
5/17/14

1

CS38
Introduction to Algorithms

Lecture 13
May 13, 2014

May 12, 2014 1 CS38 Lecture 13 May 12, 2014 CS38 Lecture 13 2

Outline

•  Network flow
–  finishing edge-disjoint paths
– assignment problem

•  Linear programming

* slides from Kevin Wayne

Edge-disjoint

paths

May 12, 2014 CS38 Lecture 13 3
4

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s↝t paths.

s

2

3

4

Edge-disjoint paths

5

6

7

t

digraph G

5/17/14

2

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s↝t paths.

Ex. Communication networks.

5

s

2

3

4

Edge-disjoint paths

5

6

7

t

digraph G
2 edge-disjoint paths

6

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s↝t paths equals value of max flow.

Pf. ≤
・ Suppose there are k edge-disjoint s↝t paths P1, …, Pk.

・ Set f (e) = 1 if e participates in some path Pj ; else set f (e) = 0.

・ Since paths are edge-disjoint, f is a flow of value k. ▪

Edge-disjoint paths

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

7

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s↝t paths equals value of max flow.

Pf. ≥

・ Suppose max flow value is k.
・ Integrality theorem implies there exists 0-1 flow f of value k.
・ Consider edge (s, u) with f(s, u) = 1.

-  by conservation, there exists an edge (u, v) with f(u, v) = 1

-  continue until reach t, always choosing a new edge

・ Produces k (not necessarily simple) edge-disjoint paths. ▪

Edge-disjoint paths

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

can eliminate cycles

to get simple paths

in O(mn) time if desired

(flow decomposition)

8

Def. A set of edges F ⊆ E disconnects t from s if every s↝t path uses at least

one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t,
find min number of edges whose removal disconnects t from s.

Network connectivity

s

2

3

4

5

6

7

t

5/17/14

3

9

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s↝t paths

is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤
・ Suppose the removal of F ⊆ E disconnects t from s, and | F | = k.
・ Every s↝t path uses at least one edge in F.

・ Hence, the number of edge-disjoint paths is ≤ k. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

10

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s↝t paths

equals the min number of edges whose removal disconnects t from s.

Pf. ≥
・ Suppose max number of edge-disjoint paths is k.
・ Then value of max flow = k.
・ Max-flow min-cut theorem ⇒ there exists a cut (A, B) of capacity k.
・ Let F be set of edges going from A to B.

・ | F | = k and disconnects t from s. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

A

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G = (V, E) and

two nodes s and t, find the max number of edge-disjoint s-t paths.

11

Edge-disjoint paths in undirected graphs

digraph G

s

2

3

4

5

6

7

t

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G = (V, E) and

two nodes s and t, find the max number of edge-disjoint s-t paths.

12

Edge-disjoint paths in undirected graphs

digraph G
(2 edge-disjoint paths)

s

2

3

4

5

6

7

t

5/17/14

4

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G = (V, E) and

two nodes s and t, find the max number of edge-disjoint s-t paths.

13

Edge-disjoint paths in undirected graphs

digraph G
(3 edge-disjoint paths)

s

2

3

4

5

6

7

t

14

Max flow formulation. Replace each edge with two antiparallel edges and

assign unit capacity to every edge.

Observation. Two paths P1 and P2 may be edge-disjoint in the digraph but

not edge-disjoint in the undirected graph.

Edge-disjoint paths in undirected graphs

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

if P1 uses edge (u, v)

and P2 uses its antiparallel edge (v, u)

15

Max flow formulation. Replace each edge with two antiparallel edges and

assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both.

Moreover, integrality theorem still holds.

Pf. [by induction on number of such pairs of antiparallel edges]

・ Suppose f (e) > 0 and f (e') > 0 for a pair of antiparallel edges e and e'.
・ Set f (e) = f (e) – δ and f (e') = f (e') – δ, where δ = min { f (e), f (e') }.

・ f is still a flow of the same value but has one fewer such pair. ▪

Edge-disjoint paths in undirected graphs

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

16

Max flow formulation. Replace each edge with two antiparallel edges and

assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both.

Moreover, integrality theorem still holds.

Theorem. Max number edge-disjoint s↝t paths equals value of max flow.

Pf. Similar to proof in digraphs; use lemma.

Edge-disjoint paths in undirected graphs

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5/17/14

5

Assignment problem

a.k.a.
minimum-weight
perfect matching

May 12, 2014 CS38 Lecture 13 17
18

Assignment problem

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |.
Goal. Find a perfect matching of min weight.

0

1

2

0'

1'

2'

15
7
3

9
4
1

5
6
2

YX

19

Assignment problem

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |.
Goal. Find a perfect matching of min weight.

min-cost perfect matching
M = { 0-2', 1-0', 2-1' }

cost(M) = 3 + 5 + 4 = 12

0

1

2

0'

1'

2'

15
7
3

9
4
1

5
6
2

YX

20

Applications

Natural applications.

・ Match jobs to machines.

・ Match personnel to tasks.

・ Match students to writing seminars.

Non-obvious applications.

・ Vehicle routing.

・ Kidney exchange.

・ Signal processing.

・ Earth-mover's distance.

・ Multiple object tracking.

・ Virtual output queueing.

・ Handwriting recognition.

・ Locating objects in space.

・ Approximate string matching.

・ Enhance accuracy of solving linear systems of equations.

5/17/14

6

Bipartite matching. Can solve via reduction to maximum flow.

Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1;

flow corresponds to edges in a matching M.

Residual graph GM simplifies to:

・ If (x, y) ∉ M, then (x, y) is in GM.

・ If (x, y) ∈ M, then (y, x) is in GM.

Augmenting path simplifies to:

・ Edge from s to an unmatched node x ∈ X,

・ Alternating sequence of unmatched and matched edges,

・ Edge from unmatched node y ∈ Y to t.

s t

21

Bipartite matching

1 1

1

YX

Def. An alternating path P with respect to a matching M is an alternating

sequence of unmatched and matched edges, starting from an unmatched

node x ∈ X and going to an unmatched node y ∈ Y.

Key property. Can use P to increase by one the cardinality of the matching.

Pf. Set M ' = M ⊕ P.

22

Alternating path

matching M alternating path P matching M'

x

y

x

y

x

y

symmetric difference

Cost of alternating path. Pay c(x, y) to match x-y; receive c(x, y) to unmatch.

Shortest alternating path. Alternating path from any unmatched node x ∈ X���
to any unmatched node y ∈ Y with smallest cost.

Successive shortest path algorithm.

・ Start with empty matching.

・ Repeatedly augment along a shortest alternating path.

23

Assignment problem: successive shortest path algorithm

1

2

1'

2'

10

7

2

P = 2 → 2' → 1 → 1'
cost(P) = 2 - 6 + 10 = 6

6

Shortest alternating path. Corresponds to minimum cost s↝t path in GM.

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then GM contains no

negative cycles ⇒ can compute using Bellman-Ford.

Our plan. Avoid negative edge costs (and negative cycles)

⇒ can compute using Dijkstra.

2

24

Finding the shortest alternating path

1 1'

2'

10

7

2

s t

0

0
-6

5/17/14

7

25

intuition. Adding a constant p(x) to the cost of every edge

incident to node x ∈ X does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node x. ▪

Equivalent assignment problem

0

1

2

0'

1'

2'

original costs c(x, y)

0

1

2

0'

1'

2'

15

7

3

9

4

1

5

6

2

add 3 to all edges

incident to node 0

p(0) = 3 18

10

9

4

1

5

6

2

X Y

modified costs c'(x, y)

6

X Y 26

intuition. Subtracting a constant p(y) to the cost of every edge incident to

node y ∈ Y does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node y. ▪

Equivalent assignment problem

0

1

2

0'

1'

2'

10

7

4

4

1

0

6

2

X Y

original costs c(x, y)

0

1

2

0'

1'

2'

15

7

3

9

4

1

5

6

2

subtract 5 from all edges

incident to node 0'

p(0') = 5

modified costs c'(x, y)

3

X Y

27

Reduced costs. For x ∈ X, y ∈ Y, define cp(x, y) = p(x) + c(x, y) – p(y).

Observation 1. Finding a min-cost perfect matching with reduced costs is

equivalent to finding a min-cost perfect matching with original costs.

Reduced costs

original costs c(x, y)

0

1

2

0'

1'

2'

15

7

3

9

4

1

5

6

2

X Y

0

1

2

0'

1'

2'

4

1

0

0

0

0

6

5

X Y

p(0) = 0

p(1) = 6

p(2) = 2

p(0') = 11

p(1') = 6

p(2') = 3

cp(1, 2') = p(1) + 2 – p(2')

reduced costs cp(x, y)

0

28

Compatible prices. For each node v ∈ X ∪ Y, maintain prices p(v) such that:

・ cp(x, y) ≥ 0 for all (x, y) ∉ M.

・ cp(x, y) = 0 for all (x, y) ∈ M.

Observation 2. If prices p are compatible with a perfect matching M,

then M is a min-cost perfect matching.

Pf. Matching M has 0 cost. ▪

Compatible prices

reduced costs cp(x, y)

4

1

0

0

6

5

X Y

0

0

0

0

1

2

0'

1'

2'

5/17/14

8

SUCCESSIVE-SHORTEST-PATH (X, Y, c) 	

M ← ∅.	

FOREACH v ∈ X ∪ Y : p(v) ← 0.	

	

WHILE (M is not a perfect matching)	

d ← shortest path distances using costs cp.	

P ← shortest alternating path using costs cp.	

M ← updated matching after augmenting along P.	

FOREACH v ∈ X ∪ Y : p(v) ← p(v) + d(v).	

	

RETURN M.	

29

Successive shortest path algorithm

prices p are

compatible with M

cp(x, y) = c(x, y) ≥ 0

Initialization.

・ M = ∅.

・ For each v ∈ X ∪ Y : p(v) ← 0.

30

Successive shortest path algorithm

original costs c(x, y)

0

1

2

0'

1'

2'

15
7
3

9
4
1

5
6
2

s t

p(0) = 0

p(1) = 0

p(2) = 0

p(0') = 0

p(1') = 0

p(2') = 0

Initialization.

・ M = ∅.

・ For each v ∈ X ∪ Y : p(v) ← 0.

31

Successive shortest path algorithm

reduced costs cp(x, y)

0

1

2

0'

1'

2'

p(0) = 0

p(1) = 0

p(2) = 0

p(0') = 0

p(1') = 0

p(2') = 0

s t

15
7
3

9
4
1

5
6
2

Step 1.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

32

Successive shortest path algorithm

0

1

2

0'

1'

2'

d(0) = 0

d(1) = 0

d(2) = 0

d(0') = 5

d(1') = 4

d(2') = 1

s t

d(t) = 1d(s) = 0

shortest path distances d(v)

15
7
3

9
4
1

5
6
2

5/17/14

9

Step 1.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

33

Successive shortest path algorithm

alternating path

0

1

2

0'

1'

2'

d(0) = 0

d(1) = 0

d(2) = 0

d(0') = 5

d(1') = 4

d(2') = 1

s t

d(t) = 1d(s) = 0

matching
2-2'

15
7
3

9
4
1

5
6
2

Step 1.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

34

Successive shortest path algorithm

reduced costs cp(x, y)

0

1

2

0'

1'

2'

10
3
2

4
0
0

0
2
1

s t

matching
2-2'

p(0) = 0

p(1) = 0

p(2) = 0

p(0') = 5

p(1') = 4

p(2') = 1

Step 2.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

35

Successive shortest path algorithm

0

1

2

0'

1'

2'

10
3
2

4
0
0

0
2
1

s t

matching
2-2'

shortest path distances d(v)
d(0) = 0

d(1) = 0

d(2) = 1

d(0') = 0

d(1') = 1

d(2') = 1

d(t) = 0d(s) = 0

Step 2.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

36

Successive shortest path algorithm

0

1

2

0'

1'

2'

10
3
2

4
0
0

0
2
1

s t

matching
2-2' 1-0'

shortest path distances d(v)
d(0) = 0

d(1) = 0

d(2) = 1

d(0') = 0

d(1') = 1

d(2') = 1

d(t) = 0d(s) = 0

5/17/14

10

Step 2.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

37

Successive shortest path algorithm

0

1

2

0'

1'

2'

10
2
1

5
0
0

0
1
0

s t

matching
2-2' 1-0'

reduced costs cp(x, y)
p(0) = 0

p(1) = 0

p(2) = 1

p(0') = 5

p(1') = 5

p(2') = 2

Step 3.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

38

Successive shortest path algorithm

0

1

2

0'

1'

2'

10
2
1

5
0
0

0
1
0

s t

matching
2-2' 1-0'

shortest path distances d(v)
d(0) = 0

d(1) = 6

d(2) = 1

d(0') = 6

d(1') = 1

d(2') = 1

d(t) = 1d(s) = 0

Step 3.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

39

Successive shortest path algorithm

0

1

2

0'

1'

2'

10
2

5
0
0

0
1
0

s t

matching
1-0' 0-2' 2-1'

shortest path distances d(v)
d(0) = 0

d(1) = 6

d(2) = 1

d(0') = 6

d(1') = 1

d(2') = 1

d(t) = 1d(s) = 0

1

Step 3.

・ Compute shortest path distances d(v) from s to v using cp(x, y).
・ Update matching M via shortest path from s to t.
・ For each v ∈ X ∪ Y: p(v) ← p(v) + d(v).

40

Successive shortest path algorithm

0

1

2

0'

1'

2'

4
1

0
0
0

0
6
5

s t

matching
1-0' 0-2' 2-1'

0

p(0) = 0

p(1) = 6

p(2) = 2

p(0') = 11

p(1') = 6

p(2') = 3

reduced costs cp(x, y)

5/17/14

11

Termination.

・ M is a perfect matching.

・ Prices p are compatible with M.

41

Successive shortest path algorithm

1

2

0'

1'

4
1

0
0
0

0
6
5

matching
1-0' 0-2' 2-1'

0

p(0) = 0

p(1) = 6

p(2) = 2

p(0') = 11

p(1') = 6

p(2') = 3

reduced costs cp(x, y)

0

2'

42

Lemma 1. Let p be compatible prices for M. Let d be shortest path distances

in GM with costs cp. All edges (x, y) on shortest path have cp+d(x, y) = 0.

Pf. Let (x, y) be some edge on shortest path.

・ If (x, y) ∈ M, then (y, x) on shortest path and d(x) = d(y) – cp(x, y);
 If (x, y) ∉ M, then (x, y) on shortest path and d(y) = d(x) + cp(x, y).
・ In either case, d(x) + cp(x, y) – d(y) = 0.

・ By definition, cp(x, y) = p(x) + c(x, y) – p(y).
・ Substituting for cp(x, y) yields (p(x) + d(x)) + c(x, y) – (p(y) + d(y)) = 0.

・ In other words, cp+d(x, y) = 0. ▪

Maintaining compatible prices

forward or reverse edges

Given prices p, the reduced cost of edge (x, y) is

 cp(x, y) = p(x) + c(x, y) – p(y).

43

Lemma 2. Let p be compatible prices for M. Let d be shortest path distances

in GM with costs cp. Then p' = p + d are also compatible prices for M.

Pf. (x, y) ∈ M

・ (y, x) is the only edge entering x in GM. Thus, (y, x) on shortest path.

・ By LEMMA 1, cp+d(x, y) = 0.

Pf. (x, y) ∉ M

・ (x, y) is an edge in GM ⇒ d(y) ≤ d(x) + cp(x, y).
・ Substituting cp(x, y) = p(x) + c(x, y) – p(y) ≥ 0 yields

(p(x) + d(x)) + c(x, y) – (p(y) + d(y)) ≥ 0.

・ In other words, cp+d(x, y) ≥ 0. ▪

Maintaining compatible prices

Prices p are compatible with matching M:

・ cp(x, y) ≥ 0 for all (x, y) ∉ M.

・ cp(x, y) = 0 for all (x, y) ∈ M.
44

Lemma 3. Let p be compatible prices for M and let M ' be matching obtained

by augmenting along a min cost path with respect to cp+d. Then p' = p + d are

compatible prices for M'.

Pf.

・ By LEMMA 2, the prices p + d are compatible for M.

・ Since we augment along a min-cost path, the only edges (x, y) that swap

into or out of the matching are on the min-cost path.

・ By LEMMA 1, these edges satisfy cp+d(x, y) = 0.

・ Thus, compatibility is maintained. ▪

Maintaining compatible prices

Prices p are compatible with matching M:

・ cp(x, y) ≥ 0 for all (x, y) ∉ M.

・ cp(x, y) = 0 for all (x, y) ∈ M.

5/17/14

12

45

Invariant. The algorithm maintains a matching M and compatible prices p.

Pf. Follows from LEMMA 2 and LEMMA 3 and initial choice of prices. ▪

Theorem. The algorithm returns a min-cost perfect matching.

Pf. Upon termination M is a perfect matching, and p are compatible prices.

Optimality follows from OBSERVATION 2. ▪

Theorem. The algorithm can be implemented in O(n3) time.

Pf.

・ Each iteration increases the cardinality of M by 1 ⇒ n iterations.

・ Bottleneck operation is computing shortest path distances d.

Since all costs are nonnegative, each iteration takes O(n2) time

using (dense) Dijkstra. ▪

Successive shortest path algorithm: analysis

46

Weighted bipartite matching. Given a weighted bipartite graph with n nodes

and m edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm

solves the problem in O(n2 + m n log n) time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an O(m n1/2 log(nC)) time

algorithm for the problem when the costs are integers between 0 and C.

Weighted bipartite matching

Linear programming

May 12, 2014 CS38 Lecture 13 47
48

Linear Programming

Linear programming. Optimize a linear function subject to
linear inequalities.

€

(P) max c j x j
j=1

n
∑

s. t. aij x j
j=1

n
∑ = bi 1≤ i ≤m

x j ≥ 0 1≤ j ≤ n

€

(P) max cT x
s. t. Ax = b

x ≥ 0

5/17/14

13

49

Linear Programming

Linear programming. Optimize a linear function subject to
linear inequalities.

Generalizes: Ax = b, 2-person zero-sum games, shortest path,

max flow, assignment problem, matching, multicommodity flow,

MST, min weighted arborescence, …

Why significant?

■  Design poly-time algorithms.

■  Design approximation algorithms.

■  Solve NP-hard problems using branch-and-cut.

Ranked among most important scientific advances of 20th century.

Linear programming

running example

May 12, 2014 CS38 Lecture 13 50

51

Brewery Problem

Small brewery produces ale and beer.

■  Production limited by scarce resources: corn, hops, barley malt.

■  Recipes for ale and beer require different proportions of resources.

How can brewer maximize profits?

■  Devote all resources to ale: 34 barrels of ale) $442

■  Devote all resources to beer: 32 barrels of beer) $736

■  7.5 barrels of ale, 29.5 barrels of beer) $776

■  12 barrels of ale, 28 barrels of beer) $800

Beverage
Corn

(pounds)

Malt
(pounds)

Hops
(ounces)

Beer (barrel) 15 20 4

Ale (barrel) 5 35 4

Profit
($)

23

13

constraint 480 1190 160

52

Brewery Problem

€

max 13A + 23B
s. t. 5A + 15B ≤ 480

4A + 4B ≤ 160
35A + 20B ≤ 1190
A , B ≥ 0

Ale Beer

Corn

Hops

Malt

Profit

objective function

constraint

decision variable

5/17/14

14

Linear programming

standard form

May 12, 2014 CS38 Lecture 13 53
54

Standard Form LP

"Standard form" LP.

■  Input: real numbers aij, cj, bi.	

■  Output: real numbers xj.
■  n = # decision variables, m = # constraints.

■  Maximize linear objective function subject to linear inequalities.

Linear. No x2, x y, arccos(x), etc.

Programming. Planning (term predates computer programming). €

(P) max c j x j
j=1

n
∑

s. t. aij x j
j=1

n
∑ = bi 1≤ i ≤m

x j ≥ 0 1≤ j ≤ n

€

(P) max cT x
s. t. Ax = b

x ≥ 0

55

Brewery Problem: Converting to Standard Form

Original input.

Standard form.

■  Add slack variable for each inequality.

■  Now a 5-dimensional problem.
€

max 13A + 23B
s. t. 5A + 15B ≤ 480

4A + 4B ≤ 160
35A + 20B ≤ 1190
A , B ≥ 0

€

max 13A + 23B
s. t. 5A + 15B + SC = 480

4A + 4B + SH = 160
35A + 20B + SM = 1190
A , B , SC , SH , SM ≥ 0

56

Equivalent Forms

Easy to convert variants to standard form.

Less than to equality:

 x + 2y – 3z · 17 	
) x + 2y – 3z + s = 17, s ¸ 0	

Greater than to equality:

	
 	
 	
 	
x + 2y – 3z ¸ 17 	
) x + 2y – 3z – s = 17, s ¸ 0	

Min to max:

	
 	
 	
 	
min x + 2y – 3z 	
) max –x – 2y + 3z
Unrestricted to nonnegative:

	
 	
 	
 	
x unrestricted 	
) x = x+ – x –, x+ ¸ 0, x – ¸ 0	

€

(P) max cT x
s. t. Ax = b

x ≥ 0

5/17/14

15

Linear programming
geometric perspective

May 12, 2014 CS38 Lecture 13 57
58

Brewery Problem: Feasible Region

Ale

Beer

(34, 0)

(0, 32)

Corn
5A + 15B · 480

Hops
4A + 4B · 160

Malt
35A + 20B · 1190

(12, 28)

(26, 14)

(0, 0)

59

Brewery Problem: Objective Function

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442
(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)

Profit

Ale

Beer

60

(34, 0)

(0, 32)

(12, 28)

(0, 0)

(26, 14)

Brewery Problem: Geometry

Brewery problem observation. Regardless of objective function

coefficients, an optimal solution occurs at a vertex.

vertex

Ale

Beer

5/17/14

16

61

Convex set. If two points x and y are in the set, then so is

¸ x + (1- ¸) y for 0 · ¸ · 1.

Vertex. A point x in the set that can't be written as a strict

convex combination of two distinct points in the set.

Observation. LP feasible region is a convex set.

Convexity

convex not convex

vertex

x	

y	

convex combination

62

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one

that is a vertex.

Intuition. If x is not a vertex, move in a non-decreasing direction until you

reach a boundary. Repeat.

x	

x' = x + ®* d	

€

(P) max cT x
s. t. Ax = b

x ≥ 0

x + d	

x - d	

