

Outline

- Network flow
- finishing edge-disjoint paths
- assignment problem
- Linear programming
* slides from Kevin Wayne

Edge-disjoint	
pathS	
May 12, 2014	
cs38 Lecture 13	3

Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common

Disjoint path problem. Given a digraph $G=(V, E)$ and two nodes s and t find the max number of edge-disjoint $s \rightarrow t$ paths.


```
Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common
Disjoint path problem. Given a digraph \(G=(V, E)\) and two nodes \(s\) and \(t\), find the max number of edge-disjoint \(s \rightarrow t\) paths
Ex. Communication networks.
```


Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.
Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. \leq

- Suppose there are k edge-disjoint $s \rightarrow t$ paths P_{1}, \ldots, P_{k}.
- Set $f(e)=1$ if e participates in some path P_{j}; else set $f(e)=0$.
- Since paths are edge-disjoint, f is a flow of value k. -

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. \geq

- Suppose max flow value is k.
- Integrality theorem implies there exists 0-1 flow f of value k.
- Consider edge (s, u) with $f(s, u)=1$
- by conservation, there exists an edge (u, v) with $f(u, v)=1$
- continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.
can eliminate cycles

Network connectivity
Def. A set of edges $F \subseteq E$ disconnects t from s if every $s \rightarrow t$ path uses at least one edge in F.

Network connectivity. Given a digraph $G=(V, E)$ and two nodes s and t, find min number of edges whose removal disconnects t from s

Edge-disjoint paths in undirected graphs
Def. Two paths are edge-disjoint if they have no edge in common.
Disjoint path problem in undirected graphs. Given a graph $G=(V, E)$ and
two nodes s and t, find the max number of edge-disjoint $s-t$ paths.
(3 edge-disjoint paths)

Edge-disjoint paths in undirected graphs

Max flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e^{\prime}, either $f(e)=0$ or $f\left(e^{\prime}\right)=0$ or both. Moreover, integrality theorem still holds.
Pf. [by induction on number of such pairs of antiparallel edges]

- Suppose $f(e)>0$ and $f\left(e^{\prime}\right)>0$ for a pair of antiparallel edges e and e^{\prime}.
- Set $f(e)=f(e)-\delta$ and $f\left(e^{\prime}\right)=f\left(e^{\prime}\right)-\delta$, where $\delta=\min \left\{f(e), f\left(e^{\prime}\right)\right\}$.
- f is still a flow of the same value but has one fewer such pair. -

Edge-disjoint paths in undirected graphs

Max flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Observation. Two paths P_{1} and P_{2} may be edge-disjoint in the digraph but not edge-disjoint in the undirected graph.
\downarrow
if P_{1} uses edge (u, v)
and P_{2} uses its antiparallel edge (v, u)

Edge-disjoint paths in undirected graphs

Max flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e^{\prime}, either $f(e)=0$ or $f\left(e^{\prime}\right)=0$ or both. Moreover, integrality theorem still holds.

Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. Similar to proof in digraphs; use lemma.


```
Assignment problem
Input. Weighted, complete bipartite graph \(G=(X \cup Y, E)\) with \(|X|=|Y|\). Goal. Find a perfect matching of min weight
```


Applications
Natural applications

- Match jobs to machines.
- Match personnel to tasks
- Match students to writing seminars

Non-obvious applications

- Vehicle routing.
- Kidney exchange.
- Signal processing
- Earth-mover's distance
- Multiple object tracking
- Virtual output queueing
- Handwriting recognition.

Locating objects in space.

- Approximate string matching.

Enhance accuracy of solving linear systems of equations.
Bipartite matching
Bipartite matching. Can solve via reduction to maximum flow.
Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1;
flow corresponds to edges in a matching M.
Residual graph G_{M} simplifies to:
• If $(x, y) \notin M$, then (x, y) is in G_{M}.
Augmenting path simplifies to:

- Edge from s to an unmatched node $x \in X$,
- Alternating sequence of unmatched and matched edges,
- Edge from unmatched node $y \in Y$ to t.
Alternating path
Def. An alternating path P with respect to a matching M is an alternating
sequence of unmatched and matched edges, starting from an unmatched
node $x \in X$ and going to an unmatched node $y \in Y$.
Key property. Can use P to increase by one the cardinality of the matching.
Pf. Set $M^{\prime}=$

```
Assignment problem: successive shortest path algorithm
Cost of alternating path. Pay c(x,y) to match x-y; receive c(x,y) to unmatch
```



```
P=2->2'->1->1
cost(P)=2-6+10=6
Shortest alternating path. Alternating path from any unmatched node \(x \in X\) to any unmatched node \(y \in Y\) with smallest cost.
```


Successive shortest path algorithm

```
- Start with empty matching.
- Repeatedly augment along a shortest alternating path.
```


Finding the shortest alternating path

Shortest alternating path. Corresponds to minimum cost $s \rightarrow t$ path in G_{M}.

Concern. Edge costs can be negative

Fact. If always choose shortest alternating path, then G_{M} contains no negative cycles \Rightarrow can compute using Bellman-Ford

Our plan. avoid negative edge costs (and negative cycles) \Rightarrow can compute using Dijkstra.

Equivalent assignment problem

intuition. Subtracting a constant $p(y)$ to the cost of every edge incident to node $y \in Y$ does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node y. -

Successive shortest path algorithm	
SUCCESSIVE-SHORTEST-PATH $(X, Y, c)$$M \leftarrow \varnothing$. FOREACH $v \in X \cup Y: p(v) \leftarrow 0 . \quad \underbrace{}_{\text {prices } p \text { are }}$pompatible with m $\mathrm{c}^{\mathrm{P}}(\mathrm{x}, \mathrm{y})=\mathrm{c}(\mathrm{x}, \mathrm{y}) \geq 0$ While $(M$ is not a perfect matching $)$ $\quad d \leftarrow$ shortest path distances using costs c^{p}. $\quad P \leftarrow$ shortest alternating path using costs c^{p}. $\quad M \leftarrow$ updated matching after augmenting along P. \quad FOREACH $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.RETURN M.	
	29

Maintaining compatible prices

Lemma 1. Let p be compatible prices for M. Let d be shortest path distance in G_{M} with costs c^{p}. All edges (x, y) on shortest path have $c^{p+d}(x, y)=0$.
forward or reverse edges

Pf. Let (x, y) be some edge on shortest path.

- If $(x, y) \in M$, then (y, x) on shortest path and $d(x)=d(y)-c^{p}(x, y)$

If $(x, y) \notin M$, then (x, y) on shortest path and $d(y)=d(x)+c^{p}(x, y)$.

- In either case, $d(x)+c^{p}(x, y)-d(y)=0$
- By definition, $c^{p}(x, y)=p(x)+c(x, y)-p(y)$.

Substituting for $c^{p}(x, y)$ yields $(p(x)+d(x))+c(x, y)-(p(y)+d(y))=0$
In other words, $c^{p+d}(x, y)=0$.

$$
\begin{aligned}
& \text { Given prices } p \text {, the reduced cost of edge }(x, y) \text { is } \\
& c^{p}(x, y)=p(x)+c(x, y)-p(y) .
\end{aligned}
$$

Maintaining compatible prices
Lemma 2. Let p be compatible prices for M. Let d be shortest path distances in G_{M} with costs c^{p}. Then $p^{\prime}=p+d$ are also compatible prices for M.

Pf. $(x, y) \in M$

- (y, x) is the only edge entering x in G_{M}. Thus, (y, x) on shortest path.
- By Lemma 1, $c^{p+d}(x, y)=0$.

Pf. $(x, y) \notin M$

- (x, y) is an edge in $G_{M} \Rightarrow d(y) \leq d(x)+c^{p}(x, y)$.
- Substituting $c^{p}(x, y)=p(x)+c(x, y)-p(y) \geq 0$ yields
$(p(x)+d(x))+c(x, y)-(p(y)+d(y)) \geq 0$.
- In other words, $c^{p+d}(x, y) \geq 0$.

Prices p are compatible with matching M :

- $c^{p}(x, y) \geq 0$ for all $(x, y) \notin M$
- $c^{p}(x, y)=0$ for all $(x, y) \in M$.

Maintaining compatible prices

Lemma 3. Let p be compatible prices for M and let M^{\prime} be matching obtained by augmenting along a min cost path with respect to c^{p+d}. Then $p^{\prime}=p+d$ are compatible prices for M^{\prime}

Pf.

- By Lemma 2 , the prices $p+d$ are compatible for M.
- Since we augment along a min-cost path, the only edges (x, y) that swap into or out of the matching are on the min-cost path.
- By Lemma 1 , these edges satisfy $c^{p+d}(x, y)=0$.
- Thus, compatibility is maintained. -

Prices p are compatible with matching M

- $c^{p}(x, y) \geq 0$ for all $(x, y) \notin M$
- $c^{p}(x, y)=0$ for all $(x, y) \in M$

Successive shortest path algorithm: analysis
Invariant. The algorithm maintains a matching M and compatible prices p.
Pf. Follows from Lemma 2 and Lemma 3 and initial choice of prices. -

Theorem. The algorithm returns a min-cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible prices.
Optimality follows from Observation 2. -
Theorem. The algorithm can be implemented in $O\left(n^{3}\right)$ time. Pf.

- Each iteration increases the cardinality of M by $1 \Rightarrow n$ iterations.
- Bottleneck operation is computing shortest path distances d.

Since all costs are nonnegative, each iteration takes $O\left(n^{2}\right)$ time using (dense) Dijkstra. -

Weighted bipartite matching

Weighted bipartite matching. Given a weighted bipartite graph with n nodes and m edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm solves the problem in $O\left(n^{2}+m n \log n\right)$ time using Fibonacci heaps

Theorem. [Gabow-Tarjan 1989] There exists an $O\left(m n^{1 / 2} \log (n C)\right)$ time algorithm for the problem when the costs are integers between 0 and C.

Linear Programming

Linear programming. Optimize a linear function subject to linear inequalities

Linear programming

(P) $\max c^{T} x$
s.t. $\quad A x=b$
Linear Programming
Linear programming. Optimize a linear function subject to
linear inequalities.
Generalizes: $A x=b$, 2-person zero-sum games, shortest path,
max flow, assignment problem, matching, multicommodity flow,
MST, min weighted arborescence, ...
Why significant?

- Design poly-time algorithms.
- Design approximation algorithms.
- Solve NP-hard problems using branch-and-cut.
Ranked among most important scientific advances of 20th century.

Linear programming running example

Brewery Problem

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)	
Ale (barrel)	5	4	35	13	
Beer (barrel)	15	4	20	23	
constraint	480	160	1190		

How can brewer maximize profits?

- Devote all resources to ale: 34 barrels of ale $\quad \Rightarrow \$ 442$
- Devote all resources to beer: 32 barrels of beer $\Rightarrow \$ 736$
7.5 barrels of ale, 29.5 barrels of beer $\quad \Rightarrow \quad \$ 776$

12 barrels of ale, 28 barrels of beer $\quad \Rightarrow \quad \$ 800$

Standard Form LP

"Standard form" LP.

- Input: real numbers $a_{i j}, c_{j}, b_{i}$
- Output: real numbers x_{j}
$n=$ \# decision variables, $m=$ \# constraints
- Maximize linear objective function subject to linear inequalities.

Linear. No $x^{2}, x y, \arccos (x)$, etc
Programming. Planning (term predates computer programming).

Brewery Problem: Converting to Standard Form Original input.

$$
\begin{aligned}
\max 13 A+23 B & \\
\text { s.t. } 5 A+15 B & \leq 480 \\
4 A+4 B & \leq 160 \\
35 A+20 B & \leq 1190 \\
A, B & \geq 0
\end{aligned}
$$

Standard form.

- Add slack variable for each inequality

Now a 5-dimensional problem.

Equivalent Forms

Easy to convert variants to standard form.

$$
\text { (P) } \begin{aligned}
\max c^{T} x & \\
\text { s.t. } A x & =b \\
x & \geq 0
\end{aligned}
$$

Less than to equality

Greater than to equality:
$x+2 y-3 z \leq 17 \Rightarrow x+2 y-3 z+s=17, s \geq 0$

Min to max:
$x+2 y-3 z \geq 17 \Rightarrow x+2 y-3 z-s=17, s \geq 0$
,
$\min x+2 y-3 z \quad \Rightarrow \quad \max -x-2 y+3 z$
Unrestricted to nonnegative
x unrestricted $\quad \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0$

 Brewery Problem: Geometry

Brewery problem observation. Regardless of objective function coefficients, an optimal solution occurs at a vertex.

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one
that is a vertex.

Intuition. If x is not a vertex, move in a non-decreasing direction until you reach a boundary. Repeat

