CS38
 Introduction to Algorithms

Lecture 3
April 8, 2014

Outline

- greedy algorithms...
- Dijkstra's algorithm for single-source shortest paths
- guest lecturer (this lecture and next)
- coin changing
- interval scheduling
- MCST (Prim and Kruskal)

Greedy algorithms

- Greedy algorithm paradigm
- build up a solution incrementally
- at each step, make the "greedy" choice

Example: in undirected graph $G=(V, E)$, a vertex cover is a subset of V that touches every edge

- a hard problem: find the smallest vertex cover

CS38 Lecture 3
3

Dijkstra's algorithm

- given
- directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with non-negative edge weights
- starting vertex $s \in V$
- find shortest paths from s to all nodes v - note: unweighted case solved by BFS

Dijkstra's algorithm

- shortest paths exhibit "optimal substructure" property
- optimal solution contains within it optimal solutions to subproblems
- a shortest path from x to y via z contains a shortest path from x to z
- shortest paths from s form a tree rooted at s
- Main idea:
- maintain set $\mathrm{S} \subseteq \mathrm{V}$ with correct distances
- add nbr u with smallest "distance estimate"

Dijkstra's algorithm

Dijkstra(G = (V,E), s)		
1. $S=\emptyset$, s.dist $=0$, build Min-Heap H from V, keys are distances		
2. while H is not empty		
	$u=$ EXTRACT-MIN(H)	\leftarrow "greedy choice"
4. $\mathrm{S}=\mathrm{S} \cup\{\mathrm{u}\}$		
5. for each neighbor v of u		
6. if v.dist > u.dist + weight (u,v) then		
7. v.dist $=u . d i s t+$ weigth (u, v), DECREASE-KEY(H, v)		

Lemma: can be implemented to run in $\mathrm{O}(\mathrm{m})$ time plus n EXTRACT-MIN and m DECREASE-KEY calls. Proof?

April 8, 2014

CS38 Lecture 3
6

Dijkstra's algorithm

Dijkstra(G = (V,E), s)

1. $S=\emptyset$, s.dist $=0$, build Min-Heap H from V, keys are distances
2. while H is not empty
3. $u=\operatorname{EXTRACT}-\mathrm{MIN}(\mathrm{H}) \quad \leftarrow$ "greedy choice"
4. $S=S \cup\{u\}$
5. for each neighbor v of u
if v.dist > u.dist + weight (u, v) then v.dist $=u . d i s t+$ weigth (u, v), DECREASE-KEY (H, v)

Lemma: can be implemented to run in $\mathrm{O}(\mathrm{m})$ time plus n EXTRACT-MIN and m DECREASE-KEY calls.
Proof: each vertex added to H once, adj. list scanned once, O(1) work apart from min-heap calls

Dijkstra's algorithm

Lemma: invariant of algorithm: for all $v \in S$ it v.dist = distance(s, v).

Proof: induction on size of S

- base case: $S=\emptyset$, trivially true
consider any other s - v path, let (x,y) be edge exiting S
- case |S| = k:
x.dist, u.dist correct by induction, so s - y path already longer than $s-v$
 since algorithm chose latter April 8, 2014

CS38 Lecture 3 9

Dijkstra's example from CLRS

Dijkstra's algorithm

- We proved:

Theorem (Dijkstra): there is an $\mathrm{O}\left(\mathrm{n}^{+} \mathrm{m} \log \mathrm{n}\right)$ time algorithm that is given
a directed graph with nonnegative weights a starting vertex s
and finds
distances from s to every other vertex (and produces a shortest path tree from s)

- later: Fibonacci heaps: $O(n \log n+m)$ time

