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CS38 
Introduction to Algorithms 

Lecture 13 
May 13, 2014 
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Outline 

•  Network flow 
–  finishing edge-disjoint paths 
– assignment problem 

•  Linear programming 

 
* slides from Kevin Wayne 
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, 
find the max number of edge-disjoint s↝t paths. 
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, 
find the max number of edge-disjoint s↝t paths. 

 

 

Ex.  Communication networks. 
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2 edge-disjoint paths
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Max flow formulation.  Assign unit capacity to every edge. 

 

Theorem.  Max number edge-disjoint s↝t paths equals value of max flow. 

Pf.   ≤  
・ Suppose there are k edge-disjoint s↝t paths P1, …, Pk. 

・ Set f (e) = 1 if e participates in some path Pj ;  else set f (e) = 0. 

・ Since paths are edge-disjoint, f is a flow of value k.   ▪
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Max flow formulation.  Assign unit capacity to every edge. 

 

Theorem.  Max number edge-disjoint s↝t paths equals value of max flow. 

Pf.   ≥  

・ Suppose max flow value is k. 
・ Integrality theorem implies there exists 0-1 flow f of value k. 
・ Consider edge (s, u) with f(s, u) = 1. 

-  by conservation, there exists an edge (u, v) with f(u, v) = 1 

-  continue until reach t, always choosing a new edge 

・ Produces k (not necessarily simple) edge-disjoint paths.   ▪
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to get simple paths 

in O(mn) time if desired 

(flow decomposition) 
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Def.  A set of edges F ⊆ E disconnects t from s if every s↝t path uses at least 

one edge in F.  

 

Network connectivity.  Given a digraph G = (V, E) and two nodes s and t, 
find min number of edges whose removal disconnects t from s. 

Network connectivity 
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Menger's theorem 

Theorem.  [Menger 1927]  The max number of edge-disjoint s↝t paths 

is equal to the min number of edges whose removal disconnects t from s. 
 

Pf.  ≤  
・ Suppose the removal of F ⊆ E disconnects t from s, and | F | = k. 
・ Every s↝t path uses at least one edge in F. 

・ Hence, the number of edge-disjoint paths is ≤  k.  ▪
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Menger's theorem 

Theorem.  [Menger 1927]  The max number of edge-disjoint s↝t paths 

equals the min number of edges whose removal disconnects t from s. 
 

Pf.  ≥ 
・ Suppose max number of edge-disjoint paths is k. 
・ Then value of max flow =  k. 
・ Max-flow min-cut theorem  ⇒  there exists a cut (A, B) of capacity k. 
・ Let F be set of edges going from A to B. 

・ | F | = k and disconnects t from s.   ▪
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem in undirected graphs.  Given a graph G = (V, E) and 

two nodes s and t, find the max number of edge-disjoint s-t paths. 
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Edge-disjoint paths in undirected graphs 

digraph G
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem in undirected graphs.  Given a graph G = (V, E) and 

two nodes s and t, find the max number of edge-disjoint s-t paths. 
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Edge-disjoint paths in undirected graphs 

digraph G
(2 edge-disjoint paths)
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem in undirected graphs.  Given a graph G = (V, E) and 

two nodes s and t, find the max number of edge-disjoint s-t paths. 

13 

Edge-disjoint paths in undirected graphs 

digraph G
(3 edge-disjoint paths)
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Max flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Observation. Two paths P1 and P2 may be edge-disjoint in the digraph but 

not edge-disjoint in the undirected graph. 

Edge-disjoint paths in undirected graphs 
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if P1 uses edge (u, v) 

and P2 uses its antiparallel edge (v, u) 

15 

Max flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Lemma.  In any flow network, there exists a maximum flow f in which for 

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both. 

Moreover, integrality theorem still holds. 

Pf.  [ by induction on number of such pairs of antiparallel edges ] 

・ Suppose f (e) > 0 and f (e') > 0 for a pair of antiparallel edges e and e'. 
・ Set f (e) = f (e) – δ and f (e') = f (e') – δ, where δ  = min { f (e),  f (e') }. 

・ f  is still a flow of the same value but has one fewer such pair.   ▪
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Max flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Lemma.  In any flow network, there exists a maximum flow f in which for 

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both. 

Moreover, integrality theorem still holds. 

 

Theorem.  Max number edge-disjoint s↝t paths equals value of max flow. 

Pf.  Similar to proof in digraphs; use lemma. 
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Assignment problem 

a.k.a. 
minimum-weight  
perfect matching 
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Assignment problem 

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |. 
Goal.  Find a perfect matching of min weight. 
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Assignment problem 

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |. 
Goal.  Find a perfect matching of min weight. 

min-cost perfect matching
M = { 0-2', 1-0', 2-1' }

cost(M) = 3 + 5 + 4 = 12
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Applications 

Natural applications. 

・ Match jobs to machines. 

・ Match personnel to tasks. 

・ Match students to writing seminars.  

 

Non-obvious applications. 

・ Vehicle routing. 

・ Kidney exchange. 

・ Signal processing. 

・ Earth-mover's distance. 

・ Multiple object tracking. 

・ Virtual output queueing.  

・ Handwriting recognition. 

・ Locating objects in space. 

・ Approximate string matching. 

・ Enhance accuracy of solving linear systems of equations. 
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Bipartite matching.  Can solve via reduction to maximum flow. 

 

Flow.  During Ford-Fulkerson, all residual capacities and flows are 0-1; 

flow corresponds to edges in a matching M. 

 

 

Residual graph GM simplifies to: 

・ If (x, y) ∉ M, then (x, y) is in GM. 

・ If (x, y) ∈ M, then (y, x) is in GM.  

 

 

Augmenting path simplifies to: 

・ Edge from s to an unmatched node x ∈ X, 

・ Alternating sequence of unmatched and matched edges, 

・ Edge from unmatched node y ∈ Y to t. 

s t 

21 

Bipartite matching 

1 1 

1 

YX

Def.  An alternating path P with respect to a matching M is an alternating 

sequence of unmatched and matched edges, starting from an unmatched 

node x ∈ X and going to an unmatched node y ∈ Y. 

 

Key property.  Can use P to increase by one the cardinality of the matching. 

Pf.  Set M ' =  M ⊕  P. 

22 

Alternating path 

matching M alternating path P matching M'
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y 
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y 
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y 

symmetric difference 

Cost of alternating path.  Pay c(x, y) to match x-y; receive c(x, y) to unmatch.  

 

 

 

 

 

 

 

 

Shortest alternating path.  Alternating path from any unmatched node x ∈ X���
to any unmatched node y ∈ Y with smallest cost. 

 

 

Successive shortest path algorithm. 

・ Start with empty matching. 

・ Repeatedly augment along a shortest alternating path. 

23 

Assignment problem:  successive shortest path algorithm 
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P = 2 → 2' → 1 → 1'
cost(P) = 2 - 6 + 10 = 6

6 

Shortest alternating path.  Corresponds to minimum cost s↝t path in GM. 

 

 

 

 

 

 

 

Concern.  Edge costs can be negative.  

 

Fact.  If always choose shortest alternating path, then GM contains no 

negative cycles  ⇒  can compute using Bellman-Ford. 

 

Our plan.  Avoid negative edge costs (and negative cycles) 

⇒  can compute using Dijkstra. 
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25 

intuition.  Adding a constant p(x) to the cost of every edge 

incident to node x ∈ X does not change the min-cost perfect matching(s). 

 

Pf.  Every perfect matching uses exactly one edge incident to node x.  ▪ 
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X Y 26 

intuition.  Subtracting a constant p(y) to the cost of every edge incident to 

node y ∈ Y does not change the min-cost perfect matching(s). 

 

Pf.  Every perfect matching uses exactly one edge incident to node y.  ▪ 
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Reduced costs.  For x ∈ X, y ∈ Y, define cp(x, y) =  p(x)  +  c(x, y)  –  p(y). 
 

Observation 1.  Finding a min-cost perfect matching with reduced costs is 

equivalent to finding a min-cost perfect matching with original costs. 
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Compatible prices.  For each node v ∈ X ∪ Y, maintain prices p(v) such that: 

・ cp(x, y) ≥  0 for all (x, y) ∉ M. 

・ cp(x, y) =  0 for all (x, y) ∈ M. 

 

Observation 2.  If prices p are compatible with a perfect matching M, 

then M is a min-cost perfect matching. 

 

Pf.  Matching M has 0 cost.  ▪ 
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SUCCESSIVE-SHORTEST-PATH (X, Y, c)                          	


	

M  ← ∅.	

FOREACH v ∈ X ∪ Y : p(v) ← 0.	


	


WHILE (M is not a perfect matching)	


d ← shortest path distances using costs cp.	


P ← shortest alternating path using costs cp.	

M ← updated matching after augmenting along P.	


FOREACH v ∈ X ∪ Y : p(v) ←  p(v)  +  d(v).	


	


RETURN  M.	

	


29 

Successive shortest path algorithm 

prices p are 

compatible with M 

cp(x, y) = c(x, y)  ≥ 0 

Initialization. 

・ M = ∅. 

・ For each v ∈ X ∪ Y : p(v) ← 0. 
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Successive shortest path algorithm 

original costs c(x, y)

0 

1 

2 

0' 

1' 

2' 

15 
7 
3 

9 
4 
1 

5 
6 
2 

s t 

p(0) = 0

p(1) = 0

p(2) = 0

p(0') = 0

p(1') = 0

p(2') = 0

Initialization. 

・ M = ∅. 

・ For each v ∈ X ∪ Y : p(v) ← 0. 
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Successive shortest path algorithm 

reduced costs cp(x, y)
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Step 1. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 1. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 

33 

Successive shortest path algorithm 

alternating path
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Step 1. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 

reduced costs cp(x, y)
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Step 2. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 

35 

Successive shortest path algorithm 
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Step 2. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 2. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 

37 

Successive shortest path algorithm 
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Step 3. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 3. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 3. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Termination. 

・ M is a perfect matching. 

・ Prices p are compatible with M. 

41 

Successive shortest path algorithm 
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Lemma 1.  Let p be compatible prices for M.  Let d be shortest path distances 

in GM with costs cp. All edges (x, y) on shortest path have cp+d(x, y)  = 0. 

 

 

Pf.  Let (x, y) be some edge on shortest path. 

・ If (x, y) ∈ M, then (y, x) on shortest path and d(x)  =  d(y)  –  cp(x, y); 
       If (x, y) ∉ M, then (x, y) on shortest path and d(y)  =  d(x)  +  cp(x, y). 
・ In either case, d(x)  +  cp(x, y)  –  d(y)  =  0. 

・ By definition, cp(x, y)  =  p(x)  +  c(x, y)  –  p(y). 
・ Substituting for cp(x, y) yields (p(x) + d(x)) + c(x, y) – (p(y) + d(y)) = 0. 

・ In other words, cp+d(x, y) = 0.   ▪

Maintaining compatible prices 

forward or reverse edges 

Given prices p, the reduced cost of edge (x, y) is 

 cp(x, y)  =  p(x)  +  c(x, y)  –  p(y). 

43 

Lemma 2.  Let p be compatible prices for M.  Let d be shortest path distances 

in GM with costs cp. Then p' = p + d are also compatible prices for M. 

 

Pf.  (x, y) ∈ M   

・ (y, x) is the only edge entering x in GM. Thus, (y, x) on shortest path. 

・ By LEMMA 1,  cp+d(x, y) = 0. 

 

Pf.  (x, y) ∉ M  

・ (x, y) is an edge in GM  ⇒  d(y)  ≤  d(x)  +  cp(x, y). 
・ Substituting cp(x, y) = p(x) + c(x, y) –  p(y)  ≥  0 yields 

(p(x) + d(x))  +  c(x, y)  –  (p(y) + d(y))  ≥  0. 

・ In other words, cp+d(x, y)  ≥  0.   ▪

Maintaining compatible prices 

Prices p are compatible with matching M:  

・ cp(x, y) ≥  0 for all (x, y) ∉ M. 

・ cp(x, y) =  0 for all (x, y) ∈ M. 
44 

Lemma 3.  Let p be compatible prices for M and let M ' be matching obtained 

by augmenting along a min cost path with respect to cp+d.  Then p' = p + d are 

compatible prices for M'. 
 

Pf. 

・ By LEMMA 2, the prices p + d are compatible for M. 

・ Since we augment along a min-cost path, the only edges (x, y) that swap 

into or out of the matching are on the min-cost path. 

・ By LEMMA 1, these edges satisfy cp+d(x, y)  =  0. 

・ Thus, compatibility is maintained.   ▪

Maintaining compatible prices 

Prices p are compatible with matching M:  

・ cp(x, y) ≥  0 for all (x, y) ∉ M. 

・ cp(x, y) =  0 for all (x, y) ∈ M. 
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Invariant.  The algorithm maintains a matching M and compatible prices p. 

Pf.  Follows from LEMMA 2 and LEMMA 3 and initial choice of prices.   ▪ 
 

Theorem.  The algorithm returns a min-cost perfect matching. 

Pf.  Upon termination M is a perfect matching, and p are compatible prices.  

Optimality follows from OBSERVATION 2.   ▪ 
 

Theorem.  The algorithm can be implemented in O(n3) time. 

Pf. 

・ Each iteration increases the cardinality of M by 1  ⇒  n iterations. 

・ Bottleneck operation is computing shortest path distances d. 

Since all costs are nonnegative, each iteration takes O(n2) time 

using (dense) Dijkstra.   ▪

Successive shortest path algorithm:  analysis 

46 

Weighted bipartite matching.  Given a weighted bipartite graph with n nodes 

and m edges, find a maximum cardinality matching of minimum weight. 

 

Theorem.  [Fredman-Tarjan 1987] The successive shortest path algorithm 

solves the problem in O(n2 + m n log n) time using Fibonacci heaps. 

 

Theorem. [Gabow-Tarjan 1989] There exists an O(m n1/2 log(nC)) time 

algorithm for the problem when the costs are integers between 0 and C. 

Weighted bipartite matching 
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Linear Programming 

Linear programming.  Optimize a linear function subject to 
linear inequalities. 
 

 

€ 

(P) max c j x j
j=1

n
∑

s. t. aij x j
j=1

n
∑ = bi 1≤ i ≤m

x j ≥ 0 1≤ j ≤ n

€ 

(P) max cT x
s. t. Ax = b

x ≥ 0
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Linear Programming 

Linear programming.  Optimize a linear function subject to 
linear inequalities. 
 

Generalizes:  Ax = b, 2-person zero-sum games, shortest path, 

max flow, assignment problem, matching, multicommodity flow, 

MST, min weighted arborescence, …  

 

Why significant? 

■  Design poly-time algorithms. 

■  Design approximation algorithms. 

■  Solve NP-hard problems using branch-and-cut. 

Ranked among most important scientific advances of 20th century. 

 

 
Linear programming  

running example 
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Brewery Problem 

Small brewery produces ale and beer. 

■  Production limited by scarce resources:  corn, hops, barley malt. 

■  Recipes for ale and beer require different proportions of resources. 

 

How can brewer maximize profits? 

■  Devote all resources to ale:  34 barrels of ale   )   $442 

■  Devote all resources to beer:  32 barrels of beer   )    $736 

■  7.5 barrels of ale, 29.5 barrels of beer   )    $776 

■  12 barrels of ale, 28 barrels of beer   )    $800 

Beverage 
Corn 

(pounds) 

Malt 
(pounds) 

Hops 
(ounces) 

Beer (barrel) 15 20 4 

Ale (barrel) 5 35 4 

Profit 
($) 

23 

13 

constraint 480 1190 160 

52 

Brewery Problem     

€ 

max 13A + 23B
s. t. 5A + 15B ≤ 480

4A + 4B ≤ 160
35A + 20B ≤ 1190
A , B ≥ 0

Ale Beer 

Corn 

Hops 

Malt 

Profit 

objective function 

constraint 

decision variable 
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Linear programming  

standard form 
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Standard Form LP 

"Standard form" LP. 

■  Input:  real numbers  aij, cj, bi.	

■  Output:  real numbers xj. 
■  n = # decision variables, m = # constraints. 

■  Maximize linear objective function subject to linear inequalities. 

 

 

 

Linear.  No x2,  x y,  arccos(x),  etc. 

Programming.  Planning (term predates computer programming). € 

(P) max c j x j
j=1

n
∑

s. t. aij x j
j=1

n
∑ = bi 1≤ i ≤m

x j ≥ 0 1≤ j ≤ n

€ 

(P) max cT x
s. t. Ax = b

x ≥ 0
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Brewery Problem:  Converting to Standard Form 

Original input. 

 

 

 

 

 

 

Standard form. 

■  Add slack variable for each inequality. 

■  Now a 5-dimensional problem. 
€ 

max 13A + 23B
s. t. 5A + 15B ≤ 480

4A + 4B ≤ 160
35A + 20B ≤ 1190
A , B ≥ 0

€ 

max 13A + 23B
s. t. 5A + 15B + SC = 480

4A + 4B + SH = 160
35A + 20B + SM = 1190
A , B , SC , SH , SM ≥ 0

56 

Equivalent Forms 

Easy to convert variants to standard form. 

 

 

 

 

 

 

 

Less than to equality:  

    x + 2y – 3z  ·  17   	
)   x + 2y – 3z + s = 17, s ¸ 0	

Greater than to equality: 

	
 	
 	
 	
x + 2y – 3z  ¸  17 	
)   x + 2y – 3z – s = 17, s ¸ 0	

Min to max:  

	
 	
 	
 	
min  x + 2y – 3z  	
)   max  –x – 2y + 3z 
Unrestricted to nonnegative:    

	
 	
 	
 	
x  unrestricted  	
)   x = x+ – x –,  x+ ¸ 0, x – ¸ 0	


€ 

(P) max cT x
s. t. Ax = b

x ≥ 0
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Linear programming  
geometric perspective 
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Brewery Problem:  Feasible Region 

Ale 

Beer 

(34, 0) 

(0, 32) 

Corn 
5A + 15B · 480 

Hops 
4A + 4B · 160 

Malt 
35A + 20B · 1190 

(12, 28) 

(26, 14) 

(0, 0) 
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Brewery Problem:  Objective Function 

13A + 23B = $800 

13A + 23B = $1600 

13A + 23B = $442 
(34, 0) 

(0, 32) 

(12, 28) 

(26, 14) 

(0, 0) 

Profit 

Ale 

Beer 

60 

(34, 0) 

(0, 32) 

(12, 28) 

(0, 0) 

(26, 14) 

Brewery Problem:  Geometry 

Brewery problem observation.   Regardless of objective function 

coefficients, an optimal solution occurs at a vertex. 

vertex 

Ale 

Beer 
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Convex set.  If two points x and y are in the set, then so is 

¸  x + (1- ¸ ) y for 0 · ¸ · 1. 
 

 

Vertex.  A point x in the set that can't be written as a strict 

convex combination of two distinct points in the set. 

Observation.  LP feasible region is a convex set. 

Convexity 

convex not convex 

vertex 

x	


y	


convex combination 
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Geometric perspective 

Theorem.  If there exists an optimal solution to (P), then there exists one 

that is a vertex. 

Intuition.  If x is not a vertex, move in a non-decreasing direction until you 

reach a boundary. Repeat. 

x	


x' = x + ®* d	


€ 

(P) max cT x
s. t. Ax = b

x ≥ 0

x + d	


x - d	



