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Outline 

• greedy algorithms… 

– Dijkstra’s algorithm for single-source 

shortest paths 

 

• guest lecturer (this lecture and next) 

– coin changing 

– interval scheduling 

– MCST (Prim and Kruskal) 

 

Greedy algorithms 

• Greedy algorithm paradigm 

– build up a solution incrementally 

– at each step, make the “greedy” choice 

Example: in undirected graph G = (V,E), a vertex 

cover is a subset of V that touches every edge 

– a hard problem: find the smallest vertex cover 
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Dijkstra’s algorithm 

• given 

– directed graph G = (V,E) with non-negative 

edge weights 

– starting vertex s 2 V 

• find shortest paths from s to all nodes v 

– note: unweighted case solved by BFS 
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Dijkstra’s algorithm 

• shortest paths exhibit “optimal substructure” 
property 

– optimal solution contains within it optimal 
solutions to subproblems 

– a shortest path from x to y via z contains a shortest 
path from x to z 

• shortest paths from s form a tree rooted at s 

• Main idea: 
– maintain set S µ V with correct distances 

– add nbr u with smallest “distance estimate” 
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Dijkstra’s algorithm 

April 8, 2014 CS38 Lecture 3 6 

Lemma: can be implemented to run in O(m) time 

plus n EXTRACT-MIN and m DECREASE-KEY calls. 

Proof? 

Dijkstra(G = (V,E), s) 

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances 

2. while H is not empty 

3.    u = EXTRACT-MIN(H)  Ã “greedy choice”  

4.    S = S [ {u} 

5.    for each neighbor v of u 

6.          if v.dist > u.dist + weight(u,v) then  

7.                v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v) 
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Dijkstra’s algorithm 
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Lemma: can be implemented to run in O(m) time 

plus n EXTRACT-MIN and m DECREASE-KEY calls. 

Proof: each vertex added to H once, adj. list scanned 

once, O(1) work apart from min-heap calls 

Dijkstra(G = (V,E), s) 

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances 

2. while H is not empty 

3.    u = EXTRACT-MIN(H)  Ã “greedy choice”  

4.    S = S [ {u} 

5.    for each neighbor v of u 

6.          if v.dist > u.dist + weight(u,v) then  

7.                v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v) 

Dijkstra’s example from CLRS 
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Lemma: invariant of algorithm: for all v 2 S it 

v.dist = distance(s, v). 

Proof: induction on size of S 

– base case: S = ;, trivially true 

– case |S| = k: 

Dijkstra’s algorithm 
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consider any other 

s – v path, let (x,y) 

be edge exiting S 

x.dist, u.dist correct by 

induction, so s – y path 

already longer than s – v 

since algorithm chose latter 
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Dijkstra’s algorithm 

• We proved: 

 

 

 

 

 

 

– later: Fibonacci heaps: O(n log n + m) time 
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Theorem (Dijkstra): there is an O(n + m log n) 

time algorithm that is given 

 a directed graph with nonnegative weights

 a starting vertex s 

and finds 

 distances from s to every other vertex  

 (and produces a shortest path tree from s) 


