
1

CS38

Introduction to Algorithms

Lecture 3

April 8, 2014

April 8, 2014 CS38 Lecture 3 2

Outline

• greedy algorithms…

– Dijkstra’s algorithm for single-source

shortest paths

• guest lecturer (this lecture and next)

– coin changing

– interval scheduling

– MCST (Prim and Kruskal)

Greedy algorithms

• Greedy algorithm paradigm

– build up a solution incrementally

– at each step, make the “greedy” choice

Example: in undirected graph G = (V,E), a vertex

cover is a subset of V that touches every edge

– a hard problem: find the smallest vertex cover

April 8, 2014 CS38 Lecture 3 3

a

b

c

d

f

e

a

b

c

d

f

Dijkstra’s algorithm

• given

– directed graph G = (V,E) with non-negative

edge weights

– starting vertex s 2 V

• find shortest paths from s to all nodes v

– note: unweighted case solved by BFS

April 8, 2014 CS38 Lecture 3 4

Dijkstra’s algorithm

• shortest paths exhibit “optimal substructure”
property

– optimal solution contains within it optimal
solutions to subproblems

– a shortest path from x to y via z contains a shortest
path from x to z

• shortest paths from s form a tree rooted at s

• Main idea:
– maintain set S µ V with correct distances

– add nbr u with smallest “distance estimate”

April 8, 2014 CS38 Lecture 3 5

Dijkstra’s algorithm

April 8, 2014 CS38 Lecture 3 6

Lemma: can be implemented to run in O(m) time

plus n EXTRACT-MIN and m DECREASE-KEY calls.

Proof?

Dijkstra(G = (V,E), s)

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances

2. while H is not empty

3. u = EXTRACT-MIN(H) Ã “greedy choice”

4. S = S [{u}

5. for each neighbor v of u

6. if v.dist > u.dist + weight(u,v) then

7. v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v)

2

Dijkstra’s algorithm

April 8, 2014 CS38 Lecture 3 7

Lemma: can be implemented to run in O(m) time

plus n EXTRACT-MIN and m DECREASE-KEY calls.

Proof: each vertex added to H once, adj. list scanned

once, O(1) work apart from min-heap calls

Dijkstra(G = (V,E), s)

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances

2. while H is not empty

3. u = EXTRACT-MIN(H) Ã “greedy choice”

4. S = S [{u}

5. for each neighbor v of u

6. if v.dist > u.dist + weight(u,v) then

7. v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v)

Dijkstra’s example from CLRS

April 8, 2014 CS38 Lecture 3 8

Lemma: invariant of algorithm: for all v 2 S it

v.dist = distance(s, v).

Proof: induction on size of S

– base case: S = ;, trivially true

– case |S| = k:

Dijkstra’s algorithm

9

s

u

x y

v
S

consider any other

s – v path, let (x,y)

be edge exiting S

x.dist, u.dist correct by

induction, so s – y path

already longer than s – v

since algorithm chose latter
April 8, 2014 CS38 Lecture 3

Dijkstra’s algorithm

• We proved:

– later: Fibonacci heaps: O(n log n + m) time

April 8, 2014 CS38 Lecture 3 10

Theorem (Dijkstra): there is an O(n + m log n)

time algorithm that is given

 a directed graph with nonnegative weights

 a starting vertex s

and finds

 distances from s to every other vertex

 (and produces a shortest path tree from s)

