CS38 Introduction to Algorithms

Lecture 15
May 20, 2014

Outline

- Linear programming
- simplex algorithm
- LP duality
- ellipsoid algorithm
* slides from Kevin Wayne

Standard Form LP

"Standard form" LP.

- Input: real numbers $a_{i j}, c_{j}, b_{i}$.
- Output: real numbers x_{j}.
- $n=$ \# decision variables, $m=$ \# constraints.
- Maximize linear objective function subject to linear inequalities.

(P) $\max c^{T} x$

$$
\text { s. t. } \quad A x=b
$$

$$
x \geq 0
$$

Linear. No $x^{2}, x y, \arccos (x)$, etc.
Programming. Planning (term predates computer programming).

Brewery Problem: Converting to Standard Form

Original input.

$$
\begin{array}{rrr}
\max \quad 13 A+23 B & \\
\text { s. t. } 5 A+15 B & \leq 480 \\
4 A+4 B & \leq 160 \\
35 A+20 B & \leq 1190 \\
A, B & \geq 0
\end{array}
$$

Standard form.
. Add slack variable for each inequality.
. Now a 5-dimensional problem.

Equivalent Forms

Easy to convert variants to standard form.

$$
\text { (P) } \begin{aligned}
\max & c^{T} x \\
\text { s. t. } & A x \\
& =b \\
& x \geq 0
\end{aligned}
$$

Less than to equality:
$x+2 y-3 z \leq 17 \quad \Rightarrow \quad x+2 y-3 z+s=17, s \geq 0$
Greater than to equality:
$x+2 y-3 z \geq 17 \Rightarrow x+2 y-3 z-s=17, s \geq 0$
Min to max:
Unrestricted to nonnegative:

$$
x \text { unrestricted } \quad \Rightarrow \quad x=x^{+}-x^{-}, x^{+} \geq 0, x \geq 0
$$

Linear programming	
geometric perspective	
mase.2014	

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

$$
\text { (P) } \begin{aligned}
\max c^{T} x & \\
\text { s. t. } A x & =b \\
& x
\end{aligned}
$$

Intuition. If x is not a vertex, move in a non-decreasing direction until you reach a boundary. Repeat.

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

Pf.

- Suppose x is an optimal solution that is not a vertex.
- There exist direction d vo ε \& $v<\alpha \lambda$ $\frac{0}{} 0$ such that $x \pm d \in P$.
- $A d=0$ because $A(x \pm d)=b$.
- Assume $c^{\mathrm{T}} d \geq 0$ (by taking either d or $-d$).
- Consider $x+\lambda d, \lambda>0$:

Case 1. [there exists j such that $d_{j}<0$]

- Increase λ to λ^{*} until first new component of $x+\lambda d$ hits 0 .
- $x+\lambda^{*} d$ is feasible since $A\left(x+\lambda^{*} d\right)=A x=b$ and $x+\lambda^{*} y \geq 0$.
- $x+\lambda^{*} d$ has one more zero component than x.
- $c^{\mathrm{T}} x^{\prime}=c^{\mathrm{T}}\left(x+\lambda^{*} d\right)=c^{\mathrm{T}} x+\lambda^{*} c^{\mathrm{T}} d \geq c^{\mathrm{T}} x$. $\quad d_{d_{k}=0}$ whenever $x_{k}=0$ because $x \pm d \in P$

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

Pf.

- Suppose x is an optimal solution that is not a vertex.
- There exist direction d vo $\varepsilon \theta v \alpha \lambda$ to 0 such that $x \pm d \in P$.
- $A d=0$ because $A(x \pm d)=b$.
- Assume $c^{\mathrm{T}} d \geq 0$ (by taking either d or $-d$).
- Consider $x+\lambda d, \lambda>0$:

Case 2. [$d_{j} \geq 0$ for all $\left.j\right]$

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$.
- As $\lambda \rightarrow \infty, c^{\mathrm{T}}(x+\lambda d) \rightarrow \infty$ because $c^{\mathrm{T}} d>0$.

Linear programming linear algebraic perspective		
wex0, 2014	csserectue 15	15

Intuition

Intuition. A vertex in R^{m} is uniquely specified by m linearly independent equations.

Basic Feasible Solution

Theorem. Let $P=\{x: A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j: x_{i}>0\right\}$. Then x is a vertex iff A_{B} has linearly independent columns.

Notation. Let $B=$ set of column indices. Define A_{B} to be the subset of columns of A indexed by B

$$
\begin{array}{ll}
\text { Ex. } & A=\left\lfloor\begin{array}{llll}
2 & 1 & 3 & 0 \\
7 & 3 & 2 & 1 \\
0 & 0 & 0 & 5
\end{array}\right\rfloor, b=\left\lfloor\begin{array}{c}
7 \\
16 \\
0
\end{array}\right\rfloor \\
x=\left\lfloor\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right\rfloor, \quad B=\{1,3\}, A_{B}=\left[\begin{array}{ll}
2 & 3 \\
7 & 2 \\
0 & 0
\end{array}\right]
\end{array}
$$

Basic Feasible Solution

Theorem. Let $P=\{x: A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j: x_{j}>0\right\}$. Then x is a vertex iff A_{B} has linearly independent columns.

Pf. \Leftarrow

- Assume x is not a vertex.
- There exist direction d not equal to 0 such that $x \pm d \in P$.
- $A d=0$ because $A(x \pm d)=b$.
- Define $B^{\prime}=\left\{j: d_{j}\right.$ vor $\varepsilon \theta v \alpha \lambda$ to 0$\}$
- $A_{B^{\prime}}$, has linearly dependent columns since d not equal to 0 .
- Moreover, $d_{j}=0$ whenever $x_{j}=0$ because $x \pm d \geq 0$.
- Thus $B^{\prime} \subseteq B$, so $A_{B^{\prime}}$ is a submatrix of A_{B}.
- Therefore, A_{B} has linearly dependent columns.

Basic Feasible Solution

Theorem. Let $P=\{x: A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j: x_{j}>0\right\}$.
Then x is a vertex iff A_{B} has linearly independent columns.

Pf. \Rightarrow

- Assume A_{B} has linearly dependent columns.
- There exist d not equal to 0 such that $A_{B} d=0$
- Extend d to R^{n} by adding 0 components.
- Now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$.
- For sufficiently small $\lambda, x \pm \lambda d \in P \Rightarrow x$ is not a vertex.

Basic Feasible Solution

Theorem. Given $P=\{x: A x=b, x \geq 0\}, x$ is a vertex iff there exists
$B \subseteq\{1, \ldots, n\}$ such $|B|=m$ and

- A_{B} is nonsingular.
- $x_{B}=A_{B}^{-1} b \geq 0$.
- $x_{N}=0$.
basic feasible solution

Pf. Augment A_{B} with linearly independent columns (if needed).

$$
\begin{gathered}
A=\left\lfloor\begin{array}{llll}
2 & 1 & 3 & 0 \\
7 & 3 & 2 & 1 \\
0 & 0 & 0 & 5
\end{array}\right], b=\left[\begin{array}{c}
7 \\
16 \\
0
\end{array}\right] \\
x=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right], \quad B=\{1,3,4\}, A_{B}=\left[\begin{array}{lll}
2 & 3 & 0 \\
7 & 2 & 1 \\
0 & 0 & 5
\end{array}\right]
\end{gathered}
$$

Assumption. $A \in \mathrm{R}^{m \times n}$ has full row rank.

Simplex algorithm

Simplex Algorithm: Intuition

Simplex algorithm. [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function
replace one basic variable with anothe

Greedy property. BFS optimal iff no adjacent BFS is better. Challenge. Number of BFS can be exponential!

Simplex Algorithm: Initialization

$$
\begin{aligned}
& \text { Basis }=\left\{S_{C}, S_{H}, S_{M}\right\} \\
& A=B=0 \\
& Z=0 \\
& S_{C}=480 \\
& S_{H}=160 \\
& S_{M}=1190
\end{aligned}
$$

Simplex Algorithm: Pivot 1

Substitute: $B=1 / 15\left(480-5 A-S_{C}\right)$

Simplex Algorithm: Pivot 1

Simplex Algorithm: Pivot 2

Substitute: $A=3 / 8\left(32+4 / 15 S_{C}-S_{H}\right)$

max Z subject to											$\begin{aligned} & \text { Basis }=\left\{A, B, S_{M}\right\} \\ & S_{C}=S_{H}=0 \end{aligned}$
	-	S_{C}	-	$2 S_{H}$		-	Z	$=$	-800		
B	+	$\frac{1}{10} S_{C}$	+	$\frac{1}{8} S_{H}$				=	28		
A	-	$\frac{1}{10} S_{C}$	+	$\frac{3}{8} S_{H}$				=	12		$B=28$
	-	${ }^{25} S_{C}$	-		+	S_{M}		=	110		$A=12$ $S=11$
$A \quad, B$		S_{C}						\geq	0		$\mathrm{S}_{\mathrm{M}}=$

Simplex Tableaux: Matrix Form

Initial simplex tableaux

$$
\begin{aligned}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, \quad x_{N} & \geq 0
\end{aligned}
$$

Simplex tableaux corresponding to basis B.

$$
\begin{array}{rlrr}
\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} & =Z-c_{B}^{T} A_{B}^{-1} b-\text { subtract } c_{B}^{\tau} A_{B^{-1}} \text { times constraints } \\
I x_{B}+\quad A_{B}^{-1} A_{N} x_{N} & = & A_{B}^{-1} b-\text { multiply by } A_{B^{-1}} \\
x_{B}, & x_{N} & \geq & 0
\end{array}
$$

Simplex Algorithm: Optimality

Q. When to stop pivoting?
A. When all coefficients in top row are nonpositive.
Q. Why is resulting solution optimal?
A. Any feasible solution satisfies system of equations in tableaux
. In particular: $Z=800-S_{C}-2 S_{H}, S_{C} \geq 0, S_{H} \geq 0$.

- Thus, optimal objective value $Z^{*} \leq 800$.
- Current BFS has value $800 \Rightarrow$ optimal.

max Z subject												
	-	S_{C}	-	$2 S_{H}$		-	Z	$=$	-8	800	$\begin{aligned} & \text { Basis }=\left\{A, B, S_{M}\right\} \\ & S_{C}=S_{H}=0 \end{aligned}$	
B	+	$\frac{1}{10} S_{C}$	+	$\frac{1}{8} S_{H}$				=		28		
A	-	$\frac{1}{10} S_{C}$	$+$	$\frac{3}{8} S_{H}$				=		12		$B=28$
	-	$\frac{25}{6} S_{C}$	-	$\frac{85}{8} S_{H}$	+	S_{M}		=		110		$A=12$ $S_{V}=110$
$A \quad, B$		S_{C}	,	S_{H}		S_{M}		\geq		0		

Simplex Algorithm: Corner Cases

Simplex algorithm. Missing details for corner cases.

Q. What if min ratio test fails?
Q. How to find initial basis?
Q. How to guarantee termination?

Unboundedness

Q. What happens if min ratio test fails?

A. Unbounded objective function.

$$
Z=2+20 x_{5}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
3+8 x_{5} \\
4+12 x_{5} \\
5 \\
0 \\
0
\end{array}\right]
$$

Phase I Simplex
Q. How to find initial basis?
A. Solve (P^{\prime}), starting from basis consisting of all the z_{i} variables.


```
(P) min }\mp@subsup{\sum}{i=1}{m}\mp@subsup{z}{i}{\prime
    s.t. Ax+Iz=}\begin{array}{r}{0}\\{x,\quadz}
```

. Case 1: $\min >0 \Rightarrow(\mathrm{P})$ is infeasible.

- Case 2: $\min =0$, basis has no z_{i} variables \Rightarrow OK to start Phase II.
- Case $3 \mathrm{a}: \min =0$, basis has z_{i} variables. Pivot z_{i} variables out of basis. If successful, start Phase II; else remove linear dependent rows.

Lexicographic Rule

Intuition. No degeneracy \Rightarrow no cycling.
Perturbed problem.

$$
\begin{array}{rlrl}
\text { (P') } \begin{aligned}
\max & c^{T} x \\
\text { s. . } & A x
\end{aligned} & =b+\varepsilon \\
& x & \geq 0
\end{array}
$$

much much greater,

$$
\text { where } \varepsilon=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right] \text { such that } \varepsilon_{1} \not \varepsilon_{2} \succ \cdots \succ \varepsilon_{n}
$$

Lexicographic rule. Apply perturbation virtually by manipulating ϵ symbolically:

Simplex Algorithm: Degeneracy

Degeneracy. New basis, same vertex.

Cycling. Infinite loop by cycling through different bases that all correspond to same vertex.

Anti-cycling rules.

- Bland's rule: choose eligible variable with smallest index.
- Random rule: choose eligible variable uniformly at random.
- Lexicographic rule: perturb constraints so nondegenerate.

Simplex Algorithm: Practice

Remarkable property. In practice, simplex algorithm typically terminates after at most $2(m+n)$ pivots.
but no polynomial pivot rule known
Issues.

- Choose the pivot.
. Maintain sparsity.
- Ensure numerical stability
- Preprocess to eliminate variables and constraints.

Commercial solvers can solve LPs with millions of variables and tens of thousands of constraints.

LP duality

Double Dual

Canonical form.

(P)$\max c^{T} x$ (D) $\min y^{T} b$ s. t. $A x$ $\leq b$ x ≥ 0 s. t. $A^{T} y$$\quad c \quad c$			

Property. The dual of the dual is the primal.
Pf. Rewrite (D) as a maximization problem in canonical form; take dual.

Taking Duals

LP dual recipe.

Primal (P)	maximize	minimize	Dual (D)
constraints	$\begin{aligned} & a x=b_{i} \\ & a x \leq b \\ & a x \geq b_{i} \end{aligned}$	$\begin{gathered} y_{i} \text { unrestricted } \\ y_{i} \geq 0 \\ y_{i} \leq 0 \end{gathered}$	variables
variables	$\begin{aligned} & x_{j} \leq 0 \\ & x_{j} \geq 0 \\ & \text { unrestricted } \end{aligned}$	$\begin{aligned} & a^{\mathrm{T} y} \geq c_{j} \\ & a^{\mathrm{T}} \mathrm{y} \leq c_{j} \\ & a^{y} y=c_{j} \end{aligned}$	constraints

Pf. Rewrite LP in standard form and take dual.

Strong duality

LP Strong Duality

Theorem. [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947] For $A \in \mathrm{R}^{m \times n}, b \in \mathrm{R}^{m}, c \in \mathrm{R}^{n}$, if (P) and (D) are nonempty, then max $=\mathrm{min}$

```
(P) max c}\mp@subsup{c}{}{T}
```

(D) $\min y^{T} b$
s. t. $\quad A^{T} y \geq c$

Generalizes:

- Dilworth's theorem
. König-Egervary theorem.
Max-flow min-cut theorem.
. von Neumann's minimax theorem.
- ..

Pf. [ahead]

