CS38
 Introduction to Algorithms

Lecture 8
April 24, 2014

Outline

- Divide and Conquer design paradigm
- closest pair (finishing up)
- the DFT and the FFT
- polynomial multiplication
- polynomial division with remainder
- integer multiplication
- matrix multiplication

Closest pair in the plane

- Given n points in the plane, find the closest pair

April 25, 2014
CS38 Lecture 8

Closest pair in the plane

- Divide and conquer approach:
- split point set in equal sized left and right sets

- find closest pair in left, right, + across middle

Closest pair in the plane

- Divide and conquer approach:
- split point set in equal sized left and right sets

- find closest pair in left, right, + across middle

April 25, 2014
CS38 Lecture 8

Closest pair in the plane

- Divide and conquer approach:
- split point set in equal sized left and right sets
- time to perform split?
- sort by x coordinate: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- running time recurrence:
$T(n)=2 T(n / 2)+$ time for middle $+O(n \log n)$

Is time for middle as bad as $\mathrm{O}\left(\mathrm{n}^{2}\right)$?

April 25, 2014
CS38 Lecture 8
6

Closest pair in the plane

Claim: time for middle only $\mathrm{O}(\mathrm{n} \log \mathrm{n})$!!

Closest pair in the plane

- no 2 points lie in same box (why?)
- if 2 points are within \geq 16 positions of each other in list sorted by y coord..
- ... then they must be separated by ≥ 3 rows
- implies dist. > (3/2). d

Closest pair in the plane

- Running time:
$T(2)=a ; T(n)=2 T(n / 2)+b n \cdot \log n$ set $\mathrm{C}=\max (\mathrm{a} / 2, \mathrm{~b})$
Claim: $T(n) \leq c n \cdot \log ^{2} n$
Proof: base case easy...
$T(n) \leq 2 T(n / 2)+b n \cdot \log n$
$\leq 2 c n / 2(\log n-1)^{2}+b n \cdot \log n$
$<c n(\log n)(\log n-1)+b n \cdot \log n$
\leq cnlog ${ }^{2} \mathrm{n}$

Closest pair in the plane

- we have proved:

Theorem: There is an $O\left(n \log ^{2} n\right)$ time algorithm for finding the closest pair among n points in the plane.

- can be improved to $O(n \log n)$ by being more careful about maintaining sorted lists

The DFT, the FFT, and polynomial multiplication

Roots of unity

- An n-th root of unity is an element ω such that $\omega^{n}=1$
- primitive if $\omega^{k} \neq 1$ for $1 \leq \mathrm{k}<\mathrm{n}$
- key property:

$$
\omega^{n-1}+\omega^{n-2}+\ldots+\omega^{1}+\omega^{0}=0
$$

why? $\omega \neq 1$ and
$0=\omega^{n}-1=(\omega-1)\left(\omega^{n-1}+\omega^{n-2}+\ldots+\omega^{1}+\omega^{0}\right)$

Fast Fourier Transform (FFT)

- Given vector $\mathrm{x} \in \mathrm{C}^{\mathrm{n}}$, how many operations to compute $\mathrm{DFT}_{\mathrm{n}} \cdot x$?
$\left(\begin{array}{ccccc}\left(\omega^{0}\right)^{0} & \left(\omega^{0}\right)^{1} & \left(\omega^{0}\right)^{2} & \cdots & \left(\omega^{0}\right)^{n-1} \\ \left(\omega^{1}\right)^{0} & \left(\omega^{1}\right)^{1} & \left(\omega^{1}\right)^{2} & \cdots & \left(\omega^{1}\right)^{n-1} \\ \left(\omega^{2}\right)^{0} & \left(\omega^{2}\right)^{1} & \left(\omega^{2}\right)^{2} & \cdots & \left(\omega^{2}\right)^{n-1} \\ \vdots & & & & \\ \left(\omega^{n-1}\right)^{0} & \left(\omega^{n-1}\right)^{1} & \left(\omega^{n-1}\right)^{2} & \cdots & \left(\omega^{n-1}\right)^{n-1}\end{array}\right) \cdot\left(\begin{array}{c}x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{n-1}\end{array}\right)$
- standard matrix-vector multiplication: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Discrete Fourier Transform (DFT)

- Given n-th root of unity ω, DFT_{n} is a linear map from C^{n} to C^{n} :

$$
\left(\begin{array}{ccccc}
\left(\omega^{0}\right)^{0} & \left(\omega^{0}\right)^{1} & \left(\omega^{0}\right)^{2} & \cdots & \left(\omega^{0}\right)^{n-1} \\
\left(\omega^{1}\right)^{0} & \left(\omega^{1}\right)^{1} & \left(\omega^{1}\right)^{2} & \cdots & \left(\omega^{1}\right)^{n-1} \\
\left(\omega^{2}\right)^{0} & \left(\omega^{2}\right)^{1} & \left(\omega^{2}\right)^{2} & \cdots & \left(\omega^{2}\right)^{n-1} \\
\vdots & & & & \\
\left(\omega^{n-1}\right)^{0} & \left(\omega^{n-1}\right)^{1} & \left(\omega^{n-1}\right)^{2} & \cdots & \left(\omega^{n-1}\right)^{n-1}
\end{array}\right)
$$

- (i, j) entry is $\omega^{i j}$

Fast Fourier Transform (FFT)

- try Divide and Conquer:

- would lead to
$-T(n)=4 T(n / 2)+$ time to split/combine which implies $T(n)=\Omega\left(n^{2}\right)$

Fast Fourier Transform (FFT)

- $\mathrm{DFT}_{\mathrm{n}}$ has special structure (assume $\mathrm{n}=2^{\mathrm{k}}$)
- reorder columns: first even, then odd
- consider exponents on ω along rows:
multiples of:

rows repeat twice since $\omega^{n}=1$

Fast Fourier Transform (FFT)

FFT(n:power of 2; x)

1. let ω be a n-th root of unity
2. compute $a=\operatorname{FFT}\left(n / 2, x_{\text {even }}\right)$
3. compute $b=F F T\left(n / 2, x_{\text {odd }}\right)$
4. $y_{\text {even }}=a+D \cdot b$ and $y_{\text {odd }}=a+\omega^{n / 2} \cdot D \cdot b$
5. return vector y

- Running time?
$-T(1)=1$
$-T(n)=2 T(n / 2)+O(n)$
- solution: $T(n)=O(n \log n)$

Discrete Fourier Transform (DFT)

Theorem: can compute DFT and inverse-DFT in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ operations

- extremely efficient in practice
- parallel implementation via "butterfly circuit"

Fast Fourier Transform (FFT)

- so we are actually computing: $\begin{gathered}\left.\begin{array}{c}\omega^{2} \text { is }(n / 2) \text { nth } \\ \text { root of unity }\end{array}\right]\end{gathered}$

 $\mathrm{D}=$ diagonal matrix $\operatorname{diag}\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots, \omega^{n / 2-1}\right)$

April 25, 2014
CS38 Lecture 8
20

Discrete Fourier Transform (DFT)

- entry (i,j) of $\mathrm{DFT}_{\mathrm{n}}$ is $\omega^{i j}$ (n-th root of unity ω)
- claim: entry (i,j) of inverse-DFT n is $\omega^{-i j} / \mathrm{n}$

- entry (a, b) of this product is

$$
\sum_{k} \omega^{a k} \omega^{-k b}=\sum_{k} \omega^{(a-b) k}=n \text { if } a=b ; 0 \text { otherwise }
$$

the DFT and polynomials

- given a polynomial
$a(x)=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}$
- observe that DFT_{n}. a gives evaluations of a at ω^{i} for $\mathrm{i}=0,1, \ldots, \mathrm{n}-1$
$\left(\begin{array}{ccccc}\left(\omega^{0}\right)^{0} & \left(\omega^{0}\right)^{1} & \left(\omega^{0}\right)^{2} & \cdots & \left(\omega^{0}\right)^{n-1} \\ \left(\omega^{1}\right)^{0} & \left(\omega^{1}\right)^{1} & \left(\omega^{1}\right)^{2} & \cdots & \left(\omega^{1}\right)^{n-1} \\ \left(\omega^{2}\right)^{0} & \left(\omega^{2}\right)^{1} & \left(\omega^{2}\right)^{2} & \cdots & \left(\omega^{2}\right)^{n-1} \\ \vdots & & & & \\ \left(\omega^{n-1}\right)^{0} & \left(\omega^{n-1}\right)^{1} & \left(\omega^{n-1}\right)^{2} & \cdots & \left(\omega^{n-1}\right)^{n-1}\end{array}\right) \cdot\left(\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n-1}\end{array}\right)$

the DFT and polynomials

- since $\mathrm{DFT}_{\mathrm{n}}$. a gives evaluations of a at ω^{i} for $\mathrm{i}=0,1, \ldots, \mathrm{n}-1 \ldots$
- inverse- $\mathrm{DFT}_{\mathrm{n}} \cdot$ (vector of these evaluations) must give back a

$$
\left(\begin{array}{cccc}
\left(\omega^{-0}\right)^{0} & \left(\omega^{-0}\right)^{1} & \cdots & \left(\omega^{-0}\right)^{n-1} \\
\left(\omega^{-1}\right)^{0} & \left(\omega^{-1}\right)^{1} & \cdots & \left(\omega^{-1}\right)^{n-1} \\
\vdots & & & \\
\left(\omega^{-(n-1)}\right)^{0} & \left(\omega^{-(n-1)}\right)^{1} & \cdots & \left(\omega^{-(n-1)}\right)^{n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
a\left(\omega^{0}\right) \\
a\left(\omega^{1}\right) \\
\vdots \\
a\left(\omega^{n-1}\right)
\end{array}\right)
$$

Polynomial multiplication

- given two polynomials

$$
\begin{aligned}
& a(x)=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
& b(x)=b_{0} x^{0}+b_{1} x^{1}+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}
\end{aligned}
$$

- we want to compute the polynomial

$$
a(x) \cdot b(x)
$$

of degree at most $2 n-2$

- standard method takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ operations

Polynomial multiplication

polynomial-product(a, b: coeffs of degree \mathbf{n} polynomials)

1. compute $u=\operatorname{FFT}(2 n, a)$
2. compute $v=\operatorname{FFT}(2 n, b)$
3. multiply vectors u, v pointwise to get vector w
4. return(inverse-FFT(2n,w))

- Running time?
- O(n $\log \mathrm{n})$ for FFT and inverse-FFT
- O(n) to multiply pointwise
- overall O(n log n)

April 25, 2014
CS38 Lecture 8

Polynomial multiplication

- given two polynomials

$$
\begin{aligned}
& a(x)=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
& b(x)=b_{0} x^{0}+b_{1} x^{1}+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}
\end{aligned}
$$

$-\mathrm{DFT}_{2 n} \cdot a$ and $\mathrm{DFT}_{2 n} \cdot b$ give evaluations of a, b at ω^{i} for $\mathrm{i}=0,1, \ldots, 2 \mathrm{n}-1$

- can get evaluations of $a \cdot b$ at same points since $\mathrm{a}\left(\omega^{i}\right) \cdot \mathrm{b}\left(\omega^{i}\right)=(\mathrm{a} \cdot \mathrm{b})\left(\omega^{i}\right)$
- inverse-DFT ${ }_{2 n}$ applied to (vector of these evaluations) gives back $a \cdot b$

Polynomial division

$$
\begin{array}{cc}
x ^ { 2 } + 2 \longdiv { x ^ { 2 } + 3 x } \begin{array} { r }
{ x ^ { 4 } + 3 x ^ { 3 } + 7 x - 1 2 } \\
{ \frac { x ^ { 4 } + 2 x ^ { 2 } } { 3 x ^ { 3 } - 2 x ^ { 2 } + 7 x - 1 2 } }
\end{array} & \text { remainder : } x-8 \\
\frac{3 x^{3}+6 x}{-2 x^{2}+x-12} \\
\frac{-2 x^{2}-4}{x-8}
\end{array}
$$

$$
\text { check: } x^{4}+3 x^{3}+7 x-12 \text { equals }
$$

$$
\left(x^{2}+2\right)\left(x^{2}+3 x-2\right)+(x-8)=\left(x^{4}+3 x^{3}+6 x-4\right)+(x-8)
$$

April 25, 2014
CS38 Lecture 8

Polynomial inversion

Theorem: given polynomial f with $f(0)=1$, if

$$
\begin{gathered}
g_{0}=1 \text {, and } \\
g_{i+1} \equiv 2 g_{i}-(\mathrm{f})\left(\mathrm{g}_{\mathrm{i}}\right)^{2} \bmod \mathrm{x}^{\mathrm{i}+1} \\
\text { then } \mathrm{fg}_{\mathrm{i}} \equiv 1 \mathrm{modx}^{2} \text { for all i. }
\end{gathered}
$$

Proof: induction on i

$$
\text { base case: } \mathrm{fg}_{0} \equiv \mathrm{f}(0) \mathrm{g}_{0}=1 \cdot 1 \equiv 1 \quad(\bmod \mathrm{x})
$$

$$
1-\mathrm{fg}_{i+1} \equiv 1-\mathrm{f}\left(2 \mathrm{~g}_{\mathrm{i}}-\mathrm{f}\left(\mathrm{~g}_{\mathrm{i}}\right)^{2}\right) \equiv\left(1-\mathrm{fg}_{\mathrm{i}}\right)^{2} \equiv 0 \bmod x^{i+1}
$$

Polynomial division

- (monic) polys a , b of deg. $\mathrm{m}, \mathrm{n}(\mathrm{m} \leq \mathrm{n})$ we want polys q, r such that $a=q b+r$ and $\operatorname{deg}(\mathrm{r})<\operatorname{deg}(\mathrm{b})$
- key observation:
$a(x)=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n-1} x^{n}$
$x^{n} a(1 / x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x^{0}$
- denote by $\operatorname{rev}_{\mathrm{n}}(\mathrm{a})$ this polynomial: $\mathrm{x}^{\mathrm{n}} \mathrm{a}(1 / \mathrm{x})$

April 25, 2014
CS38 Lecture 8
33

Polynomial division

poly-division-with-rem (a, b: coeffs of degr m, n polys) output: polys q, r satisfying $a=b q+r$ and $\operatorname{deg}(r)<\operatorname{deg}(b)$

1. $r=\operatorname{deg}(a)-\operatorname{deg}(b)$
2. compute inverse of $\operatorname{rev}_{\operatorname{deg}(b)}(b) \bmod x^{r+1}$
3. $q^{*}=\left(r e v_{\operatorname{deg}(a)} a\right) \cdot\left(r e v_{\operatorname{deg}(b)} b\right)^{-1} r e m x^{r+1}$
4. $\operatorname{return}\left(q=\operatorname{rev}_{m}\left(q^{*}\right)\right.$ and $\left.r=a-b q\right)$

- Running time? (\# operations)
$-\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Polynomial division

- (monic) polys a, b of deg. $m, n(m \leq n)$ we want polys q, r such that $\mathrm{a}=\mathrm{qb}+\mathrm{r}$ and $\operatorname{deg}(r)<\operatorname{deg}(b)$ $\operatorname{rev}_{\mathrm{n}-\mathrm{m}}(\mathrm{b})$ is invertible $\bmod \mathrm{x}^{\mathrm{n}-\mathrm{m}+1}$ because constant coefficient is 1
- algebra: (so rev ${ }_{n-m}$ (b) not divisible by x)
$\operatorname{rev}_{n}(a)=\operatorname{rev}_{n-n}(q) \cdot \operatorname{rev}_{m}(b)+x^{n-m+1} \operatorname{rev}_{m-1}(r)$
$\operatorname{rev}_{\mathrm{n}}(\mathrm{a}) \equiv \operatorname{rey} \mathrm{r}_{\mathrm{n}-\mathrm{m}}(\mathrm{q}) \cdot \operatorname{rev}_{\mathrm{m}}(\mathrm{b}) \bmod x^{\mathrm{n}-\mathrm{m}+1}$
$\operatorname{rev}_{\mathrm{n}}(\mathrm{a}) \cdot \operatorname{rev}_{\mathrm{m}}(\mathrm{b})^{-1} \equiv \operatorname{rev}_{\mathrm{n}-\mathrm{m}}(\mathrm{q}) \bmod x^{n-m+1}$
April 25, 2014
CS38 Lecture 8
34

Polynomial multiplication and division

Theorem: can multiply and divide with remainder degree n polynomials in $O(n \log n)$ time

integer multiplication

- given 2 n -bit integers x, y
- compute their product $x y$
- standard multiplication $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- simple divide and conquer improves to $\mathrm{O}\left(\mathrm{n}^{\log _{2} 3}\right)=\mathrm{O}\left(\mathrm{n}^{1.59}\right)$

integer multiplication

integer-mult(x, y : n -bit integers)

1. write $x=x_{1} \cdot 2^{n / 2}+x_{0}$ and $y=y_{1} \cdot 2^{n / 2}+y_{0}$
2. $a=$ integer-mult $\left(x_{1}, y_{1}\right)$
3. $b=$ integer-mult $\left(x_{0}, y_{0}\right)$
4. $c=$ integer-mult $\left(x_{0}+x_{1}, y_{0}+y_{1}\right)$
5.return $\left(a \cdot 2^{n}+(c-a-b) \cdot 2^{n / 2}+b\right)$

- Running time recurrence? (\# operations)
$-T(n)=3 T(n / 2)+O(n)$
$-T(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.59}\right)$

integer multiplication

- given 2 n -bit integers x, y
- write:

$$
\begin{aligned}
& -x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& -y=y_{1} \cdot 2^{n / 2}+y_{0}
\end{aligned}
$$

- note: $x y=x_{1} y_{1} \cdot 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) \cdot 2^{n / 2}+x_{0} y_{0}$
- clever idea:

$$
\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)=x_{1} y_{1}+x_{1} y_{0}+x_{0} y_{1}+x_{0} y_{0}
$$

