

Randomization Algorithmic design patterns. Greedy. • Divide-and-conquer. • Dynamic programming. • Network flow. • Randomization. in practice, access to a pseudo-random number generator Randomization. Allow fair coin flip in unit time. Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem. Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

Expectation

Expectation. Given a discrete random variables X, its expectation E[X]is defined by: E

$$\mathcal{E}[X] = \sum_{i=1}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability 1- p. How many independent flips X until first heads?

Expectation: two properties
Useful property. If X is a 0/1 random variable,
$$E[X] = Pr[X = 1]$$
.
Pf. $E[X] = \sum_{j=0}^{n} j \cdot Pr[X = j] = \sum_{j=0}^{l} j \cdot Pr[X = j] = Pr[X = 1]$
not necessarily independent
Linearity of expectation. Given two random variables X and Y defined over
the same probability space, $E[X + Y] = E[X] + E[Y]$.
Benefit. Decouples a complex calculation into simpler pieces.

Coupon collector
Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have \geq 1 coupon of each type?
 Claim. The expected number of steps is Θ(n log n). Pf. Phase j = time between j and j + 1 distinct coupons. Let X_j = number of steps you spend in phase j. Let X = number of steps in total = X₀ + X₁ + + X_{n-1}.
$E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)$ $\mid \qquad \qquad$

	exactly 3 distinct literals per clause billity. Given a 3-SAT formula, find a truth assignment ny clauses as possible.	
	$C_1 = x_2 \vee \overline{x_3} \vee \overline{x_4} \\ C_2 = x_2 \vee x_3 \vee \overline{x_4} \\ C_3 = \overline{x_1} \vee x_2 \vee x_4 \\ C_4 = \overline{x_1} \vee \overline{x_2} \vee x_3 \\ C_5 = x_1 \vee \overline{x_2} \vee \overline{x_4} $	
Remark. NP-hard s	earch problem.	
Simple idea. Flip a independently for e	coin, and set each variable true with probability ½, ach variable.	

Maximum 3-satisfiability: analysis	3-satisfiability: analysis
------------------------------------	----------------------------

Pf.

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

Consider random variable
$$Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$$

• Let Z = weight of clauses satisfied by assignment Z_j.

$$E[Z] = \sum_{j=1}^{k} E[Z_j]$$

linearity of expectation = $\sum_{j=1}^{k} Pr[\text{clause } C_j \text{ is satisfied}]$
= $\frac{2}{k}k$

	ibe e	of k	226	h fi	inc	tio	s. [Carter-Wegman 1980s]
	1						
 For any pa 							, NEWL () ()]
 Can select 	t ra	nd	om	he	effi	cier	tly.
 Can comp 	ute	e h(u) e	effi	cie	ntly	chosen uniformly at random
h ₁ (x) h ₂ (x)	a 0 0	b 1 0	с 0 0	d 1 1	e 0 1	f 1 1	$ \begin{split} H &= \{h_1, h_2\} \\ & Pr_{h \in \mathcal{H}} \left[\mathcal{P}(\theta) = h(b) \right] = 1/2 \\ & Pr_{h \in \mathcal{H}} \left[\mathcal{H}(\theta) = h(c) \right] = 1 \\ & Pr_{h \in \mathcal{H}} \left[\mathcal{H}(\theta) = h(c) \right] = 1 \\ & Pr_{h \in \mathcal{H}} \left[\mathcal{H}(\theta) = h(c) \right] = 0 \end{split} $
	a	b	с	d	е	f	$H = \{h_1, h_2, h_3, h_4\}$
h1(x)	0	1	0	1	0	1	$\Pr_{h \in H}[h(a) = h(b)] = 1/2$
h ₂ (x)	0	0	0	1	1	1	$\Pr_{h \in H}[h(a) = h(c)] = 1/2$ universal
		0	,	0	1	1	$Pr_{h \in H}[h(a) = h(d)] = 1/2$ $Pr_{h \in H}[h(a) = h(e)] = 1/2$
h ₃ (x)	0						

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.

Modulus. Choose a prime number $p \approx n$. — no need for randomness here

Integer encoding. Identify each element $u \in U$ with a base-*p* integer of *r* digits: $x = (x_1, x_2, ..., x_r)$.

Hash function. Let A = set of all *r*-digit, base-*p* integers. For each $a = (a_1, a_2, ..., a_i)$ where $0 \le a_i < p$, define

$$h_a(x) = \left(\sum_{i=1}^r a_i x_i\right) \mod a_i$$

23

Hash function family. $H = \{ h_a : a \in A \}.$

Designing a universal family of hash functions Theorem. $H = \{h_a : a \in A\}$ is a universal family of hash functions. Pf. Let $x = (x_1, x_2, ..., x_i)$ and $y = (y_1, y_2, ..., y_j)$ be two distinct elements of U. We need to show that $\Pr[h_a(x) = h_a(y)] \le 1/n$. • Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$. • We have $h_a(x) = h_a(y)$ iff $a_j(y_j - x_j) = \sum_{i \text{ rot equal}} a_i(x_i - y_i) \mod p$ • Can assume a schosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$. • Since p is prime, $a_j z = m \mod p$ has at most one solution among p possibilities. • Thus $\Pr[h_a(x) = h_a(y)] = 1/p \le 1/n$.

44

Coping with intractibility

approximation algorithms

CS38 Lecture 19

- knapsack $(1 + \epsilon)$

- set cover ln m + 1

- center selection 2

- TSP 1.5

June 3, 2014

