Outline

- randomness in algorithms
- max-3-sat approximation algorithm
- universal hashing
- load balancing
- Course summary and review

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.

Dynamic programming

- Network flow.
- Randomization.
in practice, access to a pseudo random number generato /
Randomization. Allow fair coin flip in unit time.
Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

Max-3-SAT approximation algorithm

Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$
E[X]=\sum_{j=0}^{\infty} j \operatorname{Pr}[X=j]
$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$
E[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]=\sum_{j=0}^{\infty} \underset{j-1 \text { tails }}{\underset{\text { 1 head }}{ }(1-p)^{j-1} p} \underset{\mid}{p}=\frac{p}{1-p} \sum_{j-0}^{\infty} j(1-p)^{j}=\frac{p}{1-p} \cdot \frac{1-p}{p^{2}}=\frac{1}{p}
$$

Expectation: two properties

Useful property. If X is a $0 / 1$ random variable, $E[X]=\operatorname{Pr}[X=1]$.
Pf. $E[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]=\sum_{j=0}^{1} j \cdot \operatorname{Pr}[X=j]=\operatorname{Pr}[X=1]$
not necessarily independent
Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X+Y]=E X]+E[Y$.

Benefit. Decouples a complex calculation into simpler pieces.

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1 .
Pf. [surprisingly effortless using linearity of expectation]

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / n$.
- $E X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1 / n+\ldots+1 / n=1$. . 1
linearity of expectation

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$. Pf.

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i-1)$.
- $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1 / n+\ldots+1 / 2+1 / 1=H(n)$. 1
linearity of expectation $\quad \ln (n+1)<H(n)<1+\ln n$

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$. Pf.

- Phase $j=$ time between j and $j+1$ distinct coupons.
- Let $X_{j}=$ number of steps you spend in phase j.
- Let $X=$ number of steps in total $=X_{0}+X_{1}+\ldots+X_{n-1}$.

$$
E[X]=\sum_{j=0}^{n-1} E\left[X_{j}\right]=\sum_{j=0}^{n-1} \frac{n}{n-j}=n \sum_{i=1}^{n} \frac{1}{i}=n H(n)
$$

।
prob of success $=(\mathrm{n}-\mathrm{j}) / \mathrm{n}$
\Rightarrow expected waiting time $=\mathrm{n} /(\mathrm{n}-\mathrm{j})$

Maximum 3-satisfiability

exactly 3 distinct literals per clause

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$
\begin{aligned}
& C_{1}=x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \\
& C_{2}=x_{2} \vee x_{3} \vee \overline{x_{4}} \\
& C_{3}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{4}=\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3} \\
& C_{5}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}
\end{aligned}
$$

Remark. NP-hard search problem

Simple idea. Flip a coin, and set each variable true with probability $1 / 2$, independently for each variable.

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 k / 8$.

Pf. Consider random variable $\quad Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise } .\end{cases}$

- Let $Z=$ weight of clauses satisfied by assignment Z_{j}.

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7 / 8$ fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. -

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!

Maximum 3-satisfiability: analysis
Q. Can we turn this idea into a $7 / 8$-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies $\geq 7 k / 8$ clauses is at least $1 /(8 k)$.

Pf. Let p_{j} be probability that exactly j clauses are satisfied; let p be probability that $\geq 7 k / 8$ clauses are satisfied.

$$
\begin{aligned}
{ }_{8}^{\frac{7}{8} k=E[Z]} & =\sum_{j \geq 0} j p_{j} \\
& =\sum_{j<7 k / 8} j p_{j}+\sum_{j 27 k / 8} j p_{j} \\
& \leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \sum_{j<7 k / 8} p_{j}+k \sum_{j 27 k / 8} p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \cdot 1+k p
\end{aligned}
$$

Rearranging terms yields $p \geq 1 /(8 k)$. .

Maximum 3-satisfiability: analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7 k$ / 8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability $\geq 1 /(8 k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most $8 k$. •

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

- create(): initialize a dictionary with $S=\varphi$.
- insert(u): add element $u \in U$ to S.
- delete (u) : delete u from S (if u is currently in S).
- lookup(u): is u in S ?

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Universal hashing

Hashing

Hash function. $h: U \rightarrow\{0,1, \ldots, n-1\}$.

Hashing. Create an array H of size n. When processing element u, access array element $H[h(u)]$.

Collision. When $h(u)=h(v)$ but $u \neq v$.

- A collision is expected after $\Theta(\sqrt{ } n)$ random insertions.
- Separate chaining: $H[i]$ stores linked list of elements u with $h(u)=i$.

Ad-hoc hash function

Ad hoc hash function.

```
int hash(String s, int n) {
```

 int hash \(=0\);
 for (int \(\mathbf{i}=0\); \(\mathbf{i}<\mathbf{s}\). length() ; \(i++\))
 hash \(=(31\) * hash \()+s[i]\);
 return hash \% n ;
 hash function ala Java string library
 Deterministic hashing. If $|U| \geq n^{2}$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot.
Thus, $\Theta(n)$ time per search in worst-case.
Q. But isn't ad-hoc hash function good enough in practice?

Algorithmic complexity attacks

When can't we live with ad hoc hash function?

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.
malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt
Real world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array
- Linux 2.4.20 kernel: save files with carefully chosen names.

Hashing performance

Ideal hash function. Maps m elements uniformly at random to m hash slots.

- Running time depends on length of chains.
- Average length of chain $=\alpha=m / n$.
- Choose $n \approx m \Rightarrow$ on average $O(1)$ per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

```
\
adversary knows the randomized algorithm you're using,
    but doesn't know random choices that the algorithm makes
```


Universal hashing: analysis

Proposition. Let H be a universal family of hash functions; let $h \in H$ be chosen uniformly at random from H; and let $u \in U$. For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1 .

Pf. For any element $s \in S$, define indicator random variable $X_{s}=1$ if $h(s)=$ $h(u)$ and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$
E_{h \in H}[X]=E\left[\sum_{s \in S} X_{s}\right]=\sum_{s \in S} E\left[X_{s}\right]=\sum_{s \in S} \operatorname{Pr}\left[X_{s}=1\right] \underset{\left.\right|_{s}}{\leq} \sum_{s \in S} \frac{1}{n}=|S|_{n}^{1} \leq 1
$$

Q. OK, but how do we design a universal class of hash functions?

Designing a universal family of hash functions

Theorem. [Chebyshev 1850] There exists a prime between n and $2 n$.

Modulus. Choose a prime number $p \approx n . \longleftarrow_{\text {no need for randomness here }}$
Integer encoding. Identify each element $u \in U$ with a base- p integer of r digits: $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Hash function. Let $A=$ set of all r-digit, base- p integers. For each $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ where $0 \leq a_{i}<p$, define

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \bmod p
$$

Hash function family. $H=\left\{h_{a}: a \in A\right\}$.

Designing a universal family of hash functions

Theorem. $H=\left\{h_{\mathrm{a}}: a \in A\right\}$ is a universal family of hash functions.

Pf. Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ be two distinct elements of U.
We need to show that $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / n$

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{\mathrm{a}}(x)=h_{\mathrm{a}}(y)$ iff

- Can assume a was chosen uniformly at random by first selecting all coordinates a_{i} where $i \neq j$, then selecting a_{j} at random. Thus, we can assume a_{i} is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_{j} z=m \bmod p$ has at most one solution among p possibilities.
- Thus $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right]=1 / p \leq 1 / n$. .

Load balancing

Chernoff Bounds (above mean)

Theorem. Suppose X_{1}, \ldots, X_{n} are independent $0-1$ random variables. Let $X=$ $X_{1}+\ldots+X_{n}$. Then for any $\left\lceil\varepsilon E[X]\right.$ and for any ${ }^{T M}>0$, we have

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}
$$

sum of independent $0-1$ random variables is tightly centered on the mean

Pf. We apply a number of simple transformations.

- For any $\mathrm{t}>0$,

$$
\begin{array}{cc}
\operatorname{Pr}[X>(1+\delta) \mu]=\operatorname{Pr}\left[e^{t X}>e^{t(l+\delta) \mu}\right] & \leqslant \\
\dagger & e^{-t(l+\delta) \mu} \cdot E\left[e^{t X}\right] \\
\mathrm{f}(\mathrm{x})=\mathrm{e}^{t \mathrm{x}} \text { is monotone in } \mathrm{x} & \text { Markov's inequality: } \operatorname{Pr}[\mathrm{X}>\mathrm{a}] \delta \mathrm{E}[\mathrm{X}] / \mathrm{a}
\end{array}
$$

- Now $E\left[e^{i X}\right]=E\left[e^{t \sum_{1} X_{i}}\right]=\prod_{i} E\left[e^{t X_{i}}\right]$
$\begin{array}{cc}\uparrow & \prod_{\text {definition of } \mathrm{X}} \\ \text { independence }\end{array}$

Chernoff Bounds (below mean)

Theorem. Suppose X_{1}, \ldots, X_{n} are independent 0-1 random variables. Let $X=X_{1}+\ldots+X_{n}$. Then for any $\lceil\leq E[X]$ and for any $0<\delta<1$, we have

$$
\operatorname{Pr}[X<(1-\delta) \mu]<e^{-\delta^{2} \mu / 2}
$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta<1$

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that Load balancing

Analysis.

- Let $X_{i}=$ number of jobs assigned to processor i.
- Let $Y_{i j}=1$ if job j assigned to processor i, and 0 otherwise.
- We have $\mathrm{E}\left[Y_{i j}\right]=1 / \mathrm{n}$.
- Thus, $X_{i}=\sum_{i} Y_{i j}$, and $\mu=\mathrm{E}\left[X_{i}\right]=1$.
- Applying Chernoff bounds with $\bar{\delta}=\mathrm{c}-1$ yields $\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}$
- Let $\mathrm{Y}(n)$ be number x such that $x^{x}=n$, and choose $c=e \mathrm{Y}(n)$.

$$
\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}<\left(\frac{e}{c}\right)^{c}=\left(\frac{1}{\gamma(n)}\right)^{e \tau(n)}<\left(\frac{1}{\gamma(n)}\right)^{2 \gamma(n)}=\frac{1}{n^{2}}
$$

- Union bound (®) with probability $\geq 1-1 / n$ no processor receives more than e $\gamma(n)=\Theta(\log n / \log \log n)$ jobs.
\downarrow
Bonus fact: with high probability,
some processor receives $\Theta(\operatorname{logn} / \log \log n$) jobs

```
Load balancing: many jobs
Theorem. Suppose the number of jobs m=16 n ln n. Then on average,
each of the n processors handles }\mu=16\operatorname{ln}n\mathrm{ jobs. With high probability,
every processor will have between half and twice the average load.
Pf.
- Let \(X_{i}, Y_{i j}\) be as before.
- Applying Chernoff bounds with \(\delta=1\) yields
\[
\operatorname{Pr}\left[X_{i}>2 \mu\right]<\left(\frac{e}{4}\right)^{16 n \ln n}<\left(\frac{1}{e}\right)^{\ln n}=\frac{1}{n^{2}} \quad \operatorname{Pr}\left[X_{i}<\frac{1}{2} \mu\right]<e^{-\frac{2}{2}\left(\frac{1}{2}\right)^{2}(16 n \ln n)}=\frac{1}{n^{2}}
\]
```

- Union bound ${ }^{\circledR}$ every processor has load between half and twice the average with probability $\geq 1-2 / n$. .

Algorithmic design paradigms

- Greedy (see: matroids)
- Divide and Conquer
- Dynamic Programming
- Flows, cuts and matchings
- Linear Programming
more sophisticated/general as go down list

Fundamental algorithms

- Graph traversals in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time
- Breadth First Search (BFS)
- Depth First Search (DFS)
- applications:
- BSF yields shortest paths in undirected graph
- DFS used for topological sort and strongly connected components

Algorithmic design paradigms

- Many problems are NP-complete
- Unlikely to have solutions in P
- Coping with intractibility
- special cases
- fixed-parameter algorithms/analysis
- approximation algorithms

Course summary

 and review
Fundamental algorithms

- All-pairs shortest paths
- Floyd-Warshall O(n^{3})
- Minimum cost spanning tree
- Kruskal O(m log m)
- Prim $O(m+n \log n)$
- compression via variable length coding
- Huffman codes $O(n \log n)$

Data structures

- Union-Find data structure
- path compression
- union-by-rank
- amortized analysis:
m find and n union operations in $\mathrm{O}\left(\mathrm{m} \log { }^{*} \mathrm{n}\right)$

Fundamental algorithms

- closest pair of points in plane $O(n \log n)$
- integer multiplication $\mathrm{O}\left(\mathrm{n}^{\left.\log _{2} 3\right)}\right.$
- matrix multiplication $\mathrm{O}\left(\mathrm{n}^{\log _{2} 7}\right)$
- FFT O($\mathrm{n} \log \mathrm{n}$)
- polynomial multiplication and division with remainder $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Fundamental algorithms

- Sorting in O(n log n) time
- heapsort
- mergesort
- quicksort with random pivot (expected time)
- lower bound for comparison-based
- selection in $O(n)$ time
- randomized and deterministic

June 3, 2014
CS38 Lecture 19
40

Fundamental algorithms

- two strings of length n, m :
- edit distance $O(n m)$
- longest-common-subsequence $O(n m)$

Fundamental algorithms

- max-flow in a network (= min-cut)
- Ford-Fulkerson method O(m nC)
- capacity-scaling $\mathrm{O}\left(\mathrm{m}^{2} \log \mathrm{C}\right)$
- shortest augmenting path $O\left(m^{2} n\right)$
- blocking-flow implementation $\mathrm{O}\left(\mathrm{mn}^{2}\right)$
- unit-capacity simple graphs $\mathrm{O}\left(\mathrm{mn}^{1 / 2}\right)$
- use last for bipartite matching in same time
- min/max weight perfect matching $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Fundamental algorithms

- Coping with intractibility
- e.g.: hard graph problems easy on trees
- e.g.: fixed parameter algorithms for VC
- approximation algorithms
- knapsack $(1+\epsilon)$
- VC and weighted VC 2 (via LP relaxation)
- set cover In m + 1
- TSP 1.5
- center selection 2

Fundamental algorithms

- Linear programming
- primal/dual and strong duality theorem
- simplex algorithm (worst case exponential)
- ellipsoid algorithm (in P)
- in practice: interior points methods

Fundamental algorithms

- randomized algorithm for global min-cut
- 8/7 approximation for max-3-sat
- other applications:
- contention resolution
- hashing
- load-balancing
- ...

June 3, 2014
CS38 Lecture 19
46

