K — 1. Fix such a sef".

Our first step is to find a nonzero “low-degree” polynont®l, Y1, . . ., Y, ) that vanishes of". Specif-
ically, @ will only have nonzero coefficients on monomials of the fdfﬁi\/[j(Yl, oY) for0<i < A-1
and0 < j < K—1 < h™—1,whereM;(Yy,...,Y,,) = Y{°--- Yt andj = jo+jih+- -+ jm 1 h™ !
is the base: representation of. (For simplicity, one may think of{ = A", in which case we are simply
requiring thatQ has degree at most— 1 in each variablé’;.) For each: € T, requiring thatQ(z) = 0
imposes a homogeneous linear constraint on4he coefficients ofQ). Since the number of constraints is
smaller than the number of unknowns, this linear system has a nonzero solution. Moreover, we may assume
that among all such solutiong), is the one of smallest degree in the variabileThis implies that if we write
Q in the form

K-1
QY. Y1,....Y) = pi(Y)- M;(V1,...,Y;)
j=0

for univariate polynomialgy(Y),...,px—1(Y), then at least one of thg;’s is not divisible by £ (Y").
OtherwiseQ(Y, Y1, ..., Y,,)/E(Y) would have smaller degree i and would still vanish ofI” (sinceE
is irreducible and thus has no rootskp).

Consider any polynomigt(Y') € LIST(7"). By the definition ofLIST(7") and our choice of), it holds
that

Q. fow), i), fm—1(y) =0  VyeF,.
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That is, the univariate polynomidt;(Y") &f QY. fo(Y),..., fm—1(Y)) hasq zeroes. Since the degree of

Rp(Y)isatmost(A — 1) + (n — 1)(h — 1)m < g, it must be identically zero. So
Q(K fO(Y)a ) fm—l(Y)) =0

as a formal polynomial. Now recall th#t(Y") = f(Y)"" (mod E(Y)). Thus,

QY. f(Y), FY), ., F(Y)™ )
= QU fo(Y),..., fm-1(Y)) =

So if we interpretf(Y’) as an element of the extension fidid= [, [Y]/E(Y), then f(Y') is a root of the
univariate polynomia®)* overF defined by

0 (mod E(Y)).

Q" (2) ¥ Qy,z,z" 2", ..., Z" ") mod E(Y)

=

(p;(Y) mod E(Y)) - M;(Z,2",..., 2"

[
[ing

=

() (Y) mod E(Y)) - Z7.

.
Il
=)

Since this holds for every(Y') € LIST(T), we deduce thaf)* has at leasfLIST(T')| roots inF. On the
other hand@* is a non-zero polynomial, because at least one 0pf{iE)’s is not divisible byZ(Y). Thus,
|LIST(T)| is bounded by the degree @f, which is at most — 1. O

Remark 3.4. Observe that for alb' C I, the subgraph of that comes from taking only-th edges for
y €S, isa(<Knqz, A) expander ford = |S| — (n — 1)(h — 1)m by the same argument.

3.2 Setting parameters

The following theorem differs from Theorein3 only by allowinga to be non-constant.

Theorem 3.5 (Thm.[1.3 generalized). For all positive integersV, Kp.x < N, alle > 0, and alla €
(0,1log z/loglog z) for x = (log N)(log Kmaz)/c, there is an explici{ < K40, (1 — €) D) expander” :
[N] x [D] — [M] with degreeD = O(((log N)(log Kmam)/a)lﬂ/a) andM < D?- K}:te. Moreover,D
and M are powers of 2.

Proof. Letn = log N andk = log Kyax. Let hg = (2nk/e)'/*, h = [he], and letg be the power of 2 in
the interval(h'*< /2, R1+].

Setm = [(log Kmax)/(logh)], so thath™! < Kp.x < k™. Then, by Theoren8.3 the graph
I :Fr xF, — Frt! defined inll) is a(<h™, A) expander forA = ¢ — (n — 1)(h — 1)m. Since
Kpax < ™, itis also a(<Kpax, A) expander.

Note that the number of left-verticesIhis ¢" > N, and the number of right-vertices is

M = qm—i-l < q2 . h(l+o¢)-(m—1) < q2 LKt

10



The degree is

Ddéfq <Rt g (h0+1)1+a

= O(h§**) = O(((log N)(log o) /) *1/%).

where the second-to-last equality follows from the fact that= (nk/c)'/* > « (due to the upper bound
on «).

To see that the expansion factér= g — (n — 1)(h — 1)m > g — nhkis atleas{1 —e)D = (1 — ¢)q,
note that
nhk <e-h't® < egq,

where the first inequality holds because > nk/e.

Finally, the construction is explicit because a representatidfy &br ¢ a power of 2 (i.e. an irreducible
polynomial of degreéog ¢ overlFy) as well as an irreducible polynomial(Y’) of degreen overF, can be
found in timepoly(n, log ¢) = poly(log N, log D) [Shd. O

Remark 3.6. In this proof we work in a fieldf, of characteristic 2, which has the advantage of yielding
a polynomial-time construction even when we need to tatebe superpolynomially large (which occurs
whene(n) = n~“M). Whene > 1/poly(n), then we could use any prime powginstead, with some
minor adjustments to the construction and the parameters claimed in the theorem.

In the above theorenay is restricted to be slightly sublogarithmicirk /. It will sometimes be useful
to use the following variant, which corresponds to a logarithmic valuearfd yields a degree with a linear
dependence olog N.

Theorem 3.7. For all positive integersV, Kn.x < N, and alle > 0, there is an explici{ < K44, (1 —
€)D) expander : [N] x [D] — [M] with degreeD < 2(log N)(log Kaz)/e and M < (4K pqq)'8 0.
Moreover,D and M are powers of 2.

Proof. The proof is along the same lines as that of ThecBeEnexcept we také = 2, g € (nk/e, 2nk/e],
andm = [log K., ]. Then we can bound the degree By= ¢ < 2nk/e, the number of right-hand
vertices byM = ¢™*! = (4.-2m~1)l989 < (4K,,4,)'°8 7, and the expansionbf = g — (n—1)(h—1)m >
q—nk > (1—¢)D. O

4 Lossless condensers and extractors

In this section we prove our main extractor theorem.

4.1 Lossless condensers

We first interpret the expanders constructed in the previous section as lossless condensers (see Defini-
tion/1.6). This connection, due to Ta-Shma, Umans, and Zuckermad], is based on viewing a function

C :{0,1}" x {0,1}¢ — {0,1}™ as the neighbor function of a bipartite graph with left-vertices,2™
right-vertices, and left-degre2¥. It turns out that this graph has expansion close to the degree if and only if
C'is a lossless condenser.

11



Lemma 4.1 ([TUZ]). Forn,m,d € N,e € (0,1), andk € [0,n] suchtha® ¢ N, C : {0,1}" x {0,1}? —
{0,1}™ is ak —. k + d condenser iff the corresponding bipartite graph i€24, (1 — ¢) - 2¢) expander.

One minor technicality in the above connection is that it requires 2hdte an integer, whereas the
notion of condenser makes sense forkalE [0,n]. However, this is easily handled by rounding, if we
allow a tiny increase in the error parameteiSpecifically, we have the following generalization of the “if”
direction of Lemmad.1:

Lemma4.2. Forn,m,d € N,e € (0,1), andk € [0,n], C : {0,1}"* x {0,1}¢ — {0,1}" isak —. k+d
condenser if the corresponding bipartite graph i§[a*], (1 — ¢) - 2¢) expander and &| 2% |, (1 — ¢) - 29)
expander.

Proof. Let K = 2¥ ¢ NandL = |K|. Everyk-source is a convex combination of sour@sn which
some sefS of L elements each have probability mass exattli{, and one element ¢ S has probability
1— L/ K; thus it suffices to prove the lemma for such souXe&Ve can decompos¥ = pX; + (1 —p)Xaz
whereX is uniform onS, Xz is uniform onSU{x}, andp € [0, 1] satisfiep/L+ (1 —p)/(L+1) = 1/K
(so that all elements &f have probability exactly / K).

By Lemma4.1, C(Xy,Uy) is e-close to a sourc&; of min-entropylog(L D), whereD = 2¢, and
C(Xz2,Uq) is e-close to a sourcé&s of min-entropylog((L + 1)D). ThenC (X, Uy) is e-close toZ =
pZi + (1 — p)Z2. We now claim thaZ is a(k + d)-source. Indeed, for every

1 1
(L+1)D KD’

Pr[Z =z] <p-Pr[Z: = 2] + (1 — p) Pr[Z2 = 7] <p-$+(1—p)'

Using this lemma, the following are immediate consequences of The@&rand3.7.

Theorem 4.3 (Theoreml.?, generalized). For everyn € N, k4. < n,e > 0, and

a € (0,log(nkmas/€)/ loglog(nkma: /<)), there is an explicit functiod' : {0,1}" x {0,1}¢ — {0,1}™
withd = (1 + 1/a) - (logn + log kmaz + log(1/€)) + O(1) andm < 2d + (1 + «)kma, such that for all
k < kpaz, Clisak —. k + d (lossless) condenser.

Theorem 4.4. For everyn € N, ke < n, anda,e > 0, there is an explicit functiod® : {0,1}" x
{0,134 — {0,1}™ with d < logn + 1og ks + log(1/e) + 1 andm < d - (kmaz + 2) such that for all
k < kpmaz, Cisak —. k + d (lossless) condenser.

Once we have condensed almost all of the entropy into a source with high entropy rate (as in Theo-
rem4.3), extracting (most of) that entropy is not that difficult. All we need to do is to compose the condenser
with an extractor that works for high entropy rates. The following standard fact makes the composition for-
mal:

Proposition 4.5. Suppos& : {0,1}" x {0,1}% — {0,1}" is ank —., k' condenser, and : {0,1}" x
{0,1}% — {0,1}™ is a (K, e9)-extractor, thenE o C' : {0,1}" x {0,1}%1+42 — {0 1}™ defined by
(E o C)(,y1,y2) = B(Clx,11),2) IS &k, &1 + 22)-extractor.

12



In the next section, we will use this proposition to compose our condenser with a simple extractor
for high entropy rates to obtain our main extractor theorem (Thedr&mfor the case of constant error
e. For subconstant error, we could compose with Zuckerman’s extractor for constant entro@uciie [
which works provided > exp(—k/2°0°¢" k) Instead, in Sectiod we combine our condenser with ideas
from the early constructions of extractors (the Leftover Hash Lemma, block-source extraction, and simple
compositions), to obtain a completely self-contained proof of Thedr&éwith no constraint on the error
parametee at all.

4.2 Extractors for constant error

In this section, we prove Theorehis for the case of constant erre{which suffices for many applications

of extractors). It is obtained by composing our condenser with a extractor for min-entropy rate close to 1.
A standard extractor construction for this setting is based on expander V@&lkZlcz, Zucd. Specifi-

cally, such an extractor can be obtained by combining the equivalence between extractors and ‘averaging
samplers’ZucZ], and the fact that expander walks are an averaging sampler, as established by the Chernoff
bound for expander walk&iil].

Theorem 4.6. For all constantsy, e > 0, there is a constand < 1 for which the following holds: for all
positive integers:, there is an explicit construction of @& = dn,¢) extractorE : {0,1}" x {0, 1}t —
{0,1}™ with ¢t < log(an) andm > (1 — a)n.

For completeness, we present the short proof:

Proof. Letm = [(1 — a)n], and for some absolute constants- 1 and\ < 1, let G be an explicit2©-
regular expander o™ vertices (identified with{0, 1}™) and second eigenvalue= A\(G) < 1. Let L

be the largest power of 2 at mast — m)/c (SOL > (n —m)/(2c¢)), and lett = log L < log(an). The
extractorE is constructed as follows. Its first argumenis used to describe a walk, v, . .., vy, of length

L in G by pickingwv;, based on the first bits of 2, and each further step of the walk from the nekits of

x — so in all, L must satisfyn = m + (L — 1)c. The seed; is used to pick one of the vertices of the walk
at random. The outpuf(z, y) of the extractor is the:-bit label of the chosen vertex.

Let X be a random variable with min-entropy= én. We wish to prove that for angy C {0,1}"™, the
probability thatE'(X, Uy) is a vertex inS'is in the rangg: & ¢ wherep = |S|/2™. Fix any such subse.
Call anz € {0,1}" “bad” if

f;r[E(:c,y) €S]—pul>¢/2.

The known Chernoff bounds for random walks on expand@if [mply that the number of bad’s is at

most
on . 679(52(17/\)L) —on. efﬂ(sz(lfz\)om/c) —9n. 279(520”1)

(sincec, \ are absolute constants). Therefore the probability ¥hat bad is at mos2—%" - 2" . 9~ SUe*an),
which is exponentially small for large enough< 1. Therefore

|Pr{E(X,Us) € 8] — | < /24279 <,
implying thatE is a(k, ¢)-extractor. -

2The papersiZ, [CW| prove hitting properties of expander walks, and observe that these imply objects related to (but weaker
than) extractors, known as dispersers.
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Combining this with our condenser, we obtain the following extractor:

Theorem 4.7 (Thm.1.5for constant error). For all constantsy, e > 0: for all positive integers, &, there
is an explicit construction of &k, ¢) extractor E : {0,1}" x {0,1}% — {0,1}™ with d = O(logn) and
m > (1 — a)k.

Proof. Given constanty,e > 0, apply Theoren¥.6 to obtain ad = 1 — ~ for a constanty > 0 and
an explicit (k,¢/2) extractorE : {0,1}% x {0,1}¢ — {0,1}" with a = [k/(1 — v)], t < loga, and
m2=(1—a)a>(1—ak.

By Theoreni4.3 there is an explicit —_/; k + d condenseC' : {0,1}" x {0,1}* — {0, 1}° with
u = O(logn) andb < (1 +~v/2) - k + 2u < a, where the latter inequality holds because we may assume
k > (4u + 2)/~. (Otherwise a trivial extractor that outputs its seed will satisfy the theorem.)

By Propositioni4.5, we obtain a(k, ¢) extractorE : {0,1}" x {0,1}¢ — {0,1}" with seed length
d =t +u = O(logn) and output lengtm > (1 — a)k. O

4.3 Extractors for arbitrary error

In this section, provide a self-contained construction of extractors that are optimal up to constant factors,
with no constraint on the error parameter. It is obtained by combining our condenser with the ideas from the
early constructions of extractorgucl, INZ,|SZ, Zucz, /IGW]. Beyond our condenser, the only tools needed

are the universal hashing and some simple (and standard) methods to compose extractors. In this section,
we often use the term-sourceto mean a random variable with min-entropy at ldast

4.3.1 The Leftover Hash Lemma

The Leftover Hash LemmalllL], which predates the general definition of extract@&], shows that
universal hash functions are randomness extractors, albeit with a large seed length:

Lemma 4.8 (ILL]). Forall n € N, k£ < n, ande > 0, there is an explici{k, ¢) extractorE : {0,1}" x
{0,1}¢ — {0,1}™ withd = n andm > k + d — 21og(1/e).

Note that the output length is optimal, but the seed length is linear rather than logarithidéverthe-
less, this extractor was a very useful component in early constructions of extractors with (poly)logarithmic
seed lengthZucl, INZ,[ZucZ). Indeed, it was dubbed the “Mother of all Extractors” by NisBIT].

Proof Sketch.We associatg0, 11" = {0, 1} with the finite fieldF of size2". Givenz,y ¢ F, we define
E(z,y) = (v, zy|m), Wwherezy|,, is the firstm = [k + d — 21log(1/¢)| bits of the producty € F.

The fact that this is &k, <) extractor follows from the Leftover Hash Lemmidl] and the fact that
the set of functiong., () = zy|,, is 2-universal. For completeness, we sketch the proof hereXLise
ak-source on{0, 1}", andY be uniform on{0, 1}%. Then, it can be shown that tleellision probability’
of B(X,Y) = (Y,XY|n) isatmost(1/D) - (1/K + 1/M) < (1 + 2¢%)/(DM). (1/D is the collision
probability of Y, 1/K is the collision probability ofX, and1/M is the probability that’Y = 2'Y for
any two distinctr # 2’.) This is equivalent to saying that tie distance of the distributiof’(X,Y') from

*Thecollision probabilityof a random variabl& is 3~ , Pr[Z = z]* = Pr[Z = Z'], whereZ' is an iid copy ofZ.
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uniform is at most,/2¢2/DM < 2¢/v/DM. Then the statistical distance to uniform equals 1/2#he
distance, which in turn is at most a factorgD M larger than the, distance. O

We note that by composing our lossless condenser (Thedi/@mwith this extractor via Propositiof.5,
we can reduce the seed length frarto O(k + log(n /<)), matching the low min-entropy extractors &4]
(which are based on generalization of the Leftover Hash Lemma to almost-universal hash functions):

Lemma 4.9. For every constantv > 0, for all n € N, k& < n, ande > 0, there is an explicit extractor
E :{0,1}" x {0,1}¢ — {0,1}™ withd = (1 + o)k + O(log(n/e)) andm > k + d — 2log(1/¢) (the
constant inO(log(n/¢)) depends o).

Remark 4.10. It was pointed out to us by Michael von Korff and Kai-Min Chung that the seed length
can be reduced further @k + O(log(n/c)) for an arbitrarily small constant > 0 by condensing to
lengthn’ = (1 + «)k + O(log(n/¢)), and then applying the “high min-entropy” extractor @W/], which

requires a seed of lengtti — k& + O(log(1/¢)) = ak + O(log(n/e)) and has optimal output length =

k 4+ d — 2log(1/e) — O(1) (if implemented using Ramanujan expander graphs). In the next section, we
will see another way (Lemmé.1]) to achieve this constant-factor savings in seed length, which has the
advantage of being self-contained (not relying on Ramanujan expanders) but has the disadvantage of only
extracting a constant fraction of the min-entropy.

4.3.2 An extractor with seed much shorter than its output

Our goal in this subsection is to constructing the following extractor, which will be the main building block
for our recursive construction:

Lemma 4.11. For everyconstant > 0 and all positive integera > k and alle > 0, there is an explicit
(k,e) extractorE : {0,1}" x {0,1}¢ — {0, 1}™ withm = [k/2] andd < k/t + O(log(n/e)).

The point is that this extractor has a seed length that is an arbitrarily large constant factor (namely
t/2) smaller than its output length. This will be useful as a building block for our recursive construction
of extractors optimal up to constant factors in SecdoB.a We now turn to defining block sources and
collecting basic results about extracting randomness from them.

A block sources a useful model of a weak random source that has more structure than an arbitrary
k-source:

Definition 4.12 ([CG]). X = (X1,X2,...,X¢)isa(ky, ke, ..., k) block sourcef for everyzy, ..., z;_1,
XilX1=a1,..X;_1=2;_, IS @k;-source. Ifk; = ky = --- = k; = k, then we callX at x k block source

Note that a k1, k2, . . ., k¢) block source is also @ + - - - + k¢)-source, but it comes with additional
structure — each block is guaranteed to contribute some min-entropy. Thus, extracting randomness from
block sources is easier task than extracting from general sources. Indeed, we have the following standard
lemma:

Lemma 4.13. Let By : {0,1}™ x {0,1}% — {0,1}™ be a(k;,¢1)-extractor, andEs : {0,1}"2 x
{0,1}92 — {0,1} be a(kq, e2)-extractor withmy > di. DefineE’((x1,x2),v2) = (E1(21,y1), 22),
where(y;, z2) is obtained by partitioningZs (x4, y2) into a prefixy; of lengthd; and a suffixzs of length
mo — dl.
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Then for everyky, k2) block sourceX = (X, X2) taking values in{0,1}"* x {0,1}"2, it holds that
FE'(X,Ugq,) is (£1 + £2)-close toUy,, x Upy,_d, -

Proof. (Xl, Yl, Zz) = (Xl, EQ(X2, Udz)) is 52-C|OS€ tO(Xl, Umz) = (Xl, Udl?Umzfdl)'
Thus,(E1(X1,Y1),Z2) ises-close to( £ (X1, Uq; ), Um,—d, ), Whichise-close tq U, , Um,—d; )-
By the triangle inequalityE’ (X, Ug,) = (E1(X1, Y1), Z2) is (e1+¢2)-close to U, , Umy—d,)- O

The benefit of this composition is that the seed lengtlizokquals that of only one of the extractors
(namelyE»), rather than being the sum of the seed lengths. Thus, we get to extract from multiple blocks at
the “price of one.” Moreover, since we can take= mo, which is typically larger thaw-, the seed length
of E' can even be much smaller than thatsf.

The lemma extends naturally to extracting from many blocks:

Lemma4.14.Fori=1,...t letE; : {0,1}" x {0,1}% — {0,1}™ be a(k;, ¢;)-extractor, and suppose
thatm; > d;_, for everyi = 1,...,t, where we defindy = 0. DefineE’((z1,...,x¢),yt) = (21, -+, 2t),
where fori = t,...,1, we inductively definéy;_1, z;) to be a partition ofE;(x;, y;) into ad;_1-bit prefix
and a(m; — d;_1)-bit suffix.

Then for everyky, ..., k) block sourceX = (X4y,...,X¢) taking values if0, 1}t x --- {0, 1}™, it
holds thatE’ (X, U, ) is e-close toU,, fore = 3>'_ e;andm = 3¢ (m; — di—1).

In light of this composition, many constructions of extractors work by first converting the source into
a block source and then applying block-source extraction as above. Our construction will also use this
approach (recursively). It is based on the observation that our condenser gives a very simple way to convert
a general source into a block source. Indeed, every source of sufficiently high min-entropy is already a block
source.

Lemma 4.15.If X is a(n — A)-source of lengtln, and X = (X3, X2) is a partition of X into blocks of
lengthsn; andng, then(Xy, X2) is e-close to somén; — A, ns — A — log(1/<)) block source.

The intuition behind the above lemma is thatXifis missing onlyA bits of entropy, then no substring
of it can be missing more thaf bits of entropy (even conditioned on the others). The addititral /<)
bits of entropy loss iX 5 is to ensure that the min-entropy Xk is high conditioned on all but anfraction
of values ofXj.

Consider ak-sourceX of lengthn = (4/3)k, i.e. the source has min-entropy ratél, as can be
achieved by applying our condenser. Then settig= k/3 and breakingX into two halves of length
n/2 = (2/3)k, we have a block source in which each block has min-entropy rougfdy Then, by
Lemma4.13 if we want to extract2(k) bits using a seed of lengthi(log n), it suffices to have &k/3, <)
extractorF; with output lengthm; = Q(k) and a(k/3, ) extractorE, with seed lengthls = O(logn)
such that the output lengihy of Es is at least the seed length of E; (e.g. both can beoly(log k)). By
now, there are many such paitg;( E5) in the literature, some of which are quite clean and direct. Still,
we do not use that approach here, because it is not self-contained, and, more importantly, it does not yield
extractors with arbitrarily small errar.

By induction, we have the following:
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Corollary 4.16. If X isa(n— A)-source of length, and X = (X, Xa2,...,X¢) is a partition of X into ¢
blocks, each of length at least, then(X, X2, ..., X}) iste-close to someé x (n’ — A —log(1/¢)) block
source.

Returning to our goal of constructing the extractors of Lenahnid, here is our plan for the proof. To
convert a generat-sourceX into a block source with = O(1) blocks, we can first use our condenser of
Theorenmé.3to obtain ak-sourceX’ of length(1 + «)k for a sufficiently small constant, which we then
break intof equal-sized blocks. By applying Corolladyléwith A = ak, the result will be close to a source
with min-entropy at least/t — ak = (k) per block, providedv < 1/t. Applying block-source extraction
with the extractor of Lemma4.8& we obtain extractor promised in Lemiid 1l The formal details follow.

Proof of Lemmé&4.11 Roundt up to an integer, and sety = ¢/(4¢ + 1). Given ak-sourceX, we
apply the condenser of Theoréh® with errorey and parameter = 1/(6t). With a seed of length’ =
O(log(n/e0)) = O(log(n/¢)), this provides us with aX’ of length at most’ = (1 + a)k + O(log(n/¢))
that isey-close to a-source.

Next, we partitionX’ into 2¢ blocks, each of size” = |n//(2t)| orn” +1. By Corollary4.16 the
resultis(eg + 2tep)-close to &t x k” source, where

K" =n" —ak — O(log(n/e)) = k/(2t) — ak — O(log(n/e)) = k/(3t) — O(log(n/e)) .

Now we perform block-source extraction using the “Leftover Hash Lemma” extrd¢tasf Lemmal4.8
with input lengthn” + 1, min-entropyk”, and errorz, to extract from each block. The seed length fgf
isd” <n"+1=k/t+ O(log(n/e), and output lengthn” > max{d”, k" + d" — 21og(1/e0)}. (Output
lengthm” = d” is always achievable by simply having the extractor output its seed.)

Applying the block-source extractor of Lemmal4 with E; = E” for everyi, the number of bits we
extract is

m > 2t-(m" —d") =2t (kK" —2log(1/eg)) = 2k/3 — O(log(n/e)) > [k/2]

(the last step follows since # < O(log(n/e)) we can simply output the seed). The statistical distance
increases by at mo8t - ¢y, for an output that has distance at mpgt+ 1) - 9 = e from uniform. The total
seed length needed for the block-source extractiahisd” = k/t + O(log(n/¢)). O

4.3.3 The recursion and extractors optimal up to constant factors

We now apply the above techniques recursively to construct an extractor that is optimal up to constant factors
for all settings of parameters. This extractor outputs only half of the min-entropy from the source, but we
will be able to easily boost this to an output length(df— «)k for any desired constant > 0, using
standard techniques (Theor@&mi9.

Theorem 4.17. For all positive integersy, k and alle > 0, there is an explicit construction of @, ¢)
extractorE : {0,1}" x {0,1}* — {0,1}™ withd = O(logn + log(1/¢)) andm > k/2.

Overview of the ConstructionNote that for small min-entropieks, namelyk = O(log(n/¢)), this is

already achieved by Lemmdé 11 with seed lengthi smaller than the output lengtih by any constant
factor. (If we allowd > m, then extraction is trivial — just output the seed.) Thus, our goal will be
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to recursively construct extractors for large min-entropies using extractors for smaller min-entropies. Of
course, ifE : {0,1}" x {0,1}¢ — {0,1}™ is a(ko, ) extractor, say withn = ko/2, then itis also dk, ¢)
extractor for every: > ky. The problem is that the output length is okly/ 2 rather thark /2. Thus, we need

to increase the output length. This can be achieved by simply applying extractors for smaller min-entropies
several times.

Lemma 4.18 (WZ, RRV]). Supposef; : {0,1}" x {0,1}% — {0,1}™ is a (k1, 1) extractor and
Ey : {0,1}" x {0,1}% — {0,1}™2 is a (kq,e2) extractor forky < k; —my — s. ThenE’ : {0,1}" x

(0,1}%+ . {0,1}™+m2 defined byE'(x, (y1,42)) = E1(z,31) 0 Balz, yo) is a (kr, (1/(1 — 279)) -

€1 + £2) extractor.

The intuition is that most outputs d@; have probability mass: 27™1; thus after conditioning on the
output of F1, the source still has min-entropy k1 — mj.

To see how we might apply this, consider setting= .8k andm; = k1/2,e1 = e3 = ¢, s = 1,
ke = k1 —mq — 1 € [.3k, .4k], andmg = k2/2. Then we obtain &k, 3¢) extractorE’ with output length
m = mi + mg > k/2 from two extactors for min-entropigs , ko that are smaller thah by a constant
factor.

Now, however, the problem is that the seed length grows by a constant factor (@g.=ifds, we
get seed lengthd rather thani). Fortunately, block source extraction (Lemhdsd with the extractor of
Lemmad4.11las Es) gives us a method to reduce the seed length by a constant factor. (The seed length of
the composed extractdt’ will be the same of that a&», which will be a constant factor smaller than its
output lengthms, which we can take to be equal to the seed lerfgtbf E;. Thus, the seed length &’
will be a constant factor smaller than thatff.) To apply this, we will convert our source to a block source
by condensing it to high min-entropy rate and applying Coroltafé

One remaining issue is that the ereostill grows by a constant factor. However, we can start with
polynomially small error at the base of the recursion and there are only logarithmically many levels of
recursion, so we can afford this blow-up.

We now proceed with the proof details. It will be notationally convenient to do the steps in the reverse
order from the description above — first we will reduce the seed length by a constant factor, and then apply
Lemmad4.18to increase the output length.

Proof of Theorerd.17. Fix n € N andey > 0. Setd = clog(n/ep) for an error parameter, and a
sufficiently large constant to be determined in the proof below. (To avoid ambiguity, we will keep the
dependence anexplicit throughout the proof, and all big-Oh notation hides universal constants independent
of ¢.) Fork € [0,n], leti(k) be the smallest nonnegative integesuch thate < 2° - 8d. This will be the

level of recursion in which we handle min-entropynote thati(k) < log k& < logn.

For everyk € [0, n], we will construct an explici, : {0, 1}" x {0, 1}¢ — {0, 1}*/2 thatis a(k, ;1))
extractor, for an appropriate sequenge< 1 < ¢2---. Note that we require the seed length to remain

d and the fraction of min-entropy extracted to remain 1/2 for all valuels. ofFhe construction will be by
induction oni(k).

Base Case: i(k) = 0, i.e. k£ < 8d. The construction o follows from Lemmed.1], settingt = 9 and
takingc to be a sufficiently large constant.
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Inductive Case: We constructzy, for i(k) > 1 from extractorsEy, with i(k') < i(k) as follows. Given a
k-sourceX of lengthn, E; works as follows.

1. We apply our condenser (Theor@hg) to convertX into a sourceX’ that isey-close to a-source of
length(9/8)k + O(log(n/eo)). This requires a seed of lengthlog(n/<p)).

2. We divideX'’ into two equal-sized halvgX;, X3). By Corollary4.16 (X, X2) is 2¢¢-close to a
2 x k' block source for
kK =k/2 —k/8 — O(log(n/ep)) -

Note thati(k') < i(k). Sincei(k) > 1, we also havé’ > 3d — O(log(n/eco)) > 2d, for a sufficiently
large choice of the constant

3. Now we apply block-source extraction as in Lemihd3 We takeE> to be a(2d,ey) extractor
from Lemma4.11 with parametet = 16, which will give usms = d output bits using a seed of
lengthdy = (2d)/16 + O(log(n/eo)). For Ey, we use our recursively constructégl,, which has
seed lengthl, errore; .y, and output lengthix’/2] > k/6 (where the latter inequality holds for a
sufficiently large choice of the constantbecausé > 8d > 8clog(1/¢)).

Allin all, our extractor so far has seed length at mi&t+ O(log(n/eo)), error at most; ) +O(eo),
and output length at least/6. This would be sufficient for our induction except that the output length is
only k/6 rather thark /2. We remedy this by applying Lemn#al&

With one application of the extractor above, we extract at least k/6 bits of the source min-entropy.
Then with another application of the extractor above for min-entropy threghetdk —m; —1 = 5k/6—1,
by Lemme4.1§ we extract anotheibk /6 — 1) /6 bits and so on. After four applications, we have extracted
allbut(5/6)*-k+0(1) < k/2 bits of the min-entropy. Our seed length is thiefd /8+O(log(n/s0))) < d
and the total error is; ;) = O(g;(x)—1)-

Solving the recurrence for the error, we get= 2°0) . g5 < poly(n) - €9, SO we can obtain errarby
settingeg = ¢/poly(n). As far as explicitness, we note that computiig consists of four evaluations of
our condenser from Theore#n3, four evaluations of); for values ofk’ such that (k') < (i(k) — 1), four
evaluations of the explicit extractor from Lemiall, and simple string manipulations that can be done in
time poly(n, d). Thus, the total computation time is at ma&t) - poly(n, d) = poly(n, d). O

4.3.4 Main extractor theorem

The extractor of Theorem.17 extracts only half of the min-entropy from the source, but we can obtain
extractors that obtain any constant fraction of the min-entropy or all the min-entropy by repeated application
of Lemma4.1&

Theorem 4.19 (main extractor result). For every constantv > 0: for all positive integersn > k and
all ¢ > 0, there is an explici{k, ) extractor £ : {0,1}" x {0,1}¢ — {0,1}™ withm = (1 — a)k and
d =logn + O(log(k/¢)).

Proof. Achieving the parameters in the theorem, except with seed l€n@tig(n /<)) follows immediately

by applying Lemmat.18 O(1/«) times with both extractors being taken from Theoir7. To achieve
the promised seed lengthgn + O(log(k/<)), we first apply our condenser from Theor@hl to the
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source. This requires a seed of lengtkl logn + log k + log(1/¢) + 1 to condense the source to length
n’ <d-(k+2) = 0O(k-log(n/e)), while retaining all of the min-entropy (up to statistical distangeThen
extracting a constant fraction of the min-entropy only requires an additional seed fg{n’/¢)) =
O(logk + loglogn + log(1/¢e)) = O(log(k/c)). (We assumé > log n; otherwise we can use the trivial
extractor that just outputs the seed.) O

Note that an additional improvement of Theordri9 over Theoren#.17is that it achieves a constant
of 1 in front of thelog n. Indeed, wherk = n°(") ande = 1/n°(), the seed length is within @ + o(1))
factor of the optimal bountbg n + 2 log(1/¢) + O(1), improving over the extractors of Lu et elLRVW] in
which the seed length is only optimal to within some large constant factor. (In the conference version of this
paper GUVZ2], we also showed how to use our techniques together iticJ] to improve the seed length
of Theoren¥.19to (1 + ) log n + log k + O(1) for arbitrarily small constants, v > 0; we omit that result
here because the improvement is only for a rather limited range of parameters.)

4.3.5 Extracting all the min-entropy

Next, we give an extractor that extracts all of the min-entropy. In order to also get the min-entropy of the
seed, we will use the following variant of Lemrdal§ where the second extractor is also applied to the
seed of the first extractor.

Lemma 4.20 (RRV]). Supposel; : {0,1}™ x {0,1}% — {0,1}™ is a (k1,e;) extractor andE; :
{0, 1}t x {0,1}92 — {0, 1}™2 is a (kg, £2) extractor forky < ki +dy —my —s. ThenE’ : {0,1}™ x
{0,130t — {0,1}™+™2 defined byE'(z, (y1,v2)) = Ei(x,y1) o Ex((,y1),2) is @ (k1, (1/(1 —
27%)) - g1 + €2) extractor.

Theorem 4.21. For all positive integers: > k and alle > 0, there is an explicitk,¢) extractorE :
{0,1}" x {0,1}¢ — {0,1}™ withm = k + d — 2log(1/e) — O(1) andd = logn + O(log k - log(k/¢)).

Proof. Similar to the proof of Theore®.19 we show how to get the larger seed len@tfiog & - log(n /<))
first; then the result follows by composing the extractor with our condenser from Thdodem

By applying Lemmad.18 (with s = 1) to our extractors from Theoredh 17 (with errorey = ¢/6k)
log k times, we obtain dk,e;) extractorE; : {0,1}" x {0,1}9 — {0,1}™ with seed lengthi; =
O(logk - log(n/gp)) = O(logk - log(n/e)), output lengthm; = k, and errors; < 2 - 2198 . ¢ = £/3.
(With s = 1, each application of Lemni&.1& doubles the error and adds.) Now we use Lemm#4.20
to composeF; with the (ks,2) extractorE, : {0,137+ x {0,1}92 — {0,1}™2 from Lemma4.S, for
min-entropyks = k+d; — m; — 1 = d; — 1 and errore; = ¢/3. FE, has seed lengthy, = ko +
O(log((n + di)/e2)) = O(logk - log(n/e)), and output lengthny = ks + da2 — 2log(1/e2) — O(1).
The final extracto2’ from Lemma4.20has seed lengtth, + da = O(log k - log(n/e)) and output length
m1+m2:k+d1+d2—2log(1/5)—0(1). O

Remark 4.22. In some applications of extractors, it is useful to hatreng extractorswhere the seed ap-
pears as a substring of the output in a fixed set of coordinates. All of our extractors (namely ThebBiem
Theorenmd.19 and Theorer.21) can be made to have this property (with no loss in the claimed parame-
ters)* To achieve this, we first observe that our condenser (Thedténis already strong. (Indeed, the

“4Another common definition of strong extractor requires that the joint distribution of the seed and ositplaise to uniform. A
strong extractor with output length in that definition is equivalent to a strong extractor with output lemgth d in our definition.
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seedy is the first component of the output 6f= T" in Equation|t).) Then the fact that’ isak —. k+ d
condenser implies that for evekysourceX, C (X, Uy) is e-close to a joint distributioiUq, Z) where for
everyy € {0,1}4, Z|y,-, is ak-source. Thus, whenever we condense the source in our construction, we
can simply save the seed for the output, and operate onl as our condensed source. All of the other
compositions and transformations in our construction preserve this notion of strongness.

Remark 4.23. One of the major remaining open problems about extractors is to extract all of the min-
entropy (as in Theore.2]) with a seed length o (log(n/¢)) (as in Theoren®.19. To this end, it is
worth pointing out where we lose entropy in the proof of Theodefr®l The first place is in Lemmad.1],

but as pointed out in Remark10this can be avoided by combining our condenser with extractors from
Ramanujan expanders. The other place we lose entropy is in our (repeated) use of Ldfmdere

we view a high min-entropy source as a block source. Intuitively, the entropy loss comes because we do
not know from which of the two blocks the entropy is missing, so we pessimistically assume it is missing
from both. This entropy loss problem has arisen in previous work, and in fact the “zig-zag product” for
extractorsRVW] solves it for the case of very high min-entropy- A (where we can find optimal extractors

for sources of lengtlv (A) by exhaustive search). Needless to say, it would be very interesting to eliminate
the entropy loss in our setting too.

5 List-decoding view of lossy condensers

In Section6, we give a (arguably simpler) construction of condensers from Reed-Solomon codes instead
of Parvaresh-Vardy codes. The price for this modification is that the resulting objects are nddsstpss
condensers, but instead just ordinary (lossy) condedskrshis section, we develop a list-decoding char-
acterization of lossy condensers that will be used in the subsequent sections. For this we will need some
lemmas about min-entropy.

Proposition 5.1. A distribution D with min-entropylog(K — ¢) is ¢/ K-close to some distribution with
min-entropylog K.

Proof. The distance fronD to the closest distribution with min-entropyg K is

> (D(@)-1/K)<1—(K—c) 1/K =¢/K.
a:D(a)>1/K

O]

The following lemma gives a useful sufficient condition for a distribution to be close to having large
min-entropy:

Lemma 5.2. LetZ be a random variable an&” a positive integer.

1. Suppose that for all seff of sizeK, Pr[Z € T] < e. ThenZ is e-close to having min-entropy at
leastlog(K/¢).

2. Conversely, iZ is e-close to having min-entropy at ledsi (K /<), thenPr[Z € T| < 2¢ for all sets
T of sizeK.

*We are able to get a lossless condenser from Reed-Solomon codes when the output entropy rate id s than
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Proof. 1. Let T be a set of thek heaviest elements (under the distribution o). Let 2~¢ be the
average probability mass of the elementdinThene > Pr[Z € T| = 27'K, sol > log(K/e).

But every element outsidE has weight at mosz—¢, and with all but probability:, Z hits elements
outsideT.

2. Suppose thaZ/’ is the random variable of min-entropy at le&st( K /<) that ise-close toZ, and let
T be asetofsizé&l. ThenPr[Z € T| < Pr[Z' € T| +e < |T|- (¢/K) + & = 2¢.

O]

Now we can develop a “list-decoding” view of lossy condensers, analogous to the one we have used

for expanders (Lemma.2) and the one known for extractor§Z]. The following definition should be
compared to Definitiol3.1:

Definition 5.3. For a functionC : {0,1}" x {0,1}¢ — {0,1}™ and a sefl” C {0,1}™, define

LIST(T,¢) ey {:v : P;r[C(x,y) eT]> E} .

Similar to the situation with expanders, if we can bound the sizd$T (7', ¢) for all setsT" that are not
too large, then we have a condenser:

Lemma 5.4. Fix a functionC : {0,1}" x {0,1}¢ — {0, 1}™ and positive integer#l and L.
1. Suppose that every s&tC {0, 1} of size at mosL, we havgLIST(T,¢)| < H. ThenC'is a

log(H/e) —c log(L/e) — 1
condenser.
2. Conversely, suppose thatis a
log H —. log(L/e)
condenser. Then for every setC {0, 1} of size at mosL, we havgLIST(7, 2¢)| < H.
Proof. 1. We have a random variabl with min-entropylog(H/<). For a fixedT" of size at most,

the probability thatX is in LIST(7',¢) is at moste; if that does not happen, then the probability

C(X,Ug) lands inT' is at most. Altogether the probability’ (X, Uy) falls in T" is at most2e. Now
apply Lemmeb.2.

2. Suppose that there is a SBtC {0, 1} of size at most. for which |LIST(T,2¢)| > H. Let X be
a random variable uniformly distributed oVieIST(T', 2¢); note thatX has min-entropy greater than
log H. The probability thatC'(X, Uy) lands inT' is greater thae. By Lemma5.2, C'(X, Uy) is not
e-close to any random variable of min-entrdpy (L /<), contradicting the condenser property.

O]
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Thus, up to a constant factor in the erromndlog(1/e) bits of source min-entropy, proving that a
function is a condenser is equivalent to bounding the sizBISIT(T', )| for setsT” of a some sizd.. In the
conference version of this pap&WUV?2], we used this list-decoding view of lossy condensers to show that
we can eliminate thég & in the seed length of the condenser of Theorke&(for k = k.,.4,), at the price
of losing a constant fraction of the min-entropy. (The idea was to use the “multiple roots” tri€kSpfr
the list-decoding analysis.) We omit that result in this version because the improvement is rather small, and
instead use the lossy condenser framework to analyze a “Reed—Solomon” version of our construction.

6 Condensers from Reed-Solomon codes

We use one of the main ideas from the folded Reed-Solomon code construction of Guruswami an@GRudra [
to argue that a small modification to our construction gives a good condenser from (folded) Reed-Solomon
codes, answering a question raiseditJ]. There are two variants of the Reed-Solomon construction:
the first is lossy (it loses a constant fraction of the source entropy), but it achieves entropy rate arbitrarily
close to 1 (just like the main condenser of Theokf); the second (pointed out to us by Ariel Gabizon) is
lossless, but it only achieves entropy rate 1/2.

6.1 Lossy Reed-Solomon condenser

Let ¢ be an arbitrary prime power, and lete F, be a generator of the multiplicative grolip). Then the
polynomial E(Y) = Y9! — ( is irreducible ovefF, [LN, Chap. 3, Sec. 5]. The following identity holds
forall f(Y) € F,[Y]:

FY) = fY) = f(Y9Y) = f(CY)  (mod E(Y)).
In this case, if we modify our basic functidh(see )) slightly so that we rais¢ to successive powers ¢f
rather tham, we obtain the functiod’ : IF;‘ xFq — IE‘;”“ defined by:

C(fy) v, f(y), (f7 mod E)(y), (f© mod E)(y),---,(f" " mod E)(y)]

= [yv f(y)> f(cy)v T 7f(Cm_1y)]' (2)

In other words, our function interprets its first argument as describing a univariate polynomidl,over
degree at most — 1 (i.e., a Reed-Solomon codeword), it uses the seed to select a random location in the
codeword, and it outputs: successive symbols of the codeword, together with the seed. This is precisely
the analogue of the Shaltiel-Umansary extractor constructionSU], for univariate polynomials rather

than multivariate polynomials. Alternatively (and following the correspondence with codes described in
Section2.1), C(f,y) is they'th symbol in an encoding of the “messagg’in the “folded Reed—Solomon
code” of Guruswami and Rudr&R]. (Actually, the folded Reed-Solomon codes only tglefrom a subset

of I, in order to save on the codeword length.)

With a minor modification to the proof of Theore®n3, we show that this is good condenser:

Theorem 6.1. DefineC as in 2) and LIST(T', ¢) with respect toC' as in Definition5.3. Then for every
T C Fit! of size at most = Ah™ — 1, we have

ILIST(T,&)| < (h — 1) -
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whereA =eq — (n —1)(h — 1)m.

Proof. Let T C F;**! with [T'| < Ah™ — 1. The proof follows along the lines of TheoreBi2 We
interpolate a nonzero polynomi@(Y, Y1, Ys, ..., Y,,) that vanishes off’, and and has degree at maist 1
in Y and at mosth — 1) in eachY;. The number of coefficients of sucltaequalsAh™ which exceed$T |,

and therefore such a nonzero polynontjindeed exists. We can also ensure th&t") does not divide).

For everyf(Y) € LIST(T,¢), the polynomialR(Y") def QY f(Y), f(CY),..., f(¢"™1Y)) has more

thaneq roots, and degree at magst — 1) + (n — 1)(h — 1)m, and therefore must be the zero polynomial.
We define@* slightly differently:

Q) ¥ Qy, 2,29, 2,..., 2" ") mod E(Y).
As before,Q* is a nonzero polynomial over the extension figle: F,[Y]/(E(Y')). Further, everyf(Y")
LIST(T,¢), viewed as an element of the extension fig|ds a root ofQ*. It follows that|LIST(T’, ¢)|
deg(Q*). The degree of)* is at most

€
<

(=10 +g+¢+--+¢" ) =(h-1)-

and this proves the claimed bound. O

By picking parameters suitably in the above construction, we obtain the following condenser. Unlike our
basic condenser (TheoretrB), this condenser is no longer lossless. Instead, the ratio of the input and output
min-entropies is¢ (1 + 1/«), which means that we retain onlyd (1 + «) fraction of the min-entropy.

Theorem 6.2 (Reed-Solomon lossy condenseifor everyn € N, ¢ < n such that2’ is an integer, and
a,e > 0, there is an explicit functiod' : {0,1}" x {0,1}¢ — {0,1}" defined in) that is a

(1+1/a)lt +log(1/e) —3: bt +d —2

condenser withl < (1 + 1/a)t andn’ < (1 + 1/a)lt + d, wheret = [alog(4nt/e)], providedlt >
log(1/¢).

Proof. Seth = 2¢ and note thab!/® > 4n/c. Letq be the power of in (R'*+1/*/2 hl*1/2], Setm = ¢.

Note that
AY g — (n—1)(h — D)m > eq — nhm > £q/2,

becausg > h't1/®/2 > 2nhl /e, andm = /.

Consider the functiod” : F x F, — F/"*! defined in[2). By Theoren®.1, for everyT’ C F;**! of
size at most. = Ah™ — 1 we havelLIST (T, ¢)| < ¢™ — 1. Applying Lemmaéb.4, we find thatC' is a

q"—1 AR™ —1
log 5 —o. log o

condenser. By Propositid.1, the output distribution of the condens€ris within statistical distance
= < 27% < e of a distribution with min-entropy at least

Ah™
log <2€> >logq+lt—2=0t+d—2.
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We can thus conclude théatis a
(14+1/a)lt +log(1/e) —ac bt +d —2

condenser. This is the claimed condenser; the upper boundsar’ follow from the fact thaty = 2¢ <
o(1+1/aj)t.

Finally, the construction is explicit because a representatiy fufr ¢ a power of 2 as well as a generator
of ; can be found in timgoly (log ¢) [Shd. O

6.2 Lossless Reed-Solomon condenser

The variant in this subsection is lossless, and so it is most convenient to describe it as an expander graph first
and then apply Lemméd.2. The construction is again obtained by a careful choick and the irreducible

E(Y). In this variant we require that the parameids a prime power greater than and that; is a power

of h (solF, contains a subfield;). Let( € F;, be a generator of the multiplicative grofip) (compare with

the previous section which selected a generatdt;dfand define the polynomid(Y) = Yyh=1 —¢. The
advantage of these choices for our construction was pointed out to us by Ariel Gabizon.

We identify elements df} with polynomials oveif';, that have degree at mast- 1 (compare with the
previous section in which the polynomials were ofg). The following identity holds for alf (Y") € Fj,[Y]
and: > 0:

FOOM = f(vP) = (Y h=DEHRT 2ty — £(CY) (mod E(Y)). 3)

As usual, for ease of notation, we will refer (thhi mod F) as “f;.” Our expander is the bipartite graph
[rs : F} x F, — F7+! defined as:

def

Irs(f,9) [y, fo(y), f1(y )7 fa(y), -+ fm—1(y)]

= [y, f(y), F(Cy), F(Cy), ..., FC" )] (4)

Analogous to Theorei8.3 we have the following:

Theorem 6.3. The graphl'gs : F} xF, — IF;”“ defined in'4) is a (<K 4., A) expander fork,,q, = h™
andA = ¢ — (n — 1)(h — 1)m, providedlog;, ¢ andh — 1 are relatively prime.

Proof. The proof is exactly the same as the proof of Theo8E&nafter noting two facts: first, by Eqn3)
the degree of each of thg is at most: — 1 (even ifh — 1 is larger tham); second F(Y") as defined in this
section is irreducible oveF, [LN, Chap. 3, Sec. 5] (this is where the coprime requiremerbgpng and
h — 1 is used). O

Setting parameters we obtain (compare to The@din

Theorem 6.4 (Reed-Solomon expander¥or all positive integersV, K.« < N,andalll > ¢ > 0, there
is an explicit( <K a2, (1—€) D) expandel'rgs : [N]x[D] — [M] with degreeD = O((log N)(log K ymaz)/€)?
and M < (DK,,q:)%. Moreover,D and M are powers of 2.
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Proof. We setn = log N, k = log Kmax, andh to be the power of 2 in the randénk /<), 2(nk/c)]. Set
q = h?. Observe that — 1 and2 are relatively prime, so Theoref3 applies. The remainder of the proof
proceeds exactly as the proof of Theoi8rfwith oo = 1. O

Finally, applying Lemmat.2, we immediately obtain the following lossless condenser based on Reed-
Solomon codes:

Theorem 6.5 (Reed-Solomon lossless condenselfr everyn € N, k0 < n, ande > 0, there is an
explicit functionC : {0,1}" x {0,1}¢ — {0,1}™ with d = 2(logn + log kynaz + log(1/e)) + O(1) and
m < 2(d + kmaqg) such that for allk < k4., C is ak —. k + d (lossless) condenser.

6.3 Limitation of the Reed-Solomon condensers

For the Reed-Solomon-based construction, a relatively simple argument shows that the entropy rate must in
general be a constant less than 1. The example below comes®@H®Z TZ] (it applies to the function
I'rg as well as the functiot’ from Eqn. @), for which it is stated):

Lemma 6.6. DefineC' as in Eqn. R). For every positive integer < n such thap|(q — 1), there is a source
X with min-entropy at leasitn/p| - log ¢ for which the support of (X, Uy, o) is entirely contained within
a set of sizev™, wherew = (¢ — 1)/p + 1.

Proof. Take the source to beth powers of all polynomials ovéf, of degree at most(n — 1)/p]. Every
output symbol ofC' is an evaluation of such a polynomial, and therefore mustpé¢hapower or 0. There

are thus onlyw = (¢ — 1)/p + 1 possible output symbols, so the output is contained within a set of size
w™. ]

For such a sourcX, the output min-entropy of' is at mostm log w and the output length is: log g.
Thus the output entropy rate is at most
logw 1 log p
logqg ~~  logq’
So for example, for a source obtained wher~ /n, the Reed-Solomon condeng@éryields constant
entropy rate bounded away frohrunless the seed lenglbg g is w(log n).

This implies that the entropy rates obtained in Theorérgsind6.5 are not an artifacts of the analysis.
That is, it is not possible to improve the entropy rates (e.gl teo(1)) simply by giving a different,
improved analysis.

7 Application to Storing Sets

Buhrman, Miltersen, Radhakrishnan, and Srinivag&MRV] showed that unbalanced expanders with ex-
pansion close to the degree can be used to construct the following kind of data structures for storing sets:

Definition 7.1. Arandomized bitprobe data structure for set membershigsists of two algorithms:

¢ A (deterministicencoding algorithnthat takes a set C [N] of sizeL (specified as a list of elements),
a parametee > 0, and outputs an encodiny < {0, 1}M.
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¢ A (randomizedyecoding algorithnthat is given the paramete¥, L, ¢, an element: € [N], and
oracle acces® the encodingX, and outputs a bib.

We require that ifX is the output of the encoding algorithm on st then for everyx, the decoding
algorithm’s output will correctly indicate whether or netis in S, with probability at leastl — ¢ over the
algorithm’s coin tosses. A-queryscheme is one in which the decoding algorithm makes at qgnpstries
to the encodingX. M is called thelengthof the data structure, andthe error probability.

We say the data structure éxplicit if the encoding can be computed in time polynomial in its input and
output lengths, i.e. timpoly (L, log N, log(1/¢), M) and the decoding can be computed in time polynomial
in its input length, i.e. timgoly (log NV, log(1/¢)).

The construction of such data structures from expanders is given by the following theorem. As observed
by Ta-ShmaTa], to have an explicit data structure, we need an expander that not only has an efficiently
computable neighbor function but which can also be efficiently “list decoded.”

Theorem 7.2 (implicit in [BMRV], explicit in [Ta-]). If there is a(<2L, (1 — ¢)D) expander : [N] x
[D] — [M], then there is a randomized one-query bitprobe data structure for subsg{s of size at most
L with lengthM and error probability at moste.

Moroever, if the expander is explicit and for every $etC [M] of size at mosL D, we can compute
LIST(T,4¢) in timepoly (L, log N,log(1/¢), M), then the data structure is explicit.

With an optimal expander we hawé¢ = O(LD) = O(L - (log N)/¢); therefore, the length of the data
structure is only arD(1/¢) factor larger than thé.log NV bits that are needed describe the Setithout
concern for efficient membership tests.

We now observe that our expanders have the list decoding property needed for THebrem

Lemma 7.3. Definel : F' x F, — F"*! asin (1). Then giveril’ C F/"*! ande > 0, we can compute
LIST(T,¢) intimepoly(|T'|, n, m, q,log h) provided thai7T'| < Ah™ —1, whereAd = eq—(n—1)(h—1)m.

Proof. The observation is that essentially the proof of Theo®&fhgives analgorithm for computing
LIST(T,e). (The proof of Theorer3.2 corresponds to the case that= 1, but as seen in the proof of
Theorem6.], it generalizes to arbitrary if we setA = eq — (n — 1)(h — 1)m.) We go through the steps
here:

e SetH = [(|T] + 1)/A]. Find a polynomialQ(Y, Y1, ...,Y,,) vanishing onl" with nonzero coef-
ficients on monomials of the on"Mj(Yl,Yg,...7Ym) for0<i<A-land0 < j < H-1
(borrowing the notation from the proof of Theor&h§). This requires solving a linear system oWgr
with |7'| equations andlH unknowns. To ensur@ is not divisibly by £(Y"), we repeatedly remove
factors of E(Y'); there can by at most /(n — 1) such factors.

e As in the proofs of Theoreni8.3 and6.1, every f(Y) € LIST(T,¢) is a root of the polynomial
Q*(2) = Q(Y,Z,z",...,Z" Y mod E(Y) overF = F,[Y]/E(Y). We constructQ* by first
substituting theZ variable and then reducing different univariate polynomialg;(Y"), each of de-
gree at mostl — 1, moduloE(Y), which is of degree at most— 1.

e Find the rootsf of @*(Z), which is a polynomial of degree at maS8t— 1 over the fieldF, which is
of sizeq™.
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e For each such roof, check whether it is an element bfST(7', ), which can be done by counting
how many of itsy neighbord’(f, y) are inT'.

All of these steps can be done in timely (|T'|, n, m, g, log h). O

Plugging our expanders into Theordh, we obtain the following:

Theorem 7.4. For everyN, L < N, ande, a > 0, there is a randomized one-query bitprobe data structure
for subsets of V] of size at mosL with error probability at most and length

O(1+1/a
9

Proof. We show how to achieve the claimed length with error probability at dwf&ir anys > 0, which is
equivalent to the above theorem up to a change in the hidden constant. We will apply Tie®vath our
expander’ defined in Equatioril). We will set the parameters m, ¢, andh as in the proof of Theoreld\.5,
for Kae = [L/3e]. (Note that the upper bound @nis not a problem, since here we may assums€ 1
wlog.) This gives a right-hand side of size

O(1+1
M < D?. Kito — (k)gN) e LM

mazr
9

sinceD = ((log N)/e)00+1/a),

SinceK 4 = 2L, we have an explicit<2L, (1—¢)D) expander and the first condition of Theor&ré
is satisfied. For the second condition, we will use Lenifrato ensure that we can efficiently compute
LIST(T,4¢) for everyT of size at mostLD. Recalling thatD = ¢, this imposes the constraitity <
Ah™—1,whereA = 4eq—(n—1)(h—1)m. The settings in Theore@Sensure thag > (n—1)(h—1)m/e,
so we haved > 3eq. They also ensure that” > K,,... Thus, we have

AR™ > 3eqK par > Lg + 1,

as desired. Thus, we can compli§T (7', 4¢) for |T'| < LD intimepoly(|T|, n,m,q,logh) = poly(M).
]

The optimal setting of in the above theorem is = ©(1/(loglog N + log(1/<))/log L), which leads
to a bound of

log N
€

o(1)
) - exp <\/(10g log N + log(1/¢)) - log L) :

Previous explicit constructions achievéfl = O(L? - (log N)/<?) [BMRV] and M = L - exp((loglog N +
log(1/€))3) [Ta]. Our bound is an improvement when

-z

(log N)/2)*") < L < exp(o((log log N + log(1/2))?)).
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8 Conclusions

The “list-decoding” view of expanders and condensers used in this paper seems to be quite powerful, leading
to constructions that are more direct, achieve improved parameters. It is thus natural to ask how far this
approach can be pushed. Constructing unbalanced expanders with expansion close to the degree where the
degree and/or size of the right-hand side are witlinstant factor®f optimal is a natural next goal. This

is closely related to question of constructing truly optimal extractors, ones that are optimahdgitive
constants in the seed length and/or output length. Towards this end, we wonder if there is some variant of
our construction with a better entropy rate — the next natural threshold is to have etdéfaggncyonly

k(). Another interesting question is whether some variant of these constructions can give a block-wise
source directly. Depending on the actual parameters, either of these two improvements have the potential
to lead to extractors with optimal output length (i.e. ones extract all the min-entropy). Alternatively, if we
can find an extractor with optimal output length for high min-entropy (88w), then, by composing it with

our condenser, we would get one for arbitrary min-entropy. Yet another approach is to eliminate the entropy
loss in our recursion construction; see Rem&ag&

We also wonder whether these new techniques can help in other settings. For example, can we use
them to argue abouwtomputationaklinalogues of the objects in this paper — pseudorandom generators and
pseudoentropy generators? Or, can variants of our constructions yield so-called “2-source” objects, in which
both the source and the seed are only weakly random? In recent Rdfkd 3-source extractor was
constructed using the techniques from this paper, for the case when one of the sources is much shorter than
the other two. Whether one can remove this length restriction and construct a general 3-source (or even
2-source) extractor remains open.
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