CS38
 Introduction to Algorithms

Lecture 16
May 22, 2014

Primal problem.

Idea. Add nonnegative combination (C, H, M) of the constraints s.t.
$13 A+23 B \leq(5 C+4 H+35 M) A+(15 C+4 H+20 M) B$
$\leq 480 \mathrm{C}+160 \mathrm{H}+1190 \mathrm{M}$

Dual problem. Find best such upper bound.

Double Dual

Canonical form.

Property. The dual of the dual is the primal.
Pf. Rewrite (D) as a maximization problem in canonical form; take dual.

(DD)	$\min -c^{T} z$		
s. t. $-\left(A^{T}\right)^{T}$	z	$\geq-b$	
	z	≥ 0	

Outline

- Linear programming
- LP duality
- ellipsoid algorithm
* slides from Kevin Wayne
- coping with intractibility
- NP-completeness

Taking Duals			
LP dual recipe.			
Primal (P)	maximize	minimize	Dual (D)
constraints	$\begin{aligned} & a x=b_{i} \\ & a x \leq b \\ & a x \geq b_{i} \end{aligned}$	$\begin{gathered} y_{i} \text { unrestricted } \\ y_{i} \geq 0 \\ y_{i} \leq 0 \end{gathered}$	variables
variables	$\begin{gathered} x_{j} \leq 0 \\ x_{j} \geq 0 \\ \text { unresticted } \end{gathered}$	$\begin{aligned} & a^{\top} y \geq c_{y} \\ & a^{y} y \leq c_{y}^{y} \\ & a^{y} y=c_{j} \end{aligned}$	constraints
Pf. Rewrite LP in standard form and take dual.			

Strong duality

Theorem. For $A \in \mathbf{R}^{m x_{n}}, b \in \mathbf{R}^{m}, c \in \mathbf{R}^{n}$, if (P) and (D) are nonempty, then max $\leq \min$.
(P) $\left.\begin{array}{rlrl}\max c^{T} x & & \text { (D) } \min y^{T} b & \\ \text { s.t. } A x & \leq b & \text { s. t. } A^{T} y & \geq c \\ x & \geq 0 & & \\ & & & \end{array}\right)$

Pf. Suppose $x \in \mathbf{R}^{m}$ is feasible for (\mathbf{P}) and $y \in \mathbf{R}^{n}$ is feasible for (D).

- $y \geq 0, A x \leq b \quad \Rightarrow \quad y^{\mathrm{T}} A x \leq y^{\mathrm{T}} b$
- $x \geq 0, A^{\mathrm{T}} y \geq c \quad \Rightarrow \quad y^{\mathrm{T}} A x \geq c^{\mathrm{T}} x$
- Combine: $c^{\mathrm{T}} x \leq y^{\mathrm{T}} A x \leq y^{\mathrm{T}} b$.

Projection Lemma

Weierstrass' theorem. Let X be a compact set, and let $f(x)$ be a continuous function on X. Then $\min \{f(x): x \in X\}$ exists.

Projection lemma. Let $X \subset \mathrm{R}^{m}$ be a nonempty closed convex set, and take y not in X. Then there exists $x^{*} \in X$ with minimum distance from y. Moreover, for all $x \in X$ we have $\left(y-x^{*}\right)^{\mathrm{T}}\left(x-x^{*}\right) \leq 0$.

Pf.

- Define $f(x)=\|y-x\|$.
- Want to apply Weierstrass, but X not necessarily bounded
- X not empty \Rightarrow there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X:\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$ so that X^{\prime} is closed, bounded, and $\min \{f(x): x \in X\}=\min \left\{f(x): x \in X^{\prime}\right\}$.
- By Weierstrass, min exists.

Projection Lemma

Weierstrass' theorem. Let X be a compact set, and let $f(x)$ be a continuous function on X. Then $\min \{f(x): x \in X\}$ exists.

Projection lemma. Let $X \subset \mathrm{R}^{m}$ be a nonempty closed convex set, and take, not in X. Then there exists $x^{*} \in X$ with minimum distance from y.
Moreover, for all $x \in X$ we have $\left(y-x^{*}\right)^{\mathrm{T}}\left(x-x^{*}\right) \leq 0$.

Pf.
. x^{*} min distance $\Rightarrow\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.

- By convexity: if $x \in X$, then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0<\epsilon<1$.
- $\left\|y-x^{*}\right\|^{2} \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2}$

$$
=\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|\left(x-x^{*}\right)\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{\mathrm{T}}\left(x-x^{*}\right)
$$

- Thus, $\left(\mathrm{y}-x^{*}\right)^{\top}\left(x-x^{*}\right) \leq 1 / 2 \in\left\|\left(x-x^{*}\right)\right\|^{2}$.
- Letting $\epsilon \rightarrow 0^{+}$, we obtain the desired result.

Separating Hyperplane Theorem

Theorem. Let $X \subset \mathrm{R}^{m}$ be a nonempty closed convex set, and take y not in
X. Then there exists a hyperplane $H=\left\{x \in \mathrm{R}^{m}: a^{\mathrm{T}} x=\alpha\right\}$ where $a \in \mathrm{R}^{m}$,
$\alpha \in \mathrm{R}$ that separates y from X.

$$
\begin{aligned}
& a^{\mathrm{T} x} \geq \alpha \text { for all } x \in X \\
& a^{\mathrm{T}} y<\alpha
\end{aligned}
$$

Pf.

- Let x^{*} be closest point in X to y.
- By projection lemma,
$\left(y-x^{*}\right)^{\mathrm{T}}\left(x-x^{*}\right) \leq 0$ for all $x \in X$
Choose $a=x^{*}-y$ not equal 0 and $\alpha=a^{T} x^{*}$.
- If $x \in X$, then $a^{\mathrm{T}}\left(x-x^{*}\right) \geq 0$;
thus $\Rightarrow a^{\mathrm{T}} x \geq a^{\mathrm{T}} x^{*}=\alpha$.
- Also, $a^{\mathrm{T}} y=a^{\mathrm{T}}\left(x^{*}-a\right)=\alpha-\|a\|^{2}<\alpha$.

$$
H=\left\{x \in \mathbb{R}^{m}: a^{T} x=\alpha\right\}
$$

Farkas' Lemma

Theorem. For $A \in \mathbf{R}^{m x n}, b \in \mathbf{R}^{m}$ exactly one of the following two systems holds:

Pf. [not both] Suppose x satisfies (I) and y satisfies (II).
Then $0>y^{\mathrm{T}} b=y^{\mathrm{T}} A x \geq 0$, a contradiction.

Pf. [at least one] Suppose (I) infeasible. We will show (II) feasible.

- Consider $S=\{A x: x \geq 0\}$ and note that b not in S.
- Let $y \in \mathbf{R}^{m}, \alpha \in \mathrm{R}$ be a hyperplane that separates b from S :
$y^{\mathrm{T}} b<\alpha, y^{\mathrm{T}} s \geq \alpha$ for all $s \in S$.
- $0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{\mathrm{T}} b<0$
- $y^{\mathrm{T}} A x \geq \alpha$ for all $x \geq 0 \Rightarrow y^{\top} A \geq 0$ since x can be arbitrarily large.

Another Theorem of the Alternative

Corollary. For $A \in \mathrm{R}^{m \times n}, b \in \mathrm{R}^{m}$ exactly one of the following two systems holds:

Pf. Apply Farkas' lemma to:

(II') $\exists y \in \mathfrak{R}^{m}$
(II') $\begin{aligned} \exists y \in \Re^{m} & \\ \text { s.t. } & A^{T} y\end{aligned} \quad 00$

LP Strong Duality

Theorem. [strong duality] For $A \in \mathbf{R}^{m x n}, b \in \mathbf{R}^{m}, c \in \mathbf{R}^{n}$, if (\mathbf{P}) and (D) are nonempty then $\max =\min$.

(P) | $\max c^{T} x$ | |
| ---: | :--- |
| s.t. $A x$ | $\leq b$ |
| x | ≥ 0 |

(D) $\min y^{T} b$ $\begin{aligned} \text { s. t. } A^{T} y & \geq c \\ y & \geq 0\end{aligned}$

Pf. [max $\leq \min$] Weak LP duality.
Pf. [min $\leq \max$] Suppose $\max <\alpha$. We show $\min <\alpha$.

- By definition of α, (I) infeasible \Rightarrow (II) feasible by Farkas' Corollary.

LP Strong Duality	
(II) $\exists y \in \mathfrak{R}^{m}, z \in \Re$	
s.t. $\quad A^{T} y-c z$	≥ 0
$y^{T} b-\alpha z$	<0
y, z	≥ 0

Let y, z be a solution to (II).

Case 1. $[z=0]$

- Then, $\left\{y \in \mathrm{R}^{m}: A^{\mathrm{T}} y \geq 0, y^{\mathrm{T}} b<0, y \geq 0\right\}$ is feasible.
- Farkas Corollary $\Rightarrow\left\{x \in \mathrm{R}^{n}: A x \leq b, x \geq 0\right\}$ is infeasible.
. Contradiction since by assumption (P) is nonempty.

Case 2. $[z>0]$

- Scale y, z so that y satisfies (II) and $z=1$.
- Resulting y feasible to (D) and $y^{\top} b<\alpha$.

Geometric Divide-and-Conquer						
To find a point in P :						

Ellipsoid Algorithm

Goal. Given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^{m}$, find $x \in \mathbf{R}^{n}$ such that $A x \leq b$.

Ellipsoid algorithm.

- Let E_{0} be an ellipsoid containing P.
- $k=0$. enumerate constraints
- While center z^{k} of ellipsoid E^{k} is not in P :
find a constraint, say $a \cdot x \leq \beta$, that is violated by z^{k}
- let E^{k+1} be min volume ellipsoid containing $E^{k} \cap\left\{x: a \cdot x \leq a \cdot z^{k}\right\}$ $-k=k+1$

Shrinking Lemma
Ellipsoid. Given $D \in \mathrm{R}^{n \times n}$ positive definite and $z \in \mathrm{R}^{n}$, then
$E=\left\{x \in \mathfrak{R}^{n}:(x-z)^{T} D^{-1}(x-z) \leq 1\right\}$
is an ellipsoid centered on z with $\operatorname{vol}(E)=\sqrt{\operatorname{det}(D)} \times \operatorname{vol}(B(0,1))$
Key lemma. Every half-ellipsoid $1 / 2 E$ is contained in an ellipsoid E^{\prime} with
$\operatorname{vol}\left(E^{\prime}\right) / \operatorname{vol}(E) \leq e^{-1 /(2 n+1)}$.

Shrinking Lemma

Shrinking lemma. The min volume ellipsoid containing the

half-ellipsoid $1 / 2 E=E \cap\{x: a \cdot x \leq a \cdot z\}$ is defined by:

$$
\begin{gathered}
z^{\prime}=z-\frac{1}{n+1} \frac{D a}{\sqrt{a^{T} D a}}, \quad D^{\prime}=\frac{n^{2}}{n^{2}-1}\left(D-\frac{2}{n+1} \frac{D a a^{T} D}{a^{T} D a}\right) \\
E^{\prime}=\left\{x \in \mathfrak{R}^{n}:\left(x-z^{\prime}\right)^{T}\left(D^{\prime}\right)^{-1}\left(x-z^{\prime}\right) \leq 1\right\}
\end{gathered}
$$

Moreover, $\operatorname{vol}\left(E^{\prime}\right) / \operatorname{vol}(E)<e^{-1 /(2 n+1)}$.

Pf sketch.

- We proved $E=$ unit sphere, $H=\left\{x: x_{1} \geq 0\right\}$

Ellipsoids are affine transformations of unit spheres.

- Volume ratios are preserved under affine transformations

Shrinking lemma. The min volume ellipsoid containing the
half-ellipsoid $1 / 2 E=E \cap\{x: a \cdot x \leq a \cdot z\}$ is defined by:

$$
\begin{gathered}
z^{\prime}=z-\frac{1}{n+1} \frac{D a}{\sqrt{a^{T} D a}}, \quad D^{\prime}=\frac{n^{2}}{n^{2}-1}\left(D-\frac{2}{n+1} \frac{D a a^{T} D}{a^{T} D a}\right) \\
E^{\prime}=\left\{x \in \mathfrak{R}^{n}:\left(x-z^{\prime}\right)^{T}\left(D^{\prime}\right)^{-1}\left(x-z^{\prime}\right) \leq 1\right\}
\end{gathered}
$$

Moreover, $\operatorname{vol}\left(E^{\prime}\right) / \operatorname{vol}(E)<e^{-1 /(2 n+1)}$.

Corollary. Ellipsoid algorithm terminates after at most $2(n+1) \ln \left(\operatorname{vol}\left(E_{0}\right) / \operatorname{vol}(P)\right)$ steps.

Ellipsoid Algorithm
Theorem. Linear Programming problems can be solved in polynomial time.
Pf sketch. . Shrinking lemma. - Set initial ellipsoid E_{0} so that $\operatorname{vol}\left(E_{0}\right) \leq 2^{\text {cmL }}$. - Perturb $A x \leq b$ to $A x \leq b+\varepsilon \Rightarrow$ either P is empty or $\operatorname{vol}(P) \geq 2^{-c n L}$. . Bit complexity (to deal with square roots). . Purify to vertex solution.
Caveat. This is a theoretical result. Do not implement. $\mathrm{O}\left(m n^{3} L\right) \text { arithmetic ops on numbers of size } \mathrm{O}(L),$ $\text { where } L=\text { number of bits to encode input }$

$\left.\begin{array}{|cc|}\hline & \\ & \\ & \\ & \\ \text { Coping with } \\ \text { intractability }\end{array}\right)$

Decision problems + languages

- A problem is a function:
$\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$
- Simple. Can we make it simpler?
- Yes. Decision problems:

$$
\left.\mathrm{f}: \Sigma^{*} \rightarrow \text { \{accept, reject }\right\}
$$

- Does this still capture our notion of problem, or is it too restrictive?

Decision problems + languages

- For most complexity settings a problem is a decision problem:

$$
\left.\mathrm{f}: \Sigma^{*} \rightarrow \text { \{accept, reject }\right\}
$$

- Equivalent notion: language

$$
\mathrm{L} \subseteq \Sigma^{*}
$$

the set of strings that map to "accept"

- Example: $L=$ set of pairs (m, k) for which m has a prime factor $p<k$

Search vs. Decision

- Definition: given a graph $G=(V, E)$, an independent set in G is a subset $\mathrm{V} \subseteq \mathrm{V}$ such that for all $u, w \in V^{\prime}(u, w) \notin E$
- A problem: given G, find the largest independent set
- This is called a search problem
- searching for optimal object of some type - comes up frequently

Search vs. Decision

- We want to talk about languages (or decision problems)
- Most search problems have a natural, related decision problem by adding a bound " k "; for example:
- search problem: given G, find the largest independent set
- decision problem: given (G, k), is there an independent set of size at least k

May 22, 2014
CS38 Lecture 16

Poly-time verifiers

- NP = \{L : L decided by poly-time NTM $\}$
- Very useful alternate definition of NP:

Theorem: language L is in NP if and only if it is expressible as:

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

where R is a language in P.

- poly-time TM M_{R} deciding R is a "verifier"

CS38 Lecture 16

Poly-time verifiers

- Example: 3SAT expressible as
$3 S A T=\{\varphi: \varphi$ is a 3-CNF formula for which \exists assignment A for which $(\varphi, A) \in R\}$ $R=\{(\varphi, A): A$ is a sat. assign. for $\varphi\}$
- satisfying assignment A is a "witness" of the satisfiability of φ (it "certifies" satisfiability of φ)
$-R$ is decidable in poly-time

The class NP

Definition: $\operatorname{TIME}(t(n))=\{L$: there exists a TM M that decides L in time $O(t(n))\}$

$$
P=\cup_{k \geq 1} \operatorname{TIME}\left(n^{k}\right)
$$

Definition: $\operatorname{NTIME}(\mathrm{t}(\mathrm{n}))=\{\mathrm{L}$: there exists a NTM M that decides L in time $\mathrm{O}(\mathrm{t}(\mathrm{n})$) \}

$$
N P=\cup_{k \geq 1} \operatorname{NTIME}\left(n^{k}\right)
$$

Poly-time verifiers

- NP = $\{\mathrm{L}: L$ decide "witness" or e NTM $\}$ "certificate"
- Very useful alternate definition efficiently Theorem: language L is in NP i verifiable it is expressible as:

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

where R is a language in P.

- poly-time TM M_{R} deciding R is a "verifier"

CS38 Lecture 16
40

Poly-time reductions

- Type of reduction we will use:
- "many-one" poly-time reduction

Poly-time reductions

- function f should be poly-time computable

Definition: $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is poly-time computable if for some $\mathrm{g}(\mathrm{n})=\mathrm{n}^{\mathrm{O}(1)}$ there exists a $\mathrm{g}(\mathrm{n})$-time $\mathrm{TM} \mathrm{M}_{\mathrm{f}}$ such that on every $w \in \Sigma^{\star}, M_{f}$ halts with $f(w)$ on its tape.

May 22, 2014
CS38 Lecture 16 43

Poly-time reductions

Definition: A $\leq_{\mathrm{p}} \mathrm{B}$ ("A reduces to B") if there is a poly-time computable function f such that for all w

$$
w \in A \Leftrightarrow f(w) \in B
$$

- condition equivalent to:
- YES maps to YES and NO maps to NO
- meaning is:
- B is at least as "hard" (or expressive) as A

Poly-time reductions

Theorem: if $\mathrm{A} \leq_{\mathrm{P}} \mathrm{B}$ and $\mathrm{B} \in \mathrm{P}$ then $\mathrm{A} \in \mathrm{P}$.

Proof:

- a poly-time algorithm for deciding A:
- on input w, compute $f(w)$ in poly-time.
- run poly-time algorithm to decide if $f(w) \in B$
- if it says "yes", output "yes"
- if it says "no", output "no"

Hardness and completeness

- Recall:
- a language L is a set of strings
- a complexity class C is a set of languages

Definition: a language L is C -hard if for every language $A \in C$, A poly-time reduces to L; i.e., $\mathrm{A} \leq_{p} \mathrm{~L}$.
meaning: L is at least as "hard" as anything in C

Hardness and completeness

- Reasonable that can efficiently transform one problem into another.
- Surprising:
- can often find a special language L so that every language in a given complexity class reduces to L!
- powerful tool

Hardness and completeness

- Recall:
- a language L is a set of strings
- a complexity class C is a set of languages

Definition: a language L is C -complete if L
is C-hard and $L \in C$
meaning: L is a "hardest" problem in C

Lots of NP-complete problems

- logic problems
- 3-SAT $=\{\varphi$: φ is a satisfiable 3-CNF formula $\}$
- NAE3SAT, (3,3)-SAT
- Max-2-SAT
- finding objects in graphs
- problems on numbers
- independent set
- subset sum
- vertex cover
- knapsack
- clique
- partition
- sequencing
- splitting things up
- Hamilton Path
- max cut
- Hamilton Cycle and TSP
- min/max bisection

