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Outline 

• Linear programming 

– LP duality 

– ellipsoid algorithm 
 

* slides from Kevin Wayne 

 

• coping with intractibility 

– NP-completeness 
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Primal problem. 

 

 

 

 

 

Idea.  Add nonnegative combination (C, H, M) of the constraints s.t. 

 

 

 

 

Dual problem.  Find best such upper bound. 

LP Duality 

13A 23B (5C 4H 35M )  A   (15C 4H 20M )  B

480C 160H 1190M

(D) min 480C 160H 1190M

s. t. 5C 4H 35M 13

15C 4H 20M 23

C , H , M 0

(P) max 13A 23B

s. t. 5A 15B 480

4A 4B 160

35A 20B 1190

A , B 0
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LP Duals 

Canonical form. 

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0
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Double Dual 

Canonical form. 

 

 

 

 

 

 

 

Property. The dual of the dual is the primal. 

Pf. Rewrite (D) as a maximization problem in canonical form; take dual. 

 

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0

(D' ) max  yT b

s. t. AT y c

y 0

(DD) min  cT z

s. t. (AT )T z b

z 0
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Taking Duals 

LP dual recipe. 

 

 

 

 

 

 

 

 

 

 

 

 

Pf.  Rewrite LP in standard form and take dual. 

 

Primal (P) 

constraints 

maximize 

a x = bi 

a x  · b 

a x  ¸ bi 

variables 

xj  · 0 

xj  ¸ 0 

unrestricted 

Dual  (D) 

variables 

minimize 

yi  unrestricted  

 yi  ¸ 0 

 yi  · 0 

constraints 

aTy ¸ cj 

aTy · cj 

 a
Ty = cj 
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Strong duality 
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LP Strong Duality 

Theorem.  [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947] 

For A 2 R
m x n, b 2 R

m, c 2 R
n, if (P) and (D) are nonempty, then max = min. 

 

 

 

 

 

 

Generalizes: 

 Dilworth's theorem. 

 König-Egervary theorem. 

 Max-flow min-cut theorem. 

 von Neumann's minimax theorem. 

 … 

 

Pf.  [ahead] 

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0
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LP Weak Duality 

Theorem. For A 2 R
m x n, b 2 R

m, c 2 R
n, if (P) and (D) are nonempty, then max 

· min. 

 

 

 

 

 

 

 

Pf.  Suppose x 2 R
m
 is feasible for (P) and y 2 R

n
 is feasible for (D). 

 y ¸ 0,  A x · b   )    yT A x  ·  yT b 

 x ¸ 0,  AT y ¸  c  )    yT A x  ¸  cT x 

 Combine:  cT x  ·  yT A x  ·  yT b.    

 

 

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0
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Projection Lemma 

X 

y 

x* 

x 

Weierstrass' theorem.  Let X be a compact set, and let f(x) be a continuous 

function on X. Then min { f(x) : x 2 X } exists.  

 

Projection lemma.  Let X ½ R
m
 be a nonempty closed convex set, and take y 

not in X.  Then there exists x*
 2 X with minimum distance from y. 

Moreover, for all x 2 X we have (y – x*)T (x – x*) · 0. 

 

|| y – x || 2 obtuse angle 
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Projection Lemma 

x* 

x' 

x 

X' 

Weierstrass' theorem.  Let X be a compact set, and let f(x) be a continuous 

function on X. Then min { f(x) : x 2 X } exists.  

 

Projection lemma.  Let X ½ R
m
 be a nonempty closed convex set, and take y 

not in X.  Then there exists x*
 2 X with minimum distance from y. 

Moreover, for all x 2 X we have (y – x*)T (x – x*) · 0. 

 

Pf.  

 Define f(x) = ||
 y – x 

||. 

 Want to apply Weierstrass, but X not 

necessarily bounded. 

 X  not empty )  there exists x’ 2 X. 

 Define X' = { x 2 X : || y – x 
|| · ||

 y – x' || } 

so that X' is closed, bounded, and 

min { f(x) : x 2 X } = min { f(x) : x 2 X' }. 

 By Weierstrass, min exists. 
X 

y 
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Projection Lemma 

Weierstrass' theorem.  Let X be a compact set, and let f(x) be a continuous 

function on X. Then min { f(x) : x 2 X } exists.  

 

Projection lemma.  Let X ½ R
m
 be a nonempty closed convex set, and take y 

not in X.  Then there exists x*
 2 X with minimum distance from y. 

Moreover, for all x 2 X we have (y – x*)T (x – x*) · 0. 

 

Pf.  

 x* min distance  )  ||
 y – x* 

||
 2 

 · ||
 y – x 

||
 2
 for all x 2 X. 

 By convexity: if x 2 X, then x* + ² (x – x*) 2 X for all 0 < ² < 1. 

 ||
 
y – x*|| 2 · || y – x* –  ² (x – x*) || 2 

 
       = || y – x*||

 2 
+ ²2 ||(x – x*)|| 2 – 2² (y – x*)T (x - x*)  

 Thus,  (y – x*)T 
(x - x*)  ·  ½ ² ||(x – x*)|| 2. 

 Letting ² ! 0+
, we obtain the desired result.   
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Theorem.  Let X ½ R
m
 be a nonempty closed convex set, and take y not in 

X.  Then there exists a hyperplane H = { x 2 R
m : aTx = ®  }  where a 2 R

m, 

® 2 R  that separates y from X. 

 

 

 

Pf.  

 Let x* be closest point in X to y. 

 By projection lemma, 

(y – x*)T (x – x*) · 0 for all x 2 X 

 Choose a = x* – y not equal 0 and ® = aT x*. 

 If x 2 X, then aT(x – x*) ¸  0; 

thus ) aTx  ¸  aTx* = ®. 

 Also, aT y = aT (x* –  a) =  ® – || a ||
2  < ®  • 

Separating Hyperplane Theorem 

H = { x 2 R
m : aTx = ®} 

x* 

x 

aT x ¸ ® for all x 2 X 

aTy  <  ® 

X 

y 
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Theorem. For A 2 R
m x n

 , b 2 R
m
 exactly one of the following 

two systems holds: 

 

 

 

 

 

Pf. [not both]  Suppose x satisfies (I) and y satisfies (II). 

Then 0  >  yT b  =  yTAx  ¸ 0, a contradiction. 

 

Pf. [at least one]  Suppose (I) infeasible.  We will show (II) feasible. 

 Consider  S = { A x : x ¸ 0 } and note that b not in  S. 

 Let y 2 R
m,  ® 2 R be a hyperplane that separates b from S: 

y Tb < ®,  yTs ¸ ® for all s 2 S. 

 0 2  S  )  ® ·0  )   yTb < 0 

 yTAx  ¸  ® for all x ¸0 )  yTA ¸ 0 since x can be arbitrarily large. 

Farkas' Lemma 

(I) x n

s. t. Ax b

x 0

(II) y m

s. t. AT y 0

yT b 0
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Corollary.  For A 2 R
m x n

 , b 2 R
m
 exactly one of the following two systems 

holds: 

 

 

 

 

 

 

 

Pf.  Apply Farkas' lemma to: 

Another Theorem of the Alternative 

(I) x n

s. t. Ax b

x 0

(II) y m

s. t. AT y 0

yT b 0

y 0

(I' ) x n , s m

s. t. A x I s b

x, s 0

(II' ) y m

s. t. AT y 0

I y 0

yT b 0
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LP Strong Duality 

Theorem.  [strong duality]  For A 2 R
m x n

, b 2 R
m
, c 2 R

n
, if (P) and (D) are 

nonempty then max = min. 

 

 

 

 

 

Pf.  [max · min]  Weak LP duality. 

Pf.  [min · max]  Suppose max <  ®.  We show min <  ®. 

 

 

 

 

 

 

 By definition of ®, (I) infeasible  )  (II) feasible by Farkas' Corollary.  

(I) x n

s. t. Ax b

cT x

x 0

(II) y m ,  z

s. t. AT y c z 0

yT b z 0

y, z 0

(D) min yT b

s. t. AT y c

y 0

(P) max cT x

s. t. Ax b

x 0

17 

LP Strong Duality 

 

 

 

 

 

 

Let y, z be a solution to (II). 

 

Case 1.  [z = 0] 

 Then,  { y 2 R
m
 : AT y ¸ 0,  yTb < 0, y ¸ 0 } is feasible. 

 Farkas Corollary )  { x 2 R
n
 : Ax · b, x ¸ 0 } is infeasible. 

 Contradiction since by assumption (P) is nonempty. 

 

Case 2.  [z > 0] 

 Scale y, z so that y satisfies (II) and z  = 1. 

 Resulting y feasible to (D) and yTb  <  ®.    

(II) y m ,  z

s. t. AT y cz 0

yT b z 0

y, z 0

 

 

Ellipsoid algorithm 
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Geometric Divide-and-Conquer 

To find a point in P: 

 

P 
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E 

Geometric Divide-and-Conquer 

To find a point in P: 

 Maintain ellipsoid E containing P. 

 

P 
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E 

Geometric Divide-and-Conquer 

To find a point in P: 

 Maintain ellipsoid E containing P. 

 If center of ellipsoid z is in P stop; 

otherwise find hyperplane separating z from P. 

 

and consider corresponding 

half-ellipsoid ½ E = E Å H  

z 

separating 

hyperplane 

P 

H 
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Geometric Divide-and-Conquer 

To find a point in P: 

 Maintain ellipsoid E containing P. 

 If center of ellipsoid z is in P stop; 

otherwise find hyperplane separating z from P. 

 Find smallest ellipsoid E' containing half-ellipsoid. 

 

E' 

E 
z 

separating 

hyperplane 

H 

P 

L-J ellipsoid 
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E' 

P 

Geometric Divide-and-Conquer 

To find a point in P: 

 Maintain ellipsoid E containing P. 

 If center of ellipsoid z is in P stop; 

otherwise find hyperplane separating z from P. 

 Find smallest ellipsoid E' containing half-ellipsoid. 

 Repeat. 
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Optimization to Feasibility 

Standard form. 

 

 

 

 

 

 

Ax · b form. 

 

 x, y

s. t. Ax b

Ax b

x 0

AT y c

cT x   bT y 0

max cT x

s. t. Ax b

x 0

Ax ·  b 

x ¸ 0 

dual feasible 

optimal 
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Ellipsoid Algorithm 

Goal.  Given A 2 R
m n  

and b 2 R
m , find x 2 R

n such that Ax · b. 

 

 

Ellipsoid algorithm.   

 Let E0 be an ellipsoid containing P. 

 k = 0. 

 While center z k
 of ellipsoid Ek

 is not in P : 

– find a constraint, say a   x · ¯, that is violated by z k
 

– let Ek+1
 be min volume ellipsoid containing Ek

 Å { x : a   x · a   z
 k} 

– k = k + 1 

 

P 

easy to compute 

enumerate constraints 

half-ellipsoid ½ E  

E k+1 

zk 

a · x ·  
a · x · a · z

k
  

P 
E k 
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Shrinking Lemma 

Ellipsoid. Given D 2 R
n n  

positive definite and z 2 R
n , then 

 

 

is an ellipsoid centered on z with vol(E) =  

 

 

 

Key lemma. Every half-ellipsoid ½ E is contained in an ellipsoid E' with 

vol(E’ ) / vol(E) ·  e – 1/(2n+1). 

E   { x n :  (x z)T D 1(x z)   1 }

det(D)   vol(B(0, 1))

E' 

H 

unit sphere 

½ E z 
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Shrinking Lemma:  Unit Sphere 

Special case.  E = unit sphere, H = { x : x1  0 }. 

 

 

 

Claim.  E' is an ellipsoid containing ½ E = E Å H. 

Pf.  If x 2 ½ E: 

E   { x :  (xi )
2   1

i 1

n

 } E   { x :  n 1
n

2
(x1  1

n 1
)2  n2  1

n2
 (xi )

2   1
i 2

n

 }

0  x1  1  xi
2
  1 

E 

E' 

 x1  0 

n 1

n

2

x1   
1

n 1

2

  
n2 1

n2
 xi

2

i 2

n

       

n2 2n 1

n2
x1

2
  

n 1

n

2
2x1

n 1
  

1

n2
 
n2 1

n2
 xi

2

i 2

n

2n 2

n2
x1

2
  

2n 2

n2
x1   

1

n2
 
n2 1

n2
 xi

2

i 1

n

2n 2

n2
x1(x1 1)   

1

n2
 
n2 1

n2
 xi

2

i 1

n

0  
1

n2
 
n2 1

n2
  

1

½ E 
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Shrinking Lemma:  Unit Sphere 

Special case.  E = unit sphere, H = { x : x1  0 }. 

 

 

 

Claim.  E' is an ellipsoid containing ½ E = E Å H. 

Pf.  Volume of ellipsoid is proportional to side lengths: 

vol(E )

vol(E)
n2

n2  1

n 1
2

 n

n 1

1  1

n2  1

n 1
2

 1  1

n 1

e
1

n2 1
 n 1

2   e
1

n 1

e
1

2( n 1)

1 + x  e x 

E   { x :  (xi )
2   1

i 1

n

 } E   { x :  n 1
n

2
(x1  1

n 1
)2  n2  1

n2
 (xi )

2   1
i 2

n

 }

E 

E' 

 x1  0 

½ E 
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Shrinking Lemma 

Shrinking lemma. The min volume ellipsoid containing the 

half-ellipsoid ½ E = E Å { x :  a  x · a   z} is defined by: 

 

 

 

 

Moreover, vol(E‘ ) / vol(E) < e – 1/(2n+1). 

 

 

 

Pf sketch. 

 We proved E = unit sphere, H = { x : x1 ¸ 0 }  

 Ellipsoids are affine transformations of unit spheres. 

 Volume ratios are preserved under affine transformations. 

 

z   z   
1

n 1
 

Da

aT Da
 ,    D   

n2

n2 1
 D   

2

n 1

DaaT D

aT Da

E' 

H 

½ E z 

E   { x n :  (x z )T (D ) 1 (x z )   1 }
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Shrinking Lemma 

Shrinking lemma. The min volume ellipsoid containing the 

half-ellipsoid ½ E = E Å { x :  a  x · a   z} is defined by: 

 

 

 

 

Moreover, vol(E‘ ) / vol(E) < e – 1/(2n+1). 

 

 

 

Corollary.  Ellipsoid algorithm terminates after at most 

2(n+1) ln (vol(E0) / vol(P)) steps. 

 

z   z   
1

n 1
 

Da

aT Da
 ,    D   

n2

n2 1
 D   

2

n 1

DaaT D

aT Da

E   { x n :  (x z )T (D ) 1 (x z )   1 }
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Ellipsoid Algorithm 

Theorem.  Linear Programming problems can be solved in polynomial 

time. 

 

Pf sketch. 

 Shrinking lemma. 

 Set initial ellipsoid E0 so that vol(E0) · 2cnL. 

 Perturb Ax · b to Ax · b +   )  either P is empty or vol(P) ¸ 2-cnL. 

 Bit complexity (to deal with square roots). 

 Purify to vertex solution. 

 

 

Caveat.  This is a theoretical result. Do not implement. 

O(mn 3 L) arithmetic ops on numbers of size O(L), 

where L = number of bits to encode input 

 

 

Coping with  

intractability 
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Decision problems + languages 

• A problem is a function: 

f:Σ* → Σ*  

• Simple. Can we make it simpler? 

• Yes. Decision problems: 

f:Σ* → {accept, reject} 

 

• Does this still capture our notion of 
problem, or is it too restrictive? 

May 22, 2014 CS38 Lecture 16 34 

Decision problems + languages 

• Example: factoring: 

– given an integer m, find its prime factors 

ffactor: {0,1}* → {0,1}*  

• Decision version: 

– given 2 integers m,k, accept iff m has a prime 
factor p < k 

 

• Can use one to solve the other and vice 
versa. True in general. 

May 22, 2014 CS38 Lecture 16 35 

Decision problems + languages 

• For most complexity settings a problem is 

a decision problem: 

f:Σ* → {accept, reject} 

• Equivalent notion: language 

L  Σ*  

the set of strings that map to “accept” 

• Example: L = set of pairs (m,k) for which 

m has a prime factor p < k 

May 22, 2014 CS38 Lecture 16 36 

Search vs. Decision 

• Definition: given a graph G = (V, E), an 

independent set in G is a subset V’  V 

such that for all u,w  V’  (u,w)  E 

• A problem: 

given G, find the largest independent set 

• This is called a search problem 

– searching for optimal object of some type 

– comes up frequently  
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Search vs. Decision 

• We want to talk about languages (or 

decision problems) 

• Most search problems have a natural, 

related decision problem by adding a 

bound “k”; for example: 

– search problem: given G, find the largest 

independent set 

– decision problem: given (G, k), is there an 

independent set of size at least k 
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The class NP 

Definition: TIME(t(n)) = {L : there exists a 

TM M that decides L in time O(t(n))} 

P = k ≥ 1 TIME(nk) 

Definition: NTIME(t(n)) = {L : there exists a 

NTM M that decides L in time O(t(n))} 

NP = k ≥ 1 NTIME(nk) 
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Poly-time verifiers 

• NP = {L : L decided by poly-time NTM} 

 

• Very useful alternate definition of NP: 

Theorem: language L is in NP if and only if 

it is expressible as: 

L = { x | 9 y, |y| ≤ |x|k, (x, y)  R } 

 where R is a language in P. 

• poly-time TM MR deciding R is a “verifier”  
May 22, 2014 CS38 Lecture 16 40 

Poly-time verifiers 

• NP = {L : L decided by poly-time NTM} 

 

• Very useful alternate definition of NP: 

Theorem: language L is in NP if and only if 

it is expressible as: 

L = { x | 9 y, |y| ≤ |x|k, (x, y)  R } 

 where R is a language in P. 

• poly-time TM MR deciding R is a “verifier”  

“witness” or 

“certificate” 

efficiently 

verifiable 
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Poly-time verifiers 

• Example: 3SAT expressible as 

3SAT = {φ : φ is a 3-CNF formula for which  

 assignment A for which (φ, A)  R} 

R = {(φ, A) : A is a sat. assign. for φ} 

 

– satisfying assignment A is a “witness” of the 

satisfiability of φ (it “certifies” satisfiability of φ) 

– R is decidable in poly-time 
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Poly-time reductions 

• Type of reduction we will use: 

– “many-one” poly-time reduction 

yes 

no 

yes 

no 

A B 

reduction from 

language A to 

language B 

f 

f 
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Poly-time reductions 

• function f should be poly-time computable 

Definition: f : Σ*→ Σ* is poly-time 

computable if for some g(n) = nO(1) there 

exists a g(n)-time TM Mf such that on 

every w Σ*, Mf halts with f(w) on its tape.  

yes 

no 

yes 

no 

A B f 

f 

May 22, 2014 CS38 Lecture 16 44 

Poly-time reductions 

Definition: A ≤P B (“A reduces to B”) if there 

is a poly-time computable function f such 

that for all w  

w  A  f(w)  B 

• condition equivalent to: 

– YES maps to YES and NO maps to NO 

• meaning is: 

– B is at least as “hard” (or expressive) as A 

May 22, 2014 CS38 Lecture 16 45 

Poly-time reductions 

Theorem: if A ≤P B and B  P then A  P. 

 

Proof: 

– a poly-time algorithm for deciding A: 

– on input w, compute f(w) in poly-time. 

– run poly-time algorithm to decide if f(w)  B 

– if it says “yes”, output “yes” 

– if it says “no”, output “no” 
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Hardness and completeness 

• Reasonable that can efficiently transform 

one problem into another. 

 

• Surprising: 

–  can often find a special language L so that 

every language in a given complexity class 

reduces to L! 

– powerful tool  
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Hardness and completeness 

• Recall: 

– a language L is a set of strings 

– a complexity class C is a set of languages 

 

Definition: a language L is C-hard if for 

every language A  C, A poly-time 

reduces to L; i.e., A ≤P
 L. 

meaning: L is at least as “hard” as anything in C 
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Hardness and completeness 

• Recall: 

– a language L is a set of strings 

– a complexity class C is a set of languages 

 

Definition: a language L is C-complete if L 

is C-hard and L  C 

meaning: L is a “hardest” problem in C 
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Lots of NP-complete problems 

• logic problems 
– 3-SAT = {φ : φ is a satisfiable 3-CNF formula} 

– NAE3SAT, (3,3)-SAT 

– Max-2-SAT 

• finding objects in graphs 

– independent set 

– vertex cover 

– clique 

• sequencing 

– Hamilton Path 

– Hamilton Cycle and TSP 

• problems on numbers 

– subset sum 

– knapsack 

– partition 

• splitting things up 

– max cut 

– min/max bisection 


