
5/23/2014

1

CS38

Introduction to Algorithms

Lecture 16

May 22, 2014

May 22, 2014 1 CS38 Lecture 16 May 22, 2014 CS38 Lecture 16 2

Outline

• Linear programming

– LP duality

– ellipsoid algorithm

* slides from Kevin Wayne

• coping with intractibility

– NP-completeness

3

Primal problem.

Idea. Add nonnegative combination (C, H, M) of the constraints s.t.

Dual problem. Find best such upper bound.

LP Duality

13A 23B (5C 4H 35M) A (15C 4H 20M) B

480C 160H 1190M

(D) min 480C 160H 1190M

s. t. 5C 4H 35M 13

15C 4H 20M 23

C , H , M 0

(P) max 13A 23B

s. t. 5A 15B 480

4A 4B 160

35A 20B 1190

A , B 0

4

LP Duals

Canonical form.

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0

5

Double Dual

Canonical form.

Property. The dual of the dual is the primal.

Pf. Rewrite (D) as a maximization problem in canonical form; take dual.

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0

(D') max yT b

s. t. AT y c

y 0

(DD) min cT z

s. t. (AT)T z b

z 0

6

Taking Duals

LP dual recipe.

Pf. Rewrite LP in standard form and take dual.

Primal (P)

constraints

maximize

a x = bi

a x · b

a x ¸ bi

variables

xj · 0

xj ¸ 0

unrestricted

Dual (D)

variables

minimize

yi unrestricted

 yi ¸ 0

 yi · 0

constraints

aTy ¸ cj

aTy · cj

 a
Ty = cj

5/23/2014

2

Strong duality

May 22, 2014 CS38 Lecture 16 7

8

LP Strong Duality

Theorem. [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947]

For A 2 R
m x n, b 2 R

m, c 2 R
n, if (P) and (D) are nonempty, then max = min.

Generalizes:

 Dilworth's theorem.

 König-Egervary theorem.

 Max-flow min-cut theorem.

 von Neumann's minimax theorem.

 …

Pf. [ahead]

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0

9

LP Weak Duality

Theorem. For A 2 R
m x n, b 2 R

m, c 2 R
n, if (P) and (D) are nonempty, then max

· min.

Pf. Suppose x 2 R
m
 is feasible for (P) and y 2 R

n
 is feasible for (D).

 y ¸ 0, A x · b) yT A x · yT b

 x ¸ 0, AT y ¸ c) yT A x ¸ cT x

 Combine: cT x · yT A x · yT b.

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0

10

Projection Lemma

X

y

x*

x

Weierstrass' theorem. Let X be a compact set, and let f(x) be a continuous

function on X. Then min { f(x) : x 2 X } exists.

Projection lemma. Let X ½ R
m
 be a nonempty closed convex set, and take y

not in X. Then there exists x*
 2 X with minimum distance from y.

Moreover, for all x 2 X we have (y – x*)T (x – x*) · 0.

|| y – x || 2 obtuse angle

11

Projection Lemma

x*

x'

x

X'

Weierstrass' theorem. Let X be a compact set, and let f(x) be a continuous

function on X. Then min { f(x) : x 2 X } exists.

Projection lemma. Let X ½ R
m
 be a nonempty closed convex set, and take y

not in X. Then there exists x*
 2 X with minimum distance from y.

Moreover, for all x 2 X we have (y – x*)T (x – x*) · 0.

Pf.

 Define f(x) = ||
 y – x

||.

 Want to apply Weierstrass, but X not

necessarily bounded.

 X not empty) there exists x’ 2 X.

 Define X' = { x 2 X : || y – x
|| · ||

 y – x' || }

so that X' is closed, bounded, and

min { f(x) : x 2 X } = min { f(x) : x 2 X' }.

 By Weierstrass, min exists.
X

y

12

Projection Lemma

Weierstrass' theorem. Let X be a compact set, and let f(x) be a continuous

function on X. Then min { f(x) : x 2 X } exists.

Projection lemma. Let X ½ R
m
 be a nonempty closed convex set, and take y

not in X. Then there exists x*
 2 X with minimum distance from y.

Moreover, for all x 2 X we have (y – x*)T (x – x*) · 0.

Pf.

 x* min distance) ||
 y – x*

||
 2

 · ||
 y – x

||
 2
 for all x 2 X.

 By convexity: if x 2 X, then x* + ² (x – x*) 2 X for all 0 < ² < 1.

 ||

y – x*|| 2 · || y – x* – ² (x – x*) || 2

 = || y – x*||

 2
+ ²2 ||(x – x*)|| 2 – 2² (y – x*)T (x - x*)

 Thus, (y – x*)T
(x - x*) · ½ ² ||(x – x*)|| 2.

 Letting ² ! 0+
, we obtain the desired result.

5/23/2014

3

13

Theorem. Let X ½ R
m
 be a nonempty closed convex set, and take y not in

X. Then there exists a hyperplane H = { x 2 R
m : aTx = ® } where a 2 R

m,

® 2 R that separates y from X.

Pf.

 Let x* be closest point in X to y.

 By projection lemma,

(y – x*)T (x – x*) · 0 for all x 2 X

 Choose a = x* – y not equal 0 and ® = aT x*.

 If x 2 X, then aT(x – x*) ¸ 0;

thus) aTx ¸ aTx* = ®.

 Also, aT y = aT (x* – a) = ® – || a ||
2 < ® •

Separating Hyperplane Theorem

H = { x 2 R
m : aTx = ®}

x*

x

aT x ¸ ® for all x 2 X

aTy < ®

X

y

14

Theorem. For A 2 R
m x n

 , b 2 R
m
 exactly one of the following

two systems holds:

Pf. [not both] Suppose x satisfies (I) and y satisfies (II).

Then 0 > yT b = yTAx ¸ 0, a contradiction.

Pf. [at least one] Suppose (I) infeasible. We will show (II) feasible.

 Consider S = { A x : x ¸ 0 } and note that b not in S.

 Let y 2 R
m, ® 2 R be a hyperplane that separates b from S:

y Tb < ®, yTs ¸ ® for all s 2 S.

 0 2 S) ® ·0) yTb < 0

 yTAx ¸ ® for all x ¸0) yTA ¸ 0 since x can be arbitrarily large.

Farkas' Lemma

(I) x n

s. t. Ax b

x 0

(II) y m

s. t. AT y 0

yT b 0

15

Corollary. For A 2 R
m x n

 , b 2 R
m
 exactly one of the following two systems

holds:

Pf. Apply Farkas' lemma to:

Another Theorem of the Alternative

(I) x n

s. t. Ax b

x 0

(II) y m

s. t. AT y 0

yT b 0

y 0

(I') x n , s m

s. t. A x I s b

x, s 0

(II') y m

s. t. AT y 0

I y 0

yT b 0

16

LP Strong Duality

Theorem. [strong duality] For A 2 R
m x n

, b 2 R
m
, c 2 R

n
, if (P) and (D) are

nonempty then max = min.

Pf. [max · min] Weak LP duality.

Pf. [min · max] Suppose max < ®. We show min < ®.

 By definition of ®, (I) infeasible) (II) feasible by Farkas' Corollary.

(I) x n

s. t. Ax b

cT x

x 0

(II) y m , z

s. t. AT y c z 0

yT b z 0

y, z 0

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0

17

LP Strong Duality

Let y, z be a solution to (II).

Case 1. [z = 0]

 Then, { y 2 R
m
 : AT y ¸ 0, yTb < 0, y ¸ 0 } is feasible.

 Farkas Corollary) { x 2 R
n
 : Ax · b, x ¸ 0 } is infeasible.

 Contradiction since by assumption (P) is nonempty.

Case 2. [z > 0]

 Scale y, z so that y satisfies (II) and z = 1.

 Resulting y feasible to (D) and yTb < ®.

(II) y m , z

s. t. AT y cz 0

yT b z 0

y, z 0

Ellipsoid algorithm

May 22, 2014 CS38 Lecture 16 18

5/23/2014

4

19

Geometric Divide-and-Conquer

To find a point in P:

P

20

E

Geometric Divide-and-Conquer

To find a point in P:

 Maintain ellipsoid E containing P.

P

21

E

Geometric Divide-and-Conquer

To find a point in P:

 Maintain ellipsoid E containing P.

 If center of ellipsoid z is in P stop;

otherwise find hyperplane separating z from P.

and consider corresponding

half-ellipsoid ½ E = E Å H

z

separating

hyperplane

P

H

22

Geometric Divide-and-Conquer

To find a point in P:

 Maintain ellipsoid E containing P.

 If center of ellipsoid z is in P stop;

otherwise find hyperplane separating z from P.

 Find smallest ellipsoid E' containing half-ellipsoid.

E'

E
z

separating

hyperplane

H

P

L-J ellipsoid

23

E'

P

Geometric Divide-and-Conquer

To find a point in P:

 Maintain ellipsoid E containing P.

 If center of ellipsoid z is in P stop;

otherwise find hyperplane separating z from P.

 Find smallest ellipsoid E' containing half-ellipsoid.

 Repeat.

24

Optimization to Feasibility

Standard form.

Ax · b form.

 x, y

s. t. Ax b

Ax b

x 0

AT y c

cT x bT y 0

max cT x

s. t. Ax b

x 0

Ax · b

x ¸ 0

dual feasible

optimal

5/23/2014

5

25

Ellipsoid Algorithm

Goal. Given A 2 R
m n

and b 2 R
m , find x 2 R

n such that Ax · b.

Ellipsoid algorithm.

 Let E0 be an ellipsoid containing P.

 k = 0.

 While center z k
 of ellipsoid Ek

 is not in P :

– find a constraint, say a x · ¯, that is violated by z k

– let Ek+1
 be min volume ellipsoid containing Ek

 Å { x : a x · a z
 k}

– k = k + 1

P

easy to compute

enumerate constraints

half-ellipsoid ½ E

E k+1

zk

a · x ·
a · x · a · z

k

P
E k

26

Shrinking Lemma

Ellipsoid. Given D 2 R
n n

positive definite and z 2 R
n , then

is an ellipsoid centered on z with vol(E) =

Key lemma. Every half-ellipsoid ½ E is contained in an ellipsoid E' with

vol(E’) / vol(E) · e – 1/(2n+1).

E { x n : (x z)T D 1(x z) 1 }

det(D) vol(B(0, 1))

E'

H

unit sphere

½ E z

27

Shrinking Lemma: Unit Sphere

Special case. E = unit sphere, H = { x : x1 0 }.

Claim. E' is an ellipsoid containing ½ E = E Å H.

Pf. If x 2 ½ E:

E { x : (xi)
2 1

i 1

n

 } E { x : n 1
n

2
(x1 1

n 1
)2 n2 1

n2
 (xi)

2 1
i 2

n

 }

0 x1 1 xi
2
 1

E

E'

 x1 0

n 1

n

2

x1
1

n 1

2

n2 1

n2
 xi

2

i 2

n

n2 2n 1

n2
x1

2

n 1

n

2
2x1

n 1

1

n2

n2 1

n2
 xi

2

i 2

n

2n 2

n2
x1

2

2n 2

n2
x1

1

n2

n2 1

n2
 xi

2

i 1

n

2n 2

n2
x1(x1 1)

1

n2

n2 1

n2
 xi

2

i 1

n

0
1

n2

n2 1

n2

1

½ E

28

Shrinking Lemma: Unit Sphere

Special case. E = unit sphere, H = { x : x1 0 }.

Claim. E' is an ellipsoid containing ½ E = E Å H.

Pf. Volume of ellipsoid is proportional to side lengths:

vol(E)

vol(E)
n2

n2 1

n 1
2

 n

n 1

1 1

n2 1

n 1
2

 1 1

n 1

e
1

n2 1
 n 1

2 e
1

n 1

e
1

2(n 1)

1 + x e x

E { x : (xi)
2 1

i 1

n

 } E { x : n 1
n

2
(x1 1

n 1
)2 n2 1

n2
 (xi)

2 1
i 2

n

 }

E

E'

 x1 0

½ E

29

Shrinking Lemma

Shrinking lemma. The min volume ellipsoid containing the

half-ellipsoid ½ E = E Å { x : a x · a z} is defined by:

Moreover, vol(E‘) / vol(E) < e – 1/(2n+1).

Pf sketch.

 We proved E = unit sphere, H = { x : x1 ¸ 0 }

 Ellipsoids are affine transformations of unit spheres.

 Volume ratios are preserved under affine transformations.

z z
1

n 1

Da

aT Da
 , D

n2

n2 1
 D

2

n 1

DaaT D

aT Da

E'

H

½ E z

E { x n : (x z)T (D) 1 (x z) 1 }

30

Shrinking Lemma

Shrinking lemma. The min volume ellipsoid containing the

half-ellipsoid ½ E = E Å { x : a x · a z} is defined by:

Moreover, vol(E‘) / vol(E) < e – 1/(2n+1).

Corollary. Ellipsoid algorithm terminates after at most

2(n+1) ln (vol(E0) / vol(P)) steps.

z z
1

n 1

Da

aT Da
 , D

n2

n2 1
 D

2

n 1

DaaT D

aT Da

E { x n : (x z)T (D) 1 (x z) 1 }

5/23/2014

6

31

Ellipsoid Algorithm

Theorem. Linear Programming problems can be solved in polynomial

time.

Pf sketch.

 Shrinking lemma.

 Set initial ellipsoid E0 so that vol(E0) · 2cnL.

 Perturb Ax · b to Ax · b +) either P is empty or vol(P) ¸ 2-cnL.

 Bit complexity (to deal with square roots).

 Purify to vertex solution.

Caveat. This is a theoretical result. Do not implement.

O(mn 3 L) arithmetic ops on numbers of size O(L),

where L = number of bits to encode input

Coping with

intractability

May 22, 2014 CS38 Lecture 16 32

May 22, 2014 CS38 Lecture 16 33

Decision problems + languages

• A problem is a function:

f:Σ* → Σ*

• Simple. Can we make it simpler?

• Yes. Decision problems:

f:Σ* → {accept, reject}

• Does this still capture our notion of
problem, or is it too restrictive?

May 22, 2014 CS38 Lecture 16 34

Decision problems + languages

• Example: factoring:

– given an integer m, find its prime factors

ffactor: {0,1}* → {0,1}*

• Decision version:

– given 2 integers m,k, accept iff m has a prime
factor p < k

• Can use one to solve the other and vice
versa. True in general.

May 22, 2014 CS38 Lecture 16 35

Decision problems + languages

• For most complexity settings a problem is

a decision problem:

f:Σ* → {accept, reject}

• Equivalent notion: language

L Σ*

the set of strings that map to “accept”

• Example: L = set of pairs (m,k) for which

m has a prime factor p < k

May 22, 2014 CS38 Lecture 16 36

Search vs. Decision

• Definition: given a graph G = (V, E), an

independent set in G is a subset V’ V

such that for all u,w V’ (u,w) E

• A problem:

given G, find the largest independent set

• This is called a search problem

– searching for optimal object of some type

– comes up frequently

5/23/2014

7

May 22, 2014 CS38 Lecture 16 37

Search vs. Decision

• We want to talk about languages (or

decision problems)

• Most search problems have a natural,

related decision problem by adding a

bound “k”; for example:

– search problem: given G, find the largest

independent set

– decision problem: given (G, k), is there an

independent set of size at least k

May 22, 2014 CS38 Lecture 16 38

The class NP

Definition: TIME(t(n)) = {L : there exists a

TM M that decides L in time O(t(n))}

P = k ≥ 1 TIME(nk)

Definition: NTIME(t(n)) = {L : there exists a

NTM M that decides L in time O(t(n))}

NP = k ≥ 1 NTIME(nk)

May 22, 2014 CS38 Lecture 16 39

Poly-time verifiers

• NP = {L : L decided by poly-time NTM}

• Very useful alternate definition of NP:

Theorem: language L is in NP if and only if

it is expressible as:

L = { x | 9 y, |y| ≤ |x|k, (x, y) R }

 where R is a language in P.

• poly-time TM MR deciding R is a “verifier”
May 22, 2014 CS38 Lecture 16 40

Poly-time verifiers

• NP = {L : L decided by poly-time NTM}

• Very useful alternate definition of NP:

Theorem: language L is in NP if and only if

it is expressible as:

L = { x | 9 y, |y| ≤ |x|k, (x, y) R }

 where R is a language in P.

• poly-time TM MR deciding R is a “verifier”

“witness” or

“certificate”

efficiently

verifiable

May 22, 2014 CS38 Lecture 16 41

Poly-time verifiers

• Example: 3SAT expressible as

3SAT = {φ : φ is a 3-CNF formula for which

 assignment A for which (φ, A) R}

R = {(φ, A) : A is a sat. assign. for φ}

– satisfying assignment A is a “witness” of the

satisfiability of φ (it “certifies” satisfiability of φ)

– R is decidable in poly-time

May 22, 2014 CS38 Lecture 16 42

Poly-time reductions

• Type of reduction we will use:

– “many-one” poly-time reduction

yes

no

yes

no

A B

reduction from

language A to

language B

f

f

5/23/2014

8

May 22, 2014 CS38 Lecture 16 43

Poly-time reductions

• function f should be poly-time computable

Definition: f : Σ*→ Σ* is poly-time

computable if for some g(n) = nO(1) there

exists a g(n)-time TM Mf such that on

every w Σ*, Mf halts with f(w) on its tape.

yes

no

yes

no

A B f

f

May 22, 2014 CS38 Lecture 16 44

Poly-time reductions

Definition: A ≤P B (“A reduces to B”) if there

is a poly-time computable function f such

that for all w

w A f(w) B

• condition equivalent to:

– YES maps to YES and NO maps to NO

• meaning is:

– B is at least as “hard” (or expressive) as A

May 22, 2014 CS38 Lecture 16 45

Poly-time reductions

Theorem: if A ≤P B and B P then A P.

Proof:

– a poly-time algorithm for deciding A:

– on input w, compute f(w) in poly-time.

– run poly-time algorithm to decide if f(w) B

– if it says “yes”, output “yes”

– if it says “no”, output “no”

May 22, 2014 CS38 Lecture 16 46

Hardness and completeness

• Reasonable that can efficiently transform

one problem into another.

• Surprising:

– can often find a special language L so that

every language in a given complexity class

reduces to L!

– powerful tool

May 22, 2014 CS38 Lecture 16 47

Hardness and completeness

• Recall:

– a language L is a set of strings

– a complexity class C is a set of languages

Definition: a language L is C-hard if for

every language A C, A poly-time

reduces to L; i.e., A ≤P
 L.

meaning: L is at least as “hard” as anything in C

May 22, 2014 CS38 Lecture 16 48

Hardness and completeness

• Recall:

– a language L is a set of strings

– a complexity class C is a set of languages

Definition: a language L is C-complete if L

is C-hard and L C

meaning: L is a “hardest” problem in C

5/23/2014

9

May 22, 2014 CS38 Lecture 16 49

Lots of NP-complete problems

• logic problems
– 3-SAT = {φ : φ is a satisfiable 3-CNF formula}

– NAE3SAT, (3,3)-SAT

– Max-2-SAT

• finding objects in graphs

– independent set

– vertex cover

– clique

• sequencing

– Hamilton Path

– Hamilton Cycle and TSP

• problems on numbers

– subset sum

– knapsack

– partition

• splitting things up

– max cut

– min/max bisection

