CS38 Introduction to Algorithms

Lecture 20 June 5, 2014

Outline

- three glimpses beyond material in this course
 - property testing
 - streaming algorithms
 - approximation via semidefinite programming

June 5, 2014 CS38 Lecture 20

Sublinear algorithms

- Model:
 - random access to input x
 - goal: determine if x has property P
 - example: input is graph G, property is bipartiteness
 - need additional assumption: e.g., consider bipartite graph G and G' with 1 extra bad

June 5, 2 edge CS38 Lecture 20 3

Sublinear algorithms

- Model:
 - random access to input x
 - goal: determine if x has property P
 - promise: x either has property P or is ϵ -far from having property P
 - example: input is graph G
 - · either G is bipartite
 - or need to change ϵn^2 edges to make bipartite

June 5, 2014 CS38 Lecture 20 4

Sublinear algorithms

- example: input is graph G
 - either G is bipartite
 - or need to change ϵn^2 edges to make bipartite
- algorithm:
 - sample $\epsilon^{\mathrm{O}(1)}$ vertices and edges between them
 - check if this subgraph is biparitite
 - # of queries does not depend on n!
 - this works!

June 5, 2014 CS38 Lecture 20 5

Sublinear algorithms

- · many properties testable in this fashion
- · algorithms easy, analysis less easy
- some properties not testable with # of queries independent of n
- · huge field
 - dense graph properties (theoretically) wellunderstood...

June 5, 2014 CS38 Lecture 20 6

1

Streaming algorithms

· Andrew McGregor's slides

June 5, 2014

CS38 Lecture 20

Semidefinite programming

- · like linear programming with
 - variables replaced by vectors
 - constraints and objective function are linear in the inner-products of pairs of vectors
- · solvable in P by generalizing ideas for LPs
- key example (Michael McCoy slides):
 - Goemans Williamson approximation alg.

June 5, 2014

CS38 Lecture 20

The last slide

- Reminder: final due Tuesday
 office hours as usual this week
- · please fill out TQFRs!
- · Good luck!

Thank you!!

June 5, 2014

CS38 Lecture 20