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CS38 

Introduction to Algorithms 

Lecture 8 

April 24, 2014 
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Outline 

• Divide and Conquer design paradigm 

– closest pair (finishing up) 

– the DFT and the FFT 

– polynomial multiplication 

– polynomial division with remainder 

 

– integer multiplication 

– matrix multiplication 

Closest pair in the plane 

• Given n points in the plane, find the 

closest pair 
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Closest pair in the plane 

• Divide and conquer approach: 

– split point set in equal sized left and right sets 

 

 

 

 

 

 

– find closest pair in left, right, + across middle 
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Closest pair in the plane 

• Divide and conquer approach: 

– split point set in equal sized left and right sets 

 

 

 

 

 

 

– find closest pair in left, right, + across middle 
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Closest pair in the plane 

• Divide and conquer approach: 

– split point set in equal sized left and right sets 

– time to perform split?  

– sort by x coordinate: O(n log n)  

– running time recurrence: 

T(n) = 2T(n/2) + time for middle +  O(n log n) 
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Is time for middle as bad as O(n2)? 
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Closest pair in the plane 

Claim: time for middle only O(n log n) !! 

 

• key: we know d = min of 
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distance between 

closest pair on left 

distance between 

closest pair on right 

Ã  2d ! 

Observation: only 

need to consider 

points within distance 

d of the midline 

Closest pair in the plane 

• scan left to right to identify, then sort by y coord. 

– still (n2) comparisons? 

– Claim: only need do pairwise comparisons 15 
ahead in this sorted list ! 
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Ã  2d ! 

Closest pair in the plane 

• no 2 points lie in 

same box (why?) 

 

• if 2 points are within ¸ 

16 positions of each 

other in list sorted by y 

coord… 

• … then they must be 
separated by ¸ 3 rows 

 

• implies dist. > (3/2)¢ d  
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Ã  2d ! 

d/2 by d/2 

boxes 

Closest pair in the plane 

• Running time:  

T(2) = O(1);  T(n) = 2T(n/2) + O(n log n) 
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Closest-Pair(P: set of n points in the plane) 

1. sort by x coordinate and split equally into L and R subsets 

2. (p,q) = Closest-Pair(L) 

3. (r,s) = Closest-Pair(R) 

4. d = min(distance(p,q), distance(r,s)) 

5. scan P by x coordinate to find M: points within d of midline 

6. sort M by y coordinate 

7. compute closest pair among all pairs within 15 of each other in M 

8. return best among this pair, (p,q), (r,s) 

Closest pair in the plane 

• Running time:  
T(2) = a;  T(n) = 2T(n/2) + bn¢log n 

  set c = max(a/2, b) 

Claim: T(n) · cn¢log2n 

Proof: base case easy… 

 T(n) · 2T(n/2) + bn¢log n 

  · 2cn/2(log n - 1)2  + bn¢log n 

  < cn(log n)(log n - 1) + bn¢log n 

  · cnlog2 n 
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Closest pair in the plane 

• we have proved: 

 

 

 

 

• can be improved to O(n log n) by being 

more careful about maintaining sorted lists 
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Theorem: There is an O(n log2n) time 

algorithm for finding the closest pair 

among n points in the plane.  
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The DFT,  

the FFT,  

and polynomial 

multiplication 
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Roots of unity 

• An n-th root of unity is an element ! such 
that !n = 1 

– primitive if !k  1 for 1 · k < n 

 

• examples: 
– in C: e2¼i/n = cos(2¼/n) + i¢sin(2¼/n)                    

is a primitive n-th root of unity 

– in integers mod 7: 2 is a primitive 3-th root of 
unity  

April 25, 2014 CS38 Lecture 8 14 

Roots of unity 

• An n-th root of unity is an element ! such 

that !n = 1 

– primitive if !k  1 for 1 · k < n 

• key property:  

 !n-1 + !n-2 + … + !1 + !0 = 0 

why? !  1 and   

0 = !n - 1 = (! – 1)(!n-1+!n-2+…+!1+!0) 
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Discrete Fourier Transform (DFT) 

• Given n-th root of unity !, DFTn is a linear 

map from Cn to Cn: 

 

 

 

 

• (i,j) entry is !ij 
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Fast Fourier Transform (FFT) 

• Given vector x 2 Cn, how many operations 

to compute DFTn¢x?  

 

 

 

 

• standard matrix-vector multiplication: O(n2) 
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Fast Fourier Transform (FFT) 

• try Divide and Conquer: 

 

 

 

 

• would lead to  

– T(n) = 4T(n/2) + time to split/combine 

which implies T(n) = (n2) 
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Fast Fourier Transform (FFT) 

• DFTn has special structure (assume n= 2k)  

– reorder columns: first even, then odd 

– consider exponents on ! along rows: 

 

 

 
0 0 0 0 0 0 … 0 0 0 0 0 0 … 

0 2 4 6 8 10 … 1 3 5 7 9 11 … 

0 4 8 12 16 20 … 2 6 10 14 18 22 … 

0 6 12 18 24 30 … 3 9 15 21 27 33 … 

0 8 16 24 32 44 … 4 12 20 28 36 40 … 

multiples of:  

0 

2 

4 

6 

8 

same multiples plus:   

0 

1 

2 

3 

4 

rows repeat twice since !n = 1 

Fast Fourier Transform (FFT) 

• so we are actually computing: 

 

 

• so to compute DFTn¢x 
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FFT(n:power of 2; x) 

1. let ! be a n-th root of unity 

2. compute a = FFT(n/2, xeven) 

3. compute b = FFT(n/2, xodd) 

4. yeven = a + D¢b and yodd = a + !n/2 ¢D¢b 

5. return vector y 

CS38 Lecture 8 

D = diagonal matrix      
diag(!0, !1, !2, …, !n/2-1) 

!2 is (n/2)-th 

root of unity 

Fast Fourier Transform (FFT) 

 

 

 

 

• Running time? 

– T(1) = 1 

– T(n) = 2T(n/2) + O(n) 

– solution: T(n) = O(n log n)  
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FFT(n:power of 2; x) 

1. let ! be a n-th root of unity 

2. compute a = FFT(n/2, xeven) 

3. compute b = FFT(n/2, xodd) 

4. yeven = a + D¢b and yodd = a + !n/2 ¢D¢b 

5. return vector y 

Discrete Fourier Transform (DFT) 

• entry (i,j) of DFTn is !ij   (n-th root of unity !) 

• claim: entry (i,j) of inverse-DFTn is !-ij/n 

 

 

 

• entry (a,b) of this product is 

 k !
ak!-kb = k !

(a-b)k = n if a=b; 0 otherwise 
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Discrete Fourier Transform (DFT) 
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Theorem: can compute DFT and 

inverse-DFT in O(n log n) operations 

• extremely efficient in practice 

– parallel implementation via “butterfly circuit” 
 

 

butterly circuit from CLRS 
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the DFT and polynomials 

• given a polynomial  

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n-1 

• observe that DFTn¢a gives evaluations of a 

at !i for i=0,1,…, n-1 
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the DFT and polynomials 

• since DFTn¢a gives evaluations of a at !i 

for i=0,1,…, n-1… 

• inverse-DFTn¢(vector of these evaluations) 

must give back a 
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Polynomial multiplication 

• given two polynomials 

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n-1 

b(x) = b0x
0 + b1x

1 + b2x
2 + … + bn-1x

n-1 

• we want to compute the polynomial  

a(x)¢ b(x)  

 of degree at most 2n-2 

• standard method takes O(n2) operations 
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Polynomial multiplication 

• given two polynomials 

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n-1 

b(x) = b0x
0 + b1x

1 + b2x
2 + … + bn-1x

n-1 

– DFT2n¢a and DFT2n¢b give evaluations of a, b 

at !i for i = 0,1,…, 2n-1 

– can get evaluations of a¢b at same points 

since a(!i)¢b(!i) = (a¢b)(!i) 

– inverse-DFT2n applied to (vector of these 
evaluations) gives back a¢b 
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Polynomial multiplication 

• Running time? 

– O(n log n) for FFT and inverse-FFT 

– O(n) to multiply pointwise 

• overall O(n log n) 
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polynomial-product(a, b: coeffs of degree n polynomials ) 

1. compute u = FFT(2n, a) 

2. compute v = FFT(2n, b) 

3. multiply vectors u,v pointwise to get vector w 

4. return(inverse-FFT(2n,w))  

Polynomial division 

check: x4 + 3x3 + 7x – 12 equals 

(x2 + 2)(x2 + 3x - 2) + (x – 8) = (x4 + 3x3 + 6x - 4) + (x – 8)   
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x4 + 3x3         + 7x - 12 x2 + 2 

x2 

x4          + 2x2  

       3x3 - 2x2  + 7x - 12  

+ 3x 

       3x3          + 6x 

 - 2x2  + x - 12 

remainder :    x - 8  - 2 

 - 2x2         - 4 

    x    - 8 



6 

Polynomial inversion 

 

 

 

 

Proof: induction on i 

base case: fg0 ≡ f(0)g0 = 1¢1 ≡ 1    (mod x)  

1-fgi+1 ≡ 1-f(2gi –f(gi)
2) ≡ (1 - fgi)

2 ≡ 0 mod x2i+1
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Theorem: given polynomial f with f(0) = 1, if 

g0 = 1, and  

  gi+1 ≡ 2gi – (f)(gi)
2 mod x2i+1 

 then fgi ≡ 1 mod x2i
 for all i. 

Polynomial division 

• Running time? (# operations) 

– O(log k) ¢ O(k log k) = O(k log2 k) 

– O(k log k) if careful about degrees in loop 
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polynomial-inversion (f: coeffs of deg. n poly; int. k) 

output: polynomial g satisfying fg = 1 mod xk 

1. g0 = 1; r = dlog ke 

2. for i = 1 to r 

3.      gi = 2gi – (f)(gi-1)
2 rem x2i 

4. return(gr) 

Polynomial division 

• (monic) polys a, b of deg. m, n  (m · n) 

 we want polys q, r such that a = qb + r and 

deg(r) < deg(b)  

 

• key observation: 

a(x) = a0x
0 + a1x

1 + a2x
2 + … + an-1x

n 

xn a(1/x) = a0x
n + a1x

n-1 + a2x
n-2 + … + an-1x

0 

• denote by revn(a) this polynomial: xna(1/x) 
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Polynomial division 

• (monic) polys a, b of deg. m, n  (m · n) 

 we want polys q, r such that a = qb + r and 

deg(r) < deg(b)  

 

• algebra: 

revn(a) = revn-m(q)¢revm(b) + xn-m+1revm-1(r) 

revn(a) ≡ revn-m(q)¢revm(b) mod xn-m+1 

revn(a)¢revm(b)-1 ≡ revn-m(q) mod xn-m+1 
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revn-m(b) is invertible mod xn-m+1 

because constant coefficient is 1 

(so revn-m(b) not divisible by x) 

Polynomial division 

• Running time? (# operations) 

– O(n log n) 
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poly-division-with-rem (a, b: coeffs of degr m, n  polys) 

output: polys q,r satisfying a = bq + r and deg(r) < deg(b)  

1. r = deg(a) – deg(b) 

2. compute inverse of revdeg(b)(b) mod xr+1 

3. q* = (revdeg(a) a)¢(revdeg(b) b )-1 rem xr +1 

4. return(q = revm(q*) and r = a – bq) 

Polynomial multiplication and 

division 
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Theorem: can multiply and divide 

with remainder degree n polynomials 

in O(n log n) time 
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integer multiplication 

• given 2 n-bit integers x, y 

• compute their product xy 

 

• standard multiplication O(n2) 

 

• simple divide and conquer improves to 

O(nlog23) = O(n1.59) 
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integer multiplication 

• given 2 n-bit integers x, y 

• write: 

– x = x1 ¢ 2
n/2 + x0 

– y = y1 ¢ 2
n/2 + y0 

• note: xy = x1y1¢2
n + (x1y0 + x0y1)¢2

n/2 + x0y0 

• clever idea: 

(x1 + x0)(y1 + y0) = x1y1 + x
1
y

0
 + x

0
y

1
 + x

0
y

0 
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integer multiplication 
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integer-mult(x, y: n-bit integers) 

1.write x = x1 ¢ 2
n/2 + x0 and y = y1 ¢ 2

n/2 + y0 

2.a = integer-mult(x1, y1)
 

3. b = integer-mult(x0, y0) 

4. c = integer-mult(x0 + x1, y0 + y1)
 

5.return(a ¢ 2n + (c - a - b) ¢ 2n/2 + b) 

• Running time recurrence? (# operations) 

– T(n) = 3T(n/2) + O(n) 

– T(n) = O(nlog23) = O(n1.59) 

 

 


