
1

CS38

Introduction to Algorithms

Lecture 8

April 24, 2014

April 25, 2014 CS38 Lecture 8 2

Outline

• Divide and Conquer design paradigm

– closest pair (finishing up)

– the DFT and the FFT

– polynomial multiplication

– polynomial division with remainder

– integer multiplication

– matrix multiplication

Closest pair in the plane

• Given n points in the plane, find the

closest pair

April 25, 2014 CS38 Lecture 8 3

Closest pair in the plane

• Divide and conquer approach:

– split point set in equal sized left and right sets

– find closest pair in left, right, + across middle

April 25, 2014 CS38 Lecture 8 4

Closest pair in the plane

• Divide and conquer approach:

– split point set in equal sized left and right sets

– find closest pair in left, right, + across middle

April 25, 2014 CS38 Lecture 8 5

Closest pair in the plane

• Divide and conquer approach:

– split point set in equal sized left and right sets

– time to perform split?

– sort by x coordinate: O(n log n)

– running time recurrence:

T(n) = 2T(n/2) + time for middle + O(n log n)

April 25, 2014 CS38 Lecture 8 6

Is time for middle as bad as O(n2)?

2

Closest pair in the plane

Claim: time for middle only O(n log n) !!

• key: we know d = min of

April 25, 2014 7

distance between

closest pair on left

distance between

closest pair on right

Ã 2d !

Observation: only

need to consider

points within distance

d of the midline

Closest pair in the plane

• scan left to right to identify, then sort by y coord.

– still (n2) comparisons?

– Claim: only need do pairwise comparisons 15
ahead in this sorted list !

April 25, 2014 CS38 Lecture 8 8

Ã 2d !

Closest pair in the plane

• no 2 points lie in

same box (why?)

• if 2 points are within ¸

16 positions of each

other in list sorted by y

coord…

• … then they must be
separated by ¸ 3 rows

• implies dist. > (3/2)¢ d

April 25, 2014 CS38 Lecture 8 9

Ã 2d !

d/2 by d/2

boxes

Closest pair in the plane

• Running time:

T(2) = O(1); T(n) = 2T(n/2) + O(n log n)

April 25, 2014 CS38 Lecture 8 10

Closest-Pair(P: set of n points in the plane)

1. sort by x coordinate and split equally into L and R subsets

2. (p,q) = Closest-Pair(L)

3. (r,s) = Closest-Pair(R)

4. d = min(distance(p,q), distance(r,s))

5. scan P by x coordinate to find M: points within d of midline

6. sort M by y coordinate

7. compute closest pair among all pairs within 15 of each other in M

8. return best among this pair, (p,q), (r,s)

Closest pair in the plane

• Running time:
T(2) = a; T(n) = 2T(n/2) + bn¢log n

 set c = max(a/2, b)

Claim: T(n) · cn¢log2n

Proof: base case easy…

 T(n) · 2T(n/2) + bn¢log n

 · 2cn/2(log n - 1)2 + bn¢log n

 < cn(log n)(log n - 1) + bn¢log n

 · cnlog2 n

April 25, 2014 CS38 Lecture 8 11

Closest pair in the plane

• we have proved:

• can be improved to O(n log n) by being

more careful about maintaining sorted lists

April 25, 2014 CS38 Lecture 8 12

Theorem: There is an O(n log2n) time

algorithm for finding the closest pair

among n points in the plane.

3

The DFT,

the FFT,

and polynomial

multiplication

April 25, 2014 CS38 Lecture 8 13

Roots of unity

• An n-th root of unity is an element ! such
that !n = 1

– primitive if !k 1 for 1 · k < n

• examples:
– in C: e2¼i/n = cos(2¼/n) + i¢sin(2¼/n)

is a primitive n-th root of unity

– in integers mod 7: 2 is a primitive 3-th root of
unity

April 25, 2014 CS38 Lecture 8 14

Roots of unity

• An n-th root of unity is an element ! such

that !n = 1

– primitive if !k 1 for 1 · k < n

• key property:

 !n-1 + !n-2 + … + !1 + !0 = 0

why? ! 1 and

0 = !n - 1 = (! – 1)(!n-1+!n-2+…+!1+!0)

April 25, 2014 CS38 Lecture 8 15

Discrete Fourier Transform (DFT)

• Given n-th root of unity !, DFTn is a linear

map from Cn to Cn:

• (i,j) entry is !ij

April 25, 2014 CS38 Lecture 8 16

Fast Fourier Transform (FFT)

• Given vector x 2 Cn, how many operations

to compute DFTn¢x?

• standard matrix-vector multiplication: O(n2)

April 25, 2014 CS38 Lecture 8 17

Fast Fourier Transform (FFT)

• try Divide and Conquer:

• would lead to

– T(n) = 4T(n/2) + time to split/combine

which implies T(n) = (n2)

April 25, 2014 CS38 Lecture 8 18

4

Fast Fourier Transform (FFT)

• DFTn has special structure (assume n= 2k)

– reorder columns: first even, then odd

– consider exponents on ! along rows:

0 0 0 0 0 0 … 0 0 0 0 0 0 …

0 2 4 6 8 10 … 1 3 5 7 9 11 …

0 4 8 12 16 20 … 2 6 10 14 18 22 …

0 6 12 18 24 30 … 3 9 15 21 27 33 …

0 8 16 24 32 44 … 4 12 20 28 36 40 …

multiples of:

0

2

4

6

8

same multiples plus:

0

1

2

3

4

rows repeat twice since !n = 1

Fast Fourier Transform (FFT)

• so we are actually computing:

• so to compute DFTn¢x

 April 25, 2014 20

FFT(n:power of 2; x)

1. let ! be a n-th root of unity

2. compute a = FFT(n/2, xeven)

3. compute b = FFT(n/2, xodd)

4. yeven = a + D¢b and yodd = a + !n/2 ¢D¢b

5. return vector y

CS38 Lecture 8

D = diagonal matrix
diag(!0, !1, !2, …, !n/2-1)

!2 is (n/2)-th

root of unity

Fast Fourier Transform (FFT)

• Running time?

– T(1) = 1

– T(n) = 2T(n/2) + O(n)

– solution: T(n) = O(n log n)

April 25, 2014 CS38 Lecture 8 21

FFT(n:power of 2; x)

1. let ! be a n-th root of unity

2. compute a = FFT(n/2, xeven)

3. compute b = FFT(n/2, xodd)

4. yeven = a + D¢b and yodd = a + !n/2 ¢D¢b

5. return vector y

Discrete Fourier Transform (DFT)

• entry (i,j) of DFTn is !ij (n-th root of unity !)

• claim: entry (i,j) of inverse-DFTn is !-ij/n

• entry (a,b) of this product is

 k !
ak!-kb = k !

(a-b)k = n if a=b; 0 otherwise

April 25, 2014 CS38 Lecture 8 22

Discrete Fourier Transform (DFT)

April 25, 2014 CS38 Lecture 8 23

Theorem: can compute DFT and

inverse-DFT in O(n log n) operations

• extremely efficient in practice

– parallel implementation via “butterfly circuit”

butterly circuit from CLRS

April 25, 2014 CS38 Lecture 8 24

5

the DFT and polynomials

• given a polynomial

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n-1

• observe that DFTn¢a gives evaluations of a

at !i for i=0,1,…, n-1

April 25, 2014 CS38 Lecture 8 25

the DFT and polynomials

• since DFTn¢a gives evaluations of a at !i

for i=0,1,…, n-1…

• inverse-DFTn¢(vector of these evaluations)

must give back a

April 25, 2014 CS38 Lecture 8 26

Polynomial multiplication

• given two polynomials

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n-1

b(x) = b0x
0 + b1x

1 + b2x
2 + … + bn-1x

n-1

• we want to compute the polynomial

a(x)¢ b(x)

 of degree at most 2n-2

• standard method takes O(n2) operations

April 25, 2014 CS38 Lecture 8 27

Polynomial multiplication

• given two polynomials

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n-1

b(x) = b0x
0 + b1x

1 + b2x
2 + … + bn-1x

n-1

– DFT2n¢a and DFT2n¢b give evaluations of a, b

at !i for i = 0,1,…, 2n-1

– can get evaluations of a¢b at same points

since a(!i)¢b(!i) = (a¢b)(!i)

– inverse-DFT2n applied to (vector of these
evaluations) gives back a¢b

April 25, 2014 CS38 Lecture 8 28

Polynomial multiplication

• Running time?

– O(n log n) for FFT and inverse-FFT

– O(n) to multiply pointwise

• overall O(n log n)

 April 25, 2014 CS38 Lecture 8 29

polynomial-product(a, b: coeffs of degree n polynomials)

1. compute u = FFT(2n, a)

2. compute v = FFT(2n, b)

3. multiply vectors u,v pointwise to get vector w

4. return(inverse-FFT(2n,w))

Polynomial division

check: x4 + 3x3 + 7x – 12 equals

(x2 + 2)(x2 + 3x - 2) + (x – 8) = (x4 + 3x3 + 6x - 4) + (x – 8)

April 25, 2014 CS38 Lecture 8 30

x4 + 3x3 + 7x - 12 x2 + 2

x2

x4 + 2x2

 3x3 - 2x2 + 7x - 12

+ 3x

 3x3 + 6x

 - 2x2 + x - 12

remainder : x - 8 - 2

 - 2x2 - 4

 x - 8

6

Polynomial inversion

Proof: induction on i

base case: fg0 ≡ f(0)g0 = 1¢1 ≡ 1 (mod x)

1-fgi+1 ≡ 1-f(2gi –f(gi)
2) ≡ (1 - fgi)

2 ≡ 0 mod x2i+1

April 25, 2014 CS38 Lecture 8 31

Theorem: given polynomial f with f(0) = 1, if

g0 = 1, and

 gi+1 ≡ 2gi – (f)(gi)
2 mod x2i+1

 then fgi ≡ 1 mod x2i
 for all i.

Polynomial division

• Running time? (# operations)

– O(log k) ¢ O(k log k) = O(k log2 k)

– O(k log k) if careful about degrees in loop

April 25, 2014 CS38 Lecture 8 32

polynomial-inversion (f: coeffs of deg. n poly; int. k)

output: polynomial g satisfying fg = 1 mod xk

1. g0 = 1; r = dlog ke

2. for i = 1 to r

3. gi = 2gi – (f)(gi-1)
2 rem x2i

4. return(gr)

Polynomial division

• (monic) polys a, b of deg. m, n (m · n)

 we want polys q, r such that a = qb + r and

deg(r) < deg(b)

• key observation:

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n

xn a(1/x) = a0x
n + a1x

n-1 + a2x
n-2 + … + an-1x

0

• denote by revn(a) this polynomial: xna(1/x)

April 25, 2014 CS38 Lecture 8 33

Polynomial division

• (monic) polys a, b of deg. m, n (m · n)

 we want polys q, r such that a = qb + r and

deg(r) < deg(b)

• algebra:

revn(a) = revn-m(q)¢revm(b) + xn-m+1revm-1(r)

revn(a) ≡ revn-m(q)¢revm(b) mod xn-m+1

revn(a)¢revm(b)-1 ≡ revn-m(q) mod xn-m+1

April 25, 2014 CS38 Lecture 8 34

revn-m(b) is invertible mod xn-m+1

because constant coefficient is 1

(so revn-m(b) not divisible by x)

Polynomial division

• Running time? (# operations)

– O(n log n)

April 25, 2014 CS38 Lecture 8 35

poly-division-with-rem (a, b: coeffs of degr m, n polys)

output: polys q,r satisfying a = bq + r and deg(r) < deg(b)

1. r = deg(a) – deg(b)

2. compute inverse of revdeg(b)(b) mod xr+1

3. q* = (revdeg(a) a)¢(revdeg(b) b)-1 rem xr +1

4. return(q = revm(q*) and r = a – bq)

Polynomial multiplication and

division

April 25, 2014 CS38 Lecture 8 36

Theorem: can multiply and divide

with remainder degree n polynomials

in O(n log n) time

7

integer multiplication

• given 2 n-bit integers x, y

• compute their product xy

• standard multiplication O(n2)

• simple divide and conquer improves to

O(nlog23) = O(n1.59)

April 25, 2014 CS38 Lecture 8 37

integer multiplication

• given 2 n-bit integers x, y

• write:

– x = x1 ¢ 2
n/2 + x0

– y = y1 ¢ 2
n/2 + y0

• note: xy = x1y1¢2
n + (x1y0 + x0y1)¢2

n/2 + x0y0

• clever idea:

(x1 + x0)(y1 + y0) = x1y1 + x
1
y

0
 + x

0
y

1
 + x

0
y

0

April 25, 2014 CS38 Lecture 8 38

integer multiplication

April 25, 2014 CS38 Lecture 8 39

integer-mult(x, y: n-bit integers)

1.write x = x1 ¢ 2
n/2 + x0 and y = y1 ¢ 2

n/2 + y0

2.a = integer-mult(x1, y1)

3. b = integer-mult(x0, y0)

4. c = integer-mult(x0 + x1, y0 + y1)

5.return(a ¢ 2n + (c - a - b) ¢ 2n/2 + b)

• Running time recurrence? (# operations)

– T(n) = 3T(n/2) + O(n)

– T(n) = O(nlog23) = O(n1.59)

