CS38

Introduction to Algorithms

Lecture 2

April 3, 2014

Outline

- graph traversals (BFS, DFS)
- connectivity
- topological sort
- strongly connected components
- heaps and heapsort
- greedy algorithms...

Graphs

- Graph G = (V, E)
- directed or undirected
- notation: $\mathrm{n}=|\mathrm{V}|, \mathrm{m}=|\mathrm{E}| \quad$ (note: $\mathrm{m} \leq \mathrm{n}^{2}$)
- adjacency list or adjacency matrix

April 3, 2014

	a	b	c
a	0	1	1
b	0	0	0
c	0	1	0

CS38 Lecture 2
3

Graphs

- Graph terminology:
- an undirected graph is connected if there is a path between each pair of vertices
- a tree is a connected, undirected graph with no cycles; a forest is a collection of disjoint trees
- a directed graph is strongly connected if there is a path from x to y and from y to $x, \forall x, y \in V$
- a DAG is a Directed Acyclic Graph

Graphs

- Graphs model many things...
- physical networks (e.g. roads)
- communication networks (e.g. internet)
- information networks (e.g. the web)
- social networks (e.g. friends)
- dependency networks (e.g. topics in this course)
... so many fundamental algorithms operate on graphs

Graph traversals

- Graph traversal algorithm: visit some or all of the nodes in a graph, labeling them with useful information
- breadth-first: useful for undirected, yields connectivity and shortest-paths information
- depth-first: useful for directed, yields numbering used for
- topological sort
- strongly-connected component decomposition

Breadth first search

BFS(undirected graph G, starting vertex s)

1. for each vertex v , v.color $=$ white, v.dist $=\infty$, v.pred $=$ nil
2. s.color $=$ grey, s.dist $=0$, s.pred $=$ nil
3. $Q=\emptyset ; \operatorname{ENQUEUE}(Q, s)$
4. WHILE Q is not empty $u=\operatorname{DEQUEUE}(Q)$
for each v adjacent to u
IF v.color = white THEN v.color $=$ grey, v.dist $=u . d i s t+1$, v.pred $=u$ ENQUEUE(Q, v) u.color $=$ black

Lemma: BFS runs in time $O(m+n)$, when G is represented by an adjacency list.

Breadth first search

Lemma: for all $\mathrm{v} \in \mathrm{V}$, v.dist = distance(s, v), and a shortest path from s to v is a shortest path from s to v.pred followed by edge (v.pred,v)
Proof: partition V into levels
$-\mathrm{L}_{0}=\{\mathrm{s}\}$
$-L_{i}=\left\{v: \exists u \in L_{i-1}\right.$ such that $\left.(u, v) \in E\right\}$

- Observe: distance(s,v) $=\mathrm{i} \Leftrightarrow \mathrm{v} \in \mathrm{L}_{\mathrm{i}}$

Breadth first search

Claim: at any point in operation of algorithm:

1. black/grey vertices exactly $L_{0}, L_{1}, \ldots, L_{i}$ and part of L_{i+1}
2. $Q=(\underbrace{\left(v_{0}, v_{1}, v_{2}\right.}, \underbrace{\left.v_{3}, \ldots, v_{k}\right)}$ and all have v.dist $=$ level of v level $i \quad \underbrace{}_{\text {level } i+1} \Rightarrow$ level $\geq i+1$ \Rightarrow level $\leq \mathrm{i}+1$ 1 step: dequeue v_{0}; add white nbrs of $\mathrm{v}_{0} \mathrm{w} /$ dist $=\mathrm{v}_{0}$. dist +1 April 3, 2014

Breadth first search

Claim: at any point in operation of algorithm:

1. black/grey vertices exactly $L_{0}, L_{1}, \ldots, L_{i}$ and part of L_{i+1}
2. $Q=\underbrace{\left(v_{0}, v_{1}, v_{2}\right.}_{\text {level } i}, \underbrace{v_{3}, \ldots, v_{k}}_{\text {level } i+1})$ and all have v.dist = level of v
holds initially: s.color $=$ grey, s.dist $=0, Q=(s)$

Depth first search

DFS(directed graph G)

1. for each vertex v, v. color $=$ white, v. .pred $=$ nil
2. time $=0$
3. for each vertex u , IF u.color = white THEN DFS-VISIT(G, u)

DFS-VISIT(directed graph G, starting vertex \mathbf{u})

1. time $=$ time +1 , u.discovered $=$ time, u.color $=$ grey
2. for each v adjacent to u, IF v.color = white THEN
v.pred $=u$, DFS-VISIT(G, v)
3. u.color $=$ black; time $=$ time +1 ; u.finished $=$ time

Lemma: DFS runs in time $O(m+n)$, when G is represented by an adjacency list.
Proof?

Depth first search

DFS(directed graph G)

1. for each vertex v, v. color $=$ white, v. pred $=$ nil
2. time $=0$
3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u)

DFS-VISIT(directed graph G, starting vertex u)

1. time $=$ time +1 , u.discovered $=$ time, u.color $=$ grey
2. for each v adjacent to u, IF v.color $=$ white THEN
3. \quad v.pred $=u$, DFS-VISIT(G, v)
4. u.color $=$ black; time $=$ time +1 ; u.finished $=$ time

Lemma: DFS runs in time $O(m+n)$, when G is represented by an adjacency list.
Proof: DFS-VISIT called for each vertex exactly once; its adj. list scanned once; $O(1)$ work

Depth first search

- DFS yields a forest: "the DFS forest"
- each vertex labeled with discovery time and finishing time
- edges of G classified as
- tree edges
- back edges (point back to an ancestor)
- forward edges (point forward to a descendant)
- cross edges (all others)

DFS application: topological sort

- Given DAG, list vertices $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots ., \mathrm{v}_{\mathrm{n}}$ so that no edges from v_{i} to $v_{j}(j<i)$ example:

April 3, 2014
CS38 Lecture 2
16

Strongly connected components

- say that $\mathrm{x} \sim \mathrm{y}$ if there is a directed path from x to y and from y to x in G
- equivalence relation, equivalence classes are strongly connected components of G - also, maximal strongly connected subsets

Strongly connected components

- DFS tree from vin G : all nodes reachable from v $\quad G$ with edges reversed
- DFS tree from v in \mathbf{G}^{\top} : all nodes that can reach v

- Key: in sink SCC, this is exactly the SCC

Strongly connected components

```
SCC(directed graph G)
1. run DFS(G)
2. construct G}\mp@subsup{G}{}{\top}\mathrm{ from G
3. run DFS(GT) but in line 3, consider vertices in decreasing
    order of finishing times from the first DFS
```

- running time $O(n+m)$ if G in adj. list - note: step 2 can be done in $O(m+n)$ time
- trees in DFS forest of the second DFS are the SCCs of G

Summary

- $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time algorithms for
- computing BFS tree from v in undirected G
- finding shortest paths from v in undirected G
- computing DFS forest in directed G
- computing a topological ordering of a DAG
- identifying the strongly connected components of a directed G
(all assume G given in adjacency list format)

Strongly connected components

- given v in a sink SCC, run DFS starting there, then move to next in reverse topological order...
- DFS forest would give the SCCs
- Key \#2: topological ordering consistent with SCC DAG structure! (why?)

Strongly connected components

```
SCC(directed graph G)
1. run DFS(G)
2. construct G}\mp@subsup{G}{}{\top}\mathrm{ from G
3. run DFS(G}\mp@subsup{}{}{\top})\mathrm{ but in line 3, consider vertices in decreasing
    order of finishing times from the first DFS
```

Correctness (sketch):

- first vertex is in sink SCC, DFS-VISIT colors black, effectively removes
- next unvisited vertex is in sink after removal - and so on...

Heaps

- A basic data structure beyond stacks and queues: heap
- array of n elt/key pairs in special order
- min-heap or max-heap
operations:
INSERT(H, elt)
INCREASE-KEY(H, i)
EXTRACT-MAX(H)

Heaps

- A basic data structure beyond stacks and queues: heap
- array of n elt/key pairs in special order
- min-heap or max-heap

operations:	time:
INSERT $(H$, elt $)$	O(log $n)$
INCREASE-KEY $(H$, i)	O(log $n)$
EXTRACT-MAX(H)	$O(\log n)$

Heaps

- key operation: HEAPIFY-DOWN(H, i)

A[i] may violate heap property

- repeatedly swap with larger child
- running time?

CS38 Lecture 2

Heaps

- array A represents a binary tree that is full except for possibly last "row"

- heap property: $A[$ parent(i)] $\geq A[i]$ for all i

April 3, 2014
CS38 Lecture 2
26

Heaps

- How do you implement

operations:	time:
INSERT $(H$, elt $)$	$O(\log n)$
INCREASE-KEY(H, i)	$\mathrm{O}(\log n)$
EXTRACT-MAX(H)	O(log $n)$

using HEAPIFY-UP and HEAPIFY-DOWN?

- BUILD-HEAP(A): re-orders array A so that it satisfies heap property
- how do we do this? running time?

Heaps

- BUILD-HEAP(A): re-orders array A so that it satisfies heap property
- call HEAPIFY-DOWN(H, i) for i from n downto 1
- running time $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

- more careful analysis: $\mathrm{O}(\mathrm{n})$

$$
\sum_{h=0}^{\log n}\left[\frac{n}{2^{h+1}}\right] O(h)=O(n) \cdot \sum_{h=0}^{\log n} \frac{h}{2^{h}}=O(n)
$$

Heaps

$$
\sum_{h=0}^{\log n}\left\lceil\frac{n}{2^{h+1}}\right\rceil O(h)=O(n) \cdot \sum_{h=0}^{\log n} \frac{h}{2^{h}}=O(n)
$$

- suffices to show $\sum_{h \geq 0} h / 2^{h}=O(1)$
- note: $\sum_{\mathrm{h} \geq 0} \mathrm{C}^{\mathrm{h}}=\mathrm{O}(1)$ for $\mathrm{c}<1$
- observe: $(h+1) / 2^{h+1}=h /\left(2^{h}\right) \cdot(1+1 / h) / 2$
- $(1+1 / h) / 2<1$ for $h>1$

Sorting lower bound

comparison-based sort: only information about A used by algorithm comes from pairwise comparisons

- heapsort, mergesort, quicksort, ... visualize sequence of comparisons in tree:
- each root-leaf path consistent with 1 perm. - maximum path length $\geq \log (n!)=\Omega(n \log n)$

Greedy algorithms

- Greedy algorithm paradigm
- build up a solution incrementally
- at each step, make the "greedy" choice

Example: in undirected graph $G=(V, E)$, a vertex cover is a subset of V that touches every edge

- a hard problem: find the smallest vertex cover

CS38 Lecture 2 35

Heapsort

- Sorting n numbers using a heap
- BUILD-HEAP(A)
$\mathrm{O}(\mathrm{n})$
- repeatedly EXTRACT-MIN(H) n•O(log n)
- total O(n $\log \mathrm{n})$
- Can we do better? O(n)?
- observe that only ever compare values
- no decisions based on actual values of keys

Dijkstra's algorithm

- given
- directed graph $G=(V, E)$ with non-negative edge weights
- starting vertex $s \in V$
- find shortest paths from s to all nodes v - note: unweighted case solved by BFS

Dijkstra's algorithm

- shortest paths exhibit "optimal substructure" property
- optimal solution contains within it optimal solutions to subproblems
- a shortest path from x to y via z contains a shortest path from x to z
- shortest paths from s form a tree rooted at s
- Main idea:
- maintain set $\mathrm{S} \subseteq \mathrm{V}$ with correct distances - add nbr u with smallest "distance estimate"

