
1

CS21
Decidability
and
Tractability

Lecture 9
January 24, 2024

1

January 24, 2024 CS21 Lecture 9 2

Deciding CFLs

• Convert CFG into Chomsky Normal Form
• parse tree for string x generated by

nonterminal A:
A

B C

x

If A →k x (k > 1) then there must
be a way to split x:

x = yz

• A → BC is a production and

• B →i y and C ⇒j z for i, j < k

2

January 24, 2024 CS21 Lecture 9 3

Deciding CFLs
• An algorithm:

IsGenerated(x, A)
if |x| = 1, then return YES if A → x is a production,

else return NO
for all n-1 ways of splitting x = yz

for all ≤ m productions of form A → BC
if IsGenerated(y, B) and IsGenerated(z, C),

return YES
return NO

• worst case running time?

3

January 24, 2024 CS21 Lecture 9 4

Deciding CFLs
• worst case running time exp(n)
• Idea: avoid recursive calls

– build table of YES/NO answers to calls to
IsGenerated, in order of length of substring

– example of general algorithmic strategy called
dynamic programming

– notation: x[i,j] = substring of x from i to j
– table: T(i, j) contains

{A: A nonterminal such that A →* x[i,j]}

4

January 24, 2024 CS21 Lecture 9 5

Deciding CFLs
IsGenerated(x = x1x2x3…xn, G)

for i = 1 to n
T[i, i] = {A: “A → xi” is a production in G}

for k = 1 to n - 1
for i = 1 to n - k

for k splittings x[i, i+k] = x[i,i+j]x[i+j+1, i+k]
T[i, i+k] = {A: “A → BC” is a production

in G and B ∈ T[i,i+j] and
C ∈ T[i+j+1,i+k] }

output “YES” if S ∈T[1, n], else output “NO”

5

January 24, 2024 CS21 Lecture 9 6

Deciding CFLs
IsGenerated(x = x1x2x3…xn, G)

for i = 1 to n
T[i, i] = {A: “A → xi” is a production in G}

for k = 1 to n - 1
for i = 1 to n - k

for k splittings x[i, i+k] = x[i,i+j]x[i+j+1, i+k]
T[i, i+k] = {A: “A → BC” is a production

in G and B ∈ T[i,i+j] and
C ∈ T[i+j+1,i+k] }

output “YES” if S ∈T[1, n], else output “NO”

O(nm) steps

O(n3m3) steps

6

2

January 24, 2024 CS21 Lecture 9 7

Deterministic PDA
• A NPDA is a 6-tuple (Q, Σ, Γ, δ, q0, F)

where:
– δ:Q x (Σ ∪ {ε}) x (Γ ∪ {ε}) → P (Q x (Γ ∪ {ε})) is

a function called the transition function
• A deterministic PDA has only one option at

every step:
– for every state q ∈Q, a ∈ Σ, and t ∈ Γ, exactly

1 element in δ(q, a, t), or
– exactly 1 element in δ(q, ε, t), and δ(q, a, t)

empty for all a ∈ Σ

7

January 24, 2024 CS21 Lecture 9 8

Deterministic PDA

• A technical detail:
we will give our deterministic machine the
ability to detect end of input string
– add special symbol ■ to alphabet
– require input tape to contain x■

• language recognized by a deterministic
PDA is called a deterministic CFL (DCFL)

8

January 24, 2024 CS21 Lecture 9 9

Example deterministic PDA

L = {0n1n : n ≥ 0}
(unpictured transitions go to a “reject” state and stay there)

ε, ε → $

■, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}

Γ = {0, 1, $}

9

January 24, 2024 CS21 Lecture 9 10

Deterministic PDA
Theorem: DCFLs are closed under

complement
(complement of L in Σ* is (Σ* - L))

Proof attempt:
– swap accept/non-accept states
– problem: might enter infinite loop before

reading entire string
– machine for complement must accept in these

cases, and read to end of string

10

January 24, 2024 CS21 Lecture 9 11

Example of problem

0, ε → ε
0, ε → ε

1, ε → ε

1, ε → ε
ε, ε → $

Language of this DPDA is 0Σ*

■, ε → ε

■, ε → ε

ε, ε → $

11

January 24, 2024 CS21 Lecture 9 12

Example of problem

0, ε → ε
0, ε → ε

1, ε → ε

1, ε → ε
ε, ε → $

Language of this DPDA is {𝜖}

■, ε → ε

■, ε → ε

ε, ε → $

12

3

January 24, 2024 CS21 Lecture 9 13

Deterministic PDA

Proof:
– convert machine into “normal form”

• always reads to end of input
• always enters either an accept state or single

distinguished “reject” state, and stay there
– step 1: keep track of when we have read to

end of input
– step 2: eliminate infinite loops

13

January 24, 2024 CS21 Lecture 9 14

Deterministic PDA
step 1: keep track of when we have read to end

of input

■, ? → ?

q0 q1

q3

q2

■, ? → ?

q0’ q1’

q3’
q2’

14

January 24, 2024 CS21 Lecture 9 15

Deterministic PDA
step 1: keep track of when we have read to end

of input

■, ? → ?q0 q1

q3

q2

■, ? → ?

q0’ q1’

q3’
q2’

for accept state q’: replace outgoing “ε, ? → ?”
transition with self-loop with same label

15

January 24, 2024 CS21 Lecture 9 16

Deterministic PDA
step 2: eliminate infinite loops

– add new “reject” states

r’r

a, t →t (for all a, t)
ε, t → t (for all t)

■, t → t (for all t)

16

January 24, 2024 CS21 Lecture 9 17

Deterministic PDA
step 2: eliminate infinite loops
– on input x, if infinite loop, then:

stack
height

time
i0 i1 i2 i3 infinite sequence i0< i1< i2< … such

that for all k, stack height never
decreases below ht(ik) after time ik

17

January 24, 2024 CS21 Lecture 9 18

Deterministic PDA
step 2: eliminate infinite loops
– infinite seq. i0< i1< … such that for all k, stack

height never decreases below ht(ik) after time ik
– infinite subsequence j0< j1< j2< … such that

same transition is applied at each time jk

p

ε, t → s

• never see any stack symbol below
t from jk on
• we are in a periodic, deterministic
sequence of stack operations
independent of the input

18

4

CS21 Lecture 9 19

Deterministic PDA
step 2: eliminate infinite loops
– infinite subsequence j0< j1< j2< … such that

same transition is applied at each time jk
– safe to replace:

p

ε, t → s

r’r

a, t →t (for all a, t)
ε, t → t (for all t)

■, t → t (for all t)

p’

ε, t → s

ε, t → s

or ε, t → s

19

January 24, 2024 CS21 Lecture 9 20

Deterministic PDA
– finishing up…
– have a machine M with no infinite loops
– therefore it always reads to end of input
– either enters an accept state q’, or enters

“reject” state r’

– now, can swap: make r’ unique accept state
to get a machine recognizing complement of L

20

January 24, 2024 CS21 Lecture 9 21

Summary

• Nondeterministic Pushdown Automata
(NPDA)

• Context-Free Grammars (CFGs) describe
Context-Free Languages (CFLs)
– terminals, non-terminals
– productions
– yields, derivations
– parse trees

21

January 24, 2024 CS21 Lecture 9 22

Summary
– grouping determined by grammar
– Chomsky Normal Form (CNF)

• NDPAs and CFGs are equivalent

• CFL Pumping Lemma is used to show
certain languages are not CFLs

22

January 24, 2024 CS21 Lecture 9 23

Summary

• deterministic PDAs recognize DCFLs
• DCFLs are closed under complement

• there is an efficient algorithm (based on
dynamic programming) to determine if a
string x is generated by a given grammar G

23

January 24, 2024 CS21 Lecture 9 24

So far…
• several models of computation

– finite automata
– pushdown automata

• fail to capture our intuitive notion of what is
computable

regular
languages

context free
languages

all languages

24

5

January 24, 2024 CS21 Lecture 9 25

So far…

• We proved (using constructions of FA and
NPDAs and the two pumping lemmas):

regular
languages

context free
languages

all languages

{w : w	∈	{a,b}* has an even # of b’s} {anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

25

January 24, 2024 CS21 Lecture 9

A more powerful machine

• limitation of NPDA related to fact that their
memory is stack-based (last in, first out)

• What is the simplest alteration that adds
general-purpose “memory” to our
machine?

• Should be able to recognize, e.g., {anbncn : n ≥ 0 }

26

26

January 24, 2024 CS21 Lecture 9

Turing Machines

• New capabilities:
– infinite tape
– can read OR write to tape
– read/write head can move left and right

0 1 1 0 0 1 1 1 0 1 0 0

q0

input tape

finite
control

…

read/write
head

27

27

January 24, 2024 CS21 Lecture 9

Turing Machine
• Informal description:

– input written on left-most squares of tape
– rest of squares are blank
– at each point, take a step determined by

• current symbol being read
• current state of finite control

– a step consists of
• writing new symbol
• moving read/write head left or right
• changing state

28

28

January 24, 2024 CS21 Lecture 9

Example Turing Machine
language L = {w#w : w ∈ {0,1}*}

0 1 # 0 1

q0

input tape

finite
control

…

read/write
head

29

29

January 24, 2024 CS21 Lecture 9

Turing Machine diagrams

– a → R means “read a, move right”
– a → L means “read a, move left”
– a → b, R means “read a, write b, move right

a → R

b → R
b → L

a → b,L

b → a,R

start state

transition label: (tape symbol read →
tape symbol written, direction moved)

qacceptqreject

states
(1 accept
+ 1 reject)

“_” means
blank tape
square

30

30

6

January 24, 2024 CS21 Lecture 9

Example TM diagram

qacceptq0

q1 q3 q5 q7 q9

q11 q12 q13

q2 q4 q6 q8 q10

0 → _,R

1 → _,R
→ R

0,1 → R 0,1 → R 0,1,# → L 0,1 → R x → R

#→R _→L _→R #→R

0,1 → R 0,1 → R 0,1,# → L 0,1 → R x → R

#→R _→L _→R #→R

0 → x, L

1 → x, L

0,1,x,# → L
0 → x, R

1 → x, R

x → R x → R
_→R _→R#→R

31

31

