CS38
 Introduction to Algorithms

Lecture 7
April 22, 2014

Outline

- Divide and Conquer design paradigm
- Mergesort
$\left.\begin{array}{l}\text { - Quicksort } \\ \text {-Selection }\end{array}\right\} \quad \begin{aligned} & \text { both with random pivot } \\ & \text { - deterministic selection }\end{aligned}$
- Closest pair

Divide and conquer

- General approach
- break problem into subproblems
- solve each subproblem recursively
- combine solutions
- typical running time recurrence:
April 22, 2014

$$
\begin{aligned}
& \mathrm{T}(1)=\mathrm{O}(1) \\
& \mathrm{T}(\mathrm{n}) \leq \mathrm{a} \cdot \mathrm{~T}(\mathrm{~N} / \mathrm{b})+\mathrm{O}\left(\mathrm{n}^{\mathrm{c}}\right)
\end{aligned}
$$

Solving D\&C recurrences

$$
\begin{aligned}
& \mathrm{T}(1)=\mathrm{O}(1) \\
& \mathrm{T}(\mathrm{n}) \leq \mathrm{a} \cdot \mathrm{~T}(\mathrm{~N} / \mathrm{b})+\mathrm{O}\left(\mathrm{n}^{\mathrm{c}}\right)
\end{aligned}
$$

- key quantity: $\log _{\mathrm{b}} \mathrm{a}=\mathrm{D}$
- if $\mathrm{c}<\mathrm{D}$ then $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{D}}\right)$
- if $c=D$ then $T(n)=O\left(n^{D} \cdot \log n\right)$
- if $c>D$ then $T(n)=O\left(n^{c}\right)$
- can prove easily by induction

First example: mergesort

- Input: n values; sort in increasing order.
- Mergesort algorithm:
- split list into 2 lists of size n/2 each
- recursively sort each
- merge in linear time (how?)
- Running time:
$-T(1)=1 ; T(n)=2 \cdot T(n / 2)+O(n)$
- Solution: $T(n)=O(n \log n)$

April 22, 2014
CS38 Lecture 7
6

Second example: quicksort

- Quicksort: effort on split rather than merge
- Quicksort algorithm:
- take first value x as pivot
- split list into " < x" and " $>x$ x" lists
- recursively sort each
- Why isn't this the running time recurrence:

$$
T(1)=1 ; T(n)=2 \cdot T(n / 2)+O(n)
$$

- Worst case running time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ (why?)

Quicksort with random pivot

Random-Pivot-Quicksort(array of \mathbf{n} elements: a)

1. if $n=1$, return(a)
2. pick i uniformly at random from $\{1,2, \ldots \mathrm{n}\}$
3. partition array a into " $<a_{i}$ " and " $>a_{i}$ " arrays
4. Random-Pivot-Quicksort(" $<\mathrm{a}_{\mathrm{i}}$ ")
5. Random-Pivot-Quicksort("> a_{i} ")
6. return(" $<\mathrm{a}_{\mathrm{i}}$ ", a_{i}, " $>\mathrm{a}_{\mathrm{i}}$ ")

- Idea: hope that a_{i} splits array into two subarrays of size $\approx \mathrm{n} / 2$
- would lead to $T(1)=1 ; T(n)=2 \cdot T(n / 2)+O(n)$ and then $T(n)=O(n \log n)$

Quicksort with random pivot

```
Random-Pivot-Quicksort(array of n elements: a)
1. if }n=1, return(a
2. picki uniformly at random from {1,2,\ldots.n}
3. partition array a into "< a," and "> a," arrays
4. Random-Pivot-Quicksort(" < a ")
5. Random-Pivot-Quicksort("> a,")
6. return("< a, ", a, " "> a, ")
```

- we will analyze expected running time - suffices to count aggregate \# comparisons
- rename elements of a: $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$
- when is x_{i} compared with x_{j} ?

Quicksort with random pivot

- probability x_{i} and x_{j} compared $=2 /(j-i+1)$
- so expected number of comparisons is

$$
\sum_{i<j} 2 /(j-i+1)
$$

$=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2 /(j-i+1)$
$=\sum_{i=1}^{n} \sum_{k=1}^{n-i} 2 /(k+1)$
$<\sum_{i=1}^{n} \sum_{k=1}^{n-i} 2 / k$

harmonic series:
$=\sum_{i=1}^{n} \mathrm{O}(\log n)$ $\sum_{i=1}^{n} 1 / i=O(\log n)$
$=O(n \log n)$

Quicksort with random pivot
Random-Pivot-Quicksort(array of n elements: a)

1. if $n=1$, return(a)
2. picki uniformly at random from $\{1,2, \ldots \mathrm{n}\}$
3. partition array a into " $<\mathrm{a}_{i}$ " and " $>\mathrm{a}_{i}$ " arrays
4. Random-Pivot-Quicksort(" $<a_{i}$ ")
5. Random-Pivot-Quicksort("> a_{i} ")
6. return(" $<a_{i}$ ", a_{i}, " $>a_{i}$)

we proved:

Theorem: Random-Pivot-Quicksort runs in expected time $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.
note: by Markov, prob. running time $>100 \cdot$ expectation $<1 / 100$

Selection

- Input: n values; find k-th smallest
- minimum: $k=1$
- maximum: $\mathrm{k}=\mathrm{n}$
- median: $k=\lfloor(n+1) / 2\rfloor$
- running time for min or max?
- running time for general k?
- using sorting: $O(n \log n)$
- using a min-heap: $O(n+k \log n)$

Selection with random pivot

Random-Pivot-Select(k; array of \mathbf{n} elements: $\mathbf{a})$

1. pick i uniformly at random from $\{1,2, \ldots n\}$
2. partition array a into " $<a_{i}$ " and " $>a_{i}$ " arrays
3. $s=$ size of "<a_i" array
4. if $s=k-1$, then return(a_i)
5. else if $s<k-1$, Random-Pivot-Select($k-s+1,{ }^{\prime}>a_{i}$ ")
6. else if $s>k-1$, Random-Pivot-Select(k, "<a,")

- Bounding the expected \# comparisons:
$-T(n, k)=$ expected \# for k-th smallest from n
$-T(n)=\max _{k} T(n, k)$
- Observe: $T(n)$ monotonically increasing

Selection with random pivot

```
Random-Pivot-Select(k; array of n elements: a)
1. picki uniformly at random from {1,2,\ldots.n}
2. partition array a into "< a," and "> a," arrays
3. s = size of "< a_i" array
4. if s=k-1, then return(a_i)
5. else if s < k-1,Random-Pivot-Select(k-s+1, "> a,")
6. else if s>k-1, Random-Pivot-Select(k, "<a,")
```

- Claim:
 $T(n) \leq n+1 / n \cdot 1 /[n / 2)+T(n / 2+1)+\ldots+T(n-1)]$ $+1 / n \cdot[T(n / 2)+T(n / 2+1)+\ldots+T(n-$
1)]
$\max (n-i, i-1)$ as $i=1 \ldots n$

Selection with random pivot

1. pick i uniformly at random from $\{1,2, \ldots n\}$
2. partition array a into "< a_{1} " and "> a_{i} " arrays
3. $s=$ size of "<a_i" array
4. if $s=k-1$, then return(a_i)
e if s < $\mathrm{k}-1$, Random-Pivot-Selec

- Bounding the expected \# comparisons:
- probability of choosing i-th largest = ?
- resulting subproblems sizes are n-i, i-1
- upper bound expectation by taking larger

April 22, 2014
CS38 Lecture 7
16

Selection with random pivot

$$
\begin{aligned}
T(n) \leq n & +1 / n \cdot[T(n / 2)+T(n / 2+1)+\ldots+T(n-1)] \\
& +1 / n \cdot[T(n / 2)+T(n / 2+1)+\ldots+T(n-1)]
\end{aligned}
$$

Claim: $T(n) \leq 4 n$.
Proof: induction on n.

> - assume true for $1 \ldots n-1$
> $-T(n) \leq n+2 / n \cdot[T(n / 2)+T(n / 2+1)+\ldots+T(n-1)]$
> $-T(n) \leq n+2 / n \cdot[4(n / 2)+4(n / 2+1)+\ldots+4(n-1)]$
> $-T(n) \leq n+8 / n \cdot\left[(3 / 8) n^{2}\right]<4 n$.

Linear-time selection

Select(k; array of \mathbf{n} elements: a)

1. picki from $\{1,2, \ldots \mathrm{n}\}$ and partition array a into " $<\mathrm{a}_{\mathrm{i}}$ " and " $>\mathrm{a}_{\mathrm{i}}$ " arrays *** guarantee that both arrays have size at most $(7 / 10) \mathrm{n}$
2. $s=$ size of "<ai" array
3. if $s=k-1$, then return(a i $)$
4. else if $s<k-1$, Select($k-s+1$, "> $\left.a_{i}^{\prime \prime}\right)$
5. else if $s>k-1$, $\operatorname{Select}\left(k\right.$, " $<a_{i}$ ")

- Clever way to achieve guarante $\begin{gathered}\text { solution is } T(n)=O(n) \\ \text { because } 1 / 5+7 / 10<1\end{gathered}$
- break array up into subsets of 5 elements
- recursively compute median of medians of these sets
- leads to $T(n)=T((1 / 5) n)+T((7 / 10) n)+O(n)$

Linear-time selection

find median of this subset of $[\mathrm{n} / 5\rceil=10$

Linear-time selection

Median of medians example ($\mathrm{n}=48$):

Linear-time selection

find median in each column

Linear-time selection

How many < this one?

24

Linear-time selection

How many \leq this one? $\lceil n / 5\rceil / 2-1=10 / 2-1=4$

Linear-time selection

Total \leq this one? at least $([\mathrm{n} / 5\rceil / 2-2) \cdot 3$

Linear-time selection

Total \geq this one? at least $([\mathrm{n} / 5\rceil / 2-2) \cdot 3$

April 22, 2014

Linear-time selection

- To find pivot: break array into subsets of 5
- find median of each 5
- find median of medians

Claim: at most $(7 / 10) \mathrm{n}+6$ elements are larger than pivot
Proof: at least

$$
(\lceil n / 5\rceil / 2-1) \cdot 3 \geq 3 n / 10-3
$$

are smaller.

Linear-time selection

- To find pivot: break array into subsets of 5
- find median of each 5
- find median of medians

Claim: at most $(7 / 10) \mathrm{n}+6$ elements are smaller than pivot
Proof: at least

$$
(\lceil n / 5\rceil / 2-2) \cdot 3 \geq 3 n / 10-6
$$

are larger or equal.

$$
\begin{array}{lll}
\text { April 22, } 2014 & \text { CS38 Lecture 7 } & 28
\end{array}
$$

Linear-time selection

```
Select(k; array of n elements: a)
1. pick i from {1,2,\ldots.n} using median of medians method
2. partition array a into " < a,i and "> a," arrays
3. s=size of "< a_i" array
4. if s=k-1, then return(a_i)
5. else if s<k-1, Select(k-s+1, "> a,")
6. else if s>k-1, Select(k, "<a,")
```

- Running time:
$-T(n)=O(1)$
if $\mathrm{n}<140$
$-T(n) \leq T(n / 5+1)+T(7 / 10+6)+c n \quad$ otherwise
- we claim that $T(n) \leq 20 \mathrm{cn}$

Linear-time selection

- Running time:
$-\mathrm{T}(\mathrm{n})=\mathrm{O}(1)$
if n < 140
$-\mathrm{T}(\mathrm{n}) \leq \mathrm{T}(\mathrm{n} / 5+1)+\mathrm{T}(7 / 10+6)+\mathrm{cn}$ otherwise
Claim: $T(n) \leq 20 \mathrm{cn}$
Proof: induction on n ; base case easy
$T(n) \leq T(n / 5+1)+T(7 / 10+6)+c n$
$T(n) \leq 20 c(n / 5+1)+20 c(7 / 10+6)+c n$
$\mathrm{T}(\mathrm{n}) \leq 19 \mathrm{cn}+140 \mathrm{c} \leq 20 \mathrm{cn}$ provided $\mathrm{n} \geq 140$

Closest pair in the plane

- Given n points in the plane, find the closest pair
- O(n^{2}) if compute all pairwise distances
- 1 dimensional case?

April 22, 2014
CS38 Lecture 7

Closest pair in the plane

- Divide and conquer approach:
- split point set in equal sized left and right sets

- find closest pair in left, right, + across middle

Closest pair in the plane

- Given n points in the plane, find the closest pair

April 22, 2014
CS38 Lecture 7

Closest pair in the plane

- Given n points in the plane, find the closest pair
- can try sorting by x and y coordinates, but:

\circ
April 22, 2014
34

Closest pair in the plane

- Divide and conquer approach:
- split point set in equal sized left and right sets

- find closest pair in left, right, + across middle

Closest pair in the plane

- Divide and conquer approach:
- split point set in equal sized left and right sets
- time to perform split?
- sort by x coordinate: $O(n \log n)$
- running time recurrence:
$T(n)=2 T(n / 2)+$ time for middle $+O(n \log n)$

Is time for middle as bad as $\mathrm{O}\left(\mathrm{n}^{2}\right)$?

April 22, 2014
CS38 Lecture 7

Closest pair in the plane

- scan left to right to identify, then sort by y coord.
- still $\Omega\left(\mathrm{n}^{2}\right)$ comparisons?
- Claim: only need do pairwise comparisons 15 ahead in this sorted list !

Closest pair in the plane

Closest-Pair(P: set of \mathbf{n} points in the plane)

1. sort by x coordinate and split equally into L and R subsets
2. $(\mathrm{p}, \mathrm{q})=$ Closest-Pair (L)
3. $(r, s)=$ Closest-Pair (\mathbf{R})
4. $d=\min ($ distance (p, q), distance $(r, s))$
5. scan P by x coordinate to find M : points within d of midline
6. sort M by y coordinate
7. compute closest pair among all pairs within 15 of each other in M
8. return best among this pair, $(\mathrm{p}, \mathrm{q}),(\mathrm{r}, \mathrm{s})$

- Running time:
$T(2)=O(1) ; T(n)=2 T(n / 2)+O(n \log n)$

Closest pair in the plane

Claim: time for middle only $O(n \log n)$!!

Closest pair in the plane

- no 2 points lie in same box (why?)
- if 2 points are within \geq 16 positions of each other in list sorted by y coord...
- ... then they must be separated by ≥ 3 rows
- implies dist. > (3/2) • d

Closest pair in the plane

- Running time:
$T(2)=a ; T(n)=2 T(n / 2)+b n \cdot \log n$ set $\mathrm{C}=\max (\mathrm{a} / 2, \mathrm{~b})$
Claim: $T(n) \leq c n \cdot \log ^{2} n$
Proof: base case easy...
$T(n) \leq 2 T(n / 2)+b n \cdot \log n$

$$
\begin{aligned}
& \leq 2 c n / 2(\log n-1)^{2}+b n \cdot \log n \\
& <c n(\log n)(\log n-1)+b n \cdot \log n \\
& \leq \operatorname{cnlog}^{2} n
\end{aligned}
$$

Closest pair in the plane

- we have proved:

Theorem: There is an $O\left(n \log ^{2} n\right)$ time algorithm for finding the closest pair among n points in the plane.

- can be improved to $O(n \log n)$ by being more careful about maintaining sorted lists

