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CS38 
Introduction to Algorithms 

Lecture 13 
May 13, 2014 
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Outline 

•  Network flow 
–  finishing edge-disjoint paths 
– assignment problem 

•  Linear programming 

 
* slides from Kevin Wayne 
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, 
find the max number of edge-disjoint s↝t paths. 
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, 
find the max number of edge-disjoint s↝t paths. 

 

 

Ex.  Communication networks. 
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2 edge-disjoint paths
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Max flow formulation.  Assign unit capacity to every edge. 

 

Theorem.  Max number edge-disjoint s↝t paths equals value of max flow. 

Pf.   ≤  
・ Suppose there are k edge-disjoint s↝t paths P1, …, Pk. 

・ Set f (e) = 1 if e participates in some path Pj ;  else set f (e) = 0. 

・ Since paths are edge-disjoint, f is a flow of value k.   ▪
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Max flow formulation.  Assign unit capacity to every edge. 

 

Theorem.  Max number edge-disjoint s↝t paths equals value of max flow. 

Pf.   ≥  

・ Suppose max flow value is k. 
・ Integrality theorem implies there exists 0-1 flow f of value k. 
・ Consider edge (s, u) with f(s, u) = 1. 

-  by conservation, there exists an edge (u, v) with f(u, v) = 1 

-  continue until reach t, always choosing a new edge 

・ Produces k (not necessarily simple) edge-disjoint paths.   ▪

Edge-disjoint paths 

s t 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

can eliminate cycles 

to get simple paths 

in O(mn) time if desired 

(flow decomposition) 
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Def.  A set of edges F ⊆ E disconnects t from s if every s↝t path uses at least 

one edge in F.  

 

Network connectivity.  Given a digraph G = (V, E) and two nodes s and t, 
find min number of edges whose removal disconnects t from s. 

Network connectivity 
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Menger's theorem 

Theorem.  [Menger 1927]  The max number of edge-disjoint s↝t paths 

is equal to the min number of edges whose removal disconnects t from s. 
 

Pf.  ≤  
・ Suppose the removal of F ⊆ E disconnects t from s, and | F | = k. 
・ Every s↝t path uses at least one edge in F. 

・ Hence, the number of edge-disjoint paths is ≤  k.  ▪
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Menger's theorem 

Theorem.  [Menger 1927]  The max number of edge-disjoint s↝t paths 

equals the min number of edges whose removal disconnects t from s. 
 

Pf.  ≥ 
・ Suppose max number of edge-disjoint paths is k. 
・ Then value of max flow =  k. 
・ Max-flow min-cut theorem  ⇒  there exists a cut (A, B) of capacity k. 
・ Let F be set of edges going from A to B. 

・ | F | = k and disconnects t from s.   ▪
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem in undirected graphs.  Given a graph G = (V, E) and 

two nodes s and t, find the max number of edge-disjoint s-t paths. 
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Edge-disjoint paths in undirected graphs 

digraph G
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem in undirected graphs.  Given a graph G = (V, E) and 

two nodes s and t, find the max number of edge-disjoint s-t paths. 

12 

Edge-disjoint paths in undirected graphs 

digraph G
(2 edge-disjoint paths)
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Disjoint path problem in undirected graphs.  Given a graph G = (V, E) and 

two nodes s and t, find the max number of edge-disjoint s-t paths. 

13 

Edge-disjoint paths in undirected graphs 

digraph G
(3 edge-disjoint paths)
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Max flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Observation. Two paths P1 and P2 may be edge-disjoint in the digraph but 

not edge-disjoint in the undirected graph. 

Edge-disjoint paths in undirected graphs 
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if P1 uses edge (u, v) 

and P2 uses its antiparallel edge (v, u) 
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Max flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Lemma.  In any flow network, there exists a maximum flow f in which for 

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both. 

Moreover, integrality theorem still holds. 

Pf.  [ by induction on number of such pairs of antiparallel edges ] 

・ Suppose f (e) > 0 and f (e') > 0 for a pair of antiparallel edges e and e'. 
・ Set f (e) = f (e) – δ and f (e') = f (e') – δ, where δ  = min { f (e),  f (e') }. 

・ f  is still a flow of the same value but has one fewer such pair.   ▪

Edge-disjoint paths in undirected graphs 

s t 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

16 

Max flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Lemma.  In any flow network, there exists a maximum flow f in which for 

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both. 

Moreover, integrality theorem still holds. 

 

Theorem.  Max number edge-disjoint s↝t paths equals value of max flow. 

Pf.  Similar to proof in digraphs; use lemma. 
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Assignment problem 

a.k.a. 
minimum-weight  
perfect matching 
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Assignment problem 

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |. 
Goal.  Find a perfect matching of min weight. 
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Assignment problem 

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |. 
Goal.  Find a perfect matching of min weight. 

min-cost perfect matching
M = { 0-2', 1-0', 2-1' }

cost(M) = 3 + 5 + 4 = 12
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Applications 

Natural applications. 

・ Match jobs to machines. 

・ Match personnel to tasks. 

・ Match students to writing seminars.  

 

Non-obvious applications. 

・ Vehicle routing. 

・ Kidney exchange. 

・ Signal processing. 

・ Earth-mover's distance. 

・ Multiple object tracking. 

・ Virtual output queueing.  

・ Handwriting recognition. 

・ Locating objects in space. 

・ Approximate string matching. 

・ Enhance accuracy of solving linear systems of equations. 
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Bipartite matching.  Can solve via reduction to maximum flow. 

 

Flow.  During Ford-Fulkerson, all residual capacities and flows are 0-1; 

flow corresponds to edges in a matching M. 

 

 

Residual graph GM simplifies to: 

・ If (x, y) ∉ M, then (x, y) is in GM. 

・ If (x, y) ∈ M, then (y, x) is in GM.  

 

 

Augmenting path simplifies to: 

・ Edge from s to an unmatched node x ∈ X, 

・ Alternating sequence of unmatched and matched edges, 

・ Edge from unmatched node y ∈ Y to t. 

s t 

21 

Bipartite matching 

1 1 

1 

YX

Def.  An alternating path P with respect to a matching M is an alternating 

sequence of unmatched and matched edges, starting from an unmatched 

node x ∈ X and going to an unmatched node y ∈ Y. 

 

Key property.  Can use P to increase by one the cardinality of the matching. 

Pf.  Set M ' =  M ⊕  P. 

22 

Alternating path 

matching M alternating path P matching M'
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y 

x 

y 

x 

y 

symmetric difference 

Cost of alternating path.  Pay c(x, y) to match x-y; receive c(x, y) to unmatch.  

 

 

 

 

 

 

 

 

Shortest alternating path.  Alternating path from any unmatched node x ∈ X���
to any unmatched node y ∈ Y with smallest cost. 

 

 

Successive shortest path algorithm. 

・ Start with empty matching. 

・ Repeatedly augment along a shortest alternating path. 

23 

Assignment problem:  successive shortest path algorithm 
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P = 2 → 2' → 1 → 1'
cost(P) = 2 - 6 + 10 = 6

6 

Shortest alternating path.  Corresponds to minimum cost s↝t path in GM. 

 

 

 

 

 

 

 

Concern.  Edge costs can be negative.  

 

Fact.  If always choose shortest alternating path, then GM contains no 

negative cycles  ⇒  can compute using Bellman-Ford. 

 

Our plan.  Avoid negative edge costs (and negative cycles) 

⇒  can compute using Dijkstra. 
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intuition.  Adding a constant p(x) to the cost of every edge 

incident to node x ∈ X does not change the min-cost perfect matching(s). 

 

Pf.  Every perfect matching uses exactly one edge incident to node x.  ▪ 
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X Y 26 

intuition.  Subtracting a constant p(y) to the cost of every edge incident to 

node y ∈ Y does not change the min-cost perfect matching(s). 

 

Pf.  Every perfect matching uses exactly one edge incident to node y.  ▪ 
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Reduced costs.  For x ∈ X, y ∈ Y, define cp(x, y) =  p(x)  +  c(x, y)  –  p(y). 
 

Observation 1.  Finding a min-cost perfect matching with reduced costs is 

equivalent to finding a min-cost perfect matching with original costs. 

Reduced costs 

original costs c(x, y)

0 

1 

2 

0' 

1' 

2' 

15 

7 

3 

9 

4 

1 

5 

6 

2 

X Y

0 

1 

2 

0' 

1' 

2' 

4 

1 

0 

0 

0 

0 

6 

5 

X Y

p(0) = 0

p(1) = 6

p(2) = 2

p(0') = 11

p(1') = 6

p(2') = 3

cp(1, 2') = p(1) + 2 – p(2') 

reduced costs cp(x, y)

0 

28 

Compatible prices.  For each node v ∈ X ∪ Y, maintain prices p(v) such that: 

・ cp(x, y) ≥  0 for all (x, y) ∉ M. 

・ cp(x, y) =  0 for all (x, y) ∈ M. 

 

Observation 2.  If prices p are compatible with a perfect matching M, 

then M is a min-cost perfect matching. 

 

Pf.  Matching M has 0 cost.  ▪ 
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SUCCESSIVE-SHORTEST-PATH (X, Y, c)                          	


_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________	

M  ← ∅.	

FOREACH v ∈ X ∪ Y : p(v) ← 0.	


	


WHILE (M is not a perfect matching)	


d ← shortest path distances using costs cp.	


P ← shortest alternating path using costs cp.	

M ← updated matching after augmenting along P.	


FOREACH v ∈ X ∪ Y : p(v) ←  p(v)  +  d(v).	


	


RETURN  M.	

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________	


29 

Successive shortest path algorithm 

prices p are 

compatible with M 

cp(x, y) = c(x, y)  ≥ 0 

Initialization. 

・ M = ∅. 

・ For each v ∈ X ∪ Y : p(v) ← 0. 
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Successive shortest path algorithm 

original costs c(x, y)

0 

1 

2 

0' 

1' 

2' 

15 
7 
3 

9 
4 
1 

5 
6 
2 

s t 

p(0) = 0

p(1) = 0

p(2) = 0

p(0') = 0

p(1') = 0

p(2') = 0

Initialization. 

・ M = ∅. 

・ For each v ∈ X ∪ Y : p(v) ← 0. 

31 

Successive shortest path algorithm 

reduced costs cp(x, y)
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Step 1. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 1. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 

alternating path
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Step 1. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 

reduced costs cp(x, y)
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Step 2. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 2. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 2. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 3. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 3. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Step 3. 

・ Compute shortest path distances d(v) from s to v using cp(x, y).  
・ Update matching M via shortest path from s to t. 
・ For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v). 
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Successive shortest path algorithm 
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Termination. 

・ M is a perfect matching. 

・ Prices p are compatible with M. 

41 

Successive shortest path algorithm 
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Lemma 1.  Let p be compatible prices for M.  Let d be shortest path distances 

in GM with costs cp. All edges (x, y) on shortest path have cp+d(x, y)  = 0. 

 

 

Pf.  Let (x, y) be some edge on shortest path. 

・ If (x, y) ∈ M, then (y, x) on shortest path and d(x)  =  d(y)  –  cp(x, y); 
       If (x, y) ∉ M, then (x, y) on shortest path and d(y)  =  d(x)  +  cp(x, y). 
・ In either case, d(x)  +  cp(x, y)  –  d(y)  =  0. 

・ By definition, cp(x, y)  =  p(x)  +  c(x, y)  –  p(y). 
・ Substituting for cp(x, y) yields (p(x) + d(x)) + c(x, y) – (p(y) + d(y)) = 0. 

・ In other words, cp+d(x, y) = 0.   ▪

Maintaining compatible prices 

forward or reverse edges 

Given prices p, the reduced cost of edge (x, y) is 

 cp(x, y)  =  p(x)  +  c(x, y)  –  p(y). 

43 

Lemma 2.  Let p be compatible prices for M.  Let d be shortest path distances 

in GM with costs cp. Then p' = p + d are also compatible prices for M. 

 

Pf.  (x, y) ∈ M   

・ (y, x) is the only edge entering x in GM. Thus, (y, x) on shortest path. 

・ By LEMMA 1,  cp+d(x, y) = 0. 

 

Pf.  (x, y) ∉ M  

・ (x, y) is an edge in GM  ⇒  d(y)  ≤  d(x)  +  cp(x, y). 
・ Substituting cp(x, y) = p(x) + c(x, y) –  p(y)  ≥  0 yields 

(p(x) + d(x))  +  c(x, y)  –  (p(y) + d(y))  ≥  0. 

・ In other words, cp+d(x, y)  ≥  0.   ▪

Maintaining compatible prices 

Prices p are compatible with matching M:  

・ cp(x, y) ≥  0 for all (x, y) ∉ M. 

・ cp(x, y) =  0 for all (x, y) ∈ M. 
44 

Lemma 3.  Let p be compatible prices for M and let M ' be matching obtained 

by augmenting along a min cost path with respect to cp+d.  Then p' = p + d are 

compatible prices for M'. 
 

Pf. 

・ By LEMMA 2, the prices p + d are compatible for M. 

・ Since we augment along a min-cost path, the only edges (x, y) that swap 

into or out of the matching are on the min-cost path. 

・ By LEMMA 1, these edges satisfy cp+d(x, y)  =  0. 

・ Thus, compatibility is maintained.   ▪

Maintaining compatible prices 

Prices p are compatible with matching M:  

・ cp(x, y) ≥  0 for all (x, y) ∉ M. 

・ cp(x, y) =  0 for all (x, y) ∈ M. 
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45 

Invariant.  The algorithm maintains a matching M and compatible prices p. 

Pf.  Follows from LEMMA 2 and LEMMA 3 and initial choice of prices.   ▪ 
 

Theorem.  The algorithm returns a min-cost perfect matching. 

Pf.  Upon termination M is a perfect matching, and p are compatible prices.  

Optimality follows from OBSERVATION 2.   ▪ 
 

Theorem.  The algorithm can be implemented in O(n3) time. 

Pf. 

・ Each iteration increases the cardinality of M by 1  ⇒  n iterations. 

・ Bottleneck operation is computing shortest path distances d. 

Since all costs are nonnegative, each iteration takes O(n2) time 

using (dense) Dijkstra.   ▪

Successive shortest path algorithm:  analysis 

46 

Weighted bipartite matching.  Given a weighted bipartite graph with n nodes 

and m edges, find a maximum cardinality matching of minimum weight. 

 

Theorem.  [Fredman-Tarjan 1987] The successive shortest path algorithm 

solves the problem in O(n2 + m n log n) time using Fibonacci heaps. 

 

Theorem. [Gabow-Tarjan 1989] There exists an O(m n1/2 log(nC)) time 

algorithm for the problem when the costs are integers between 0 and C. 

Weighted bipartite matching 

 

 
Linear programming 
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Linear Programming 

Linear programming.  Optimize a linear function subject to 
linear inequalities. 
 

 

€ 

(P) max c j x j
j=1

n
∑

s. t. aij x j
j=1

n
∑ = bi 1≤ i ≤m

x j ≥ 0 1≤ j ≤ n

€ 

(P) max cT x
s. t. Ax = b

x ≥ 0
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Linear Programming 

Linear programming.  Optimize a linear function subject to 
linear inequalities. 
 

Generalizes:  Ax = b, 2-person zero-sum games, shortest path, 

max flow, assignment problem, matching, multicommodity flow, 

MST, min weighted arborescence, …  

 

Why significant? 

■  Design poly-time algorithms. 

■  Design approximation algorithms. 

■  Solve NP-hard problems using branch-and-cut. 

Ranked among most important scientific advances of 20th century. 

 

 
Linear programming  

running example 
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Brewery Problem 

Small brewery produces ale and beer. 

■  Production limited by scarce resources:  corn, hops, barley malt. 

■  Recipes for ale and beer require different proportions of resources. 

 

How can brewer maximize profits? 

■  Devote all resources to ale:  34 barrels of ale   )   $442 

■  Devote all resources to beer:  32 barrels of beer   )    $736 

■  7.5 barrels of ale, 29.5 barrels of beer   )    $776 

■  12 barrels of ale, 28 barrels of beer   )    $800 

Beverage 
Corn 

(pounds) 

Malt 
(pounds) 

Hops 
(ounces) 

Beer (barrel) 15 20 4 

Ale (barrel) 5 35 4 

Profit 
($) 

23 

13 

constraint 480 1190 160 

52 

Brewery Problem     

€ 

max 13A + 23B
s. t. 5A + 15B ≤ 480

4A + 4B ≤ 160
35A + 20B ≤ 1190
A , B ≥ 0

Ale Beer 

Corn 

Hops 

Malt 

Profit 

objective function 

constraint 

decision variable 
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Linear programming  

standard form 
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Standard Form LP 

"Standard form" LP. 

■  Input:  real numbers  aij, cj, bi.	

■  Output:  real numbers xj. 
■  n = # decision variables, m = # constraints. 

■  Maximize linear objective function subject to linear inequalities. 

 

 

 

Linear.  No x2,  x y,  arccos(x),  etc. 

Programming.  Planning (term predates computer programming). € 

(P) max c j x j
j=1

n
∑

s. t. aij x j
j=1

n
∑ = bi 1≤ i ≤m

x j ≥ 0 1≤ j ≤ n

€ 

(P) max cT x
s. t. Ax = b

x ≥ 0
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Brewery Problem:  Converting to Standard Form 

Original input. 

 

 

 

 

 

 

Standard form. 

■  Add slack variable for each inequality. 

■  Now a 5-dimensional problem. 
€ 

max 13A + 23B
s. t. 5A + 15B ≤ 480

4A + 4B ≤ 160
35A + 20B ≤ 1190
A , B ≥ 0

€ 

max 13A + 23B
s. t. 5A + 15B + SC = 480

4A + 4B + SH = 160
35A + 20B + SM = 1190
A , B , SC , SH , SM ≥ 0

56 

Equivalent Forms 

Easy to convert variants to standard form. 

 

 

 

 

 

 

 

Less than to equality:  

    x + 2y – 3z  ·  17   	
)   x + 2y – 3z + s = 17, s ¸ 0	

Greater than to equality: 

	
 	
 	
 	
x + 2y – 3z  ¸  17 	
)   x + 2y – 3z – s = 17, s ¸ 0	

Min to max:  

	
 	
 	
 	
min  x + 2y – 3z  	
)   max  –x – 2y + 3z 
Unrestricted to nonnegative:    

	
 	
 	
 	
x  unrestricted  	
)   x = x+ – x –,  x+ ¸ 0, x – ¸ 0	


€ 

(P) max cT x
s. t. Ax = b

x ≥ 0
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Linear programming  
geometric perspective 
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Brewery Problem:  Feasible Region 

Ale 

Beer 

(34, 0) 

(0, 32) 

Corn 
5A + 15B · 480 

Hops 
4A + 4B · 160 

Malt 
35A + 20B · 1190 

(12, 28) 

(26, 14) 

(0, 0) 
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Brewery Problem:  Objective Function 

13A + 23B = $800 

13A + 23B = $1600 

13A + 23B = $442 
(34, 0) 

(0, 32) 

(12, 28) 

(26, 14) 

(0, 0) 

Profit 

Ale 

Beer 

60 

(34, 0) 

(0, 32) 

(12, 28) 

(0, 0) 

(26, 14) 

Brewery Problem:  Geometry 

Brewery problem observation.   Regardless of objective function 

coefficients, an optimal solution occurs at a vertex. 

vertex 

Ale 

Beer 
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Convex set.  If two points x and y are in the set, then so is 

¸  x + (1- ¸ ) y for 0 · ¸ · 1. 
 

 

Vertex.  A point x in the set that can't be written as a strict 

convex combination of two distinct points in the set. 

Observation.  LP feasible region is a convex set. 

Convexity 

convex not convex 

vertex 

x	


y	


convex combination 
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Geometric perspective 

Theorem.  If there exists an optimal solution to (P), then there exists one 

that is a vertex. 

Intuition.  If x is not a vertex, move in a non-decreasing direction until you 

reach a boundary. Repeat. 

x	


x' = x + ®* d	


€ 

(P) max cT x
s. t. Ax = b

x ≥ 0

x + d	


x - d	



