

1

Deciding CFLs

- An algorithm:

IsGenerated(x, A)
if $|x|=1$, then return YES if $\mathrm{A} \rightarrow \mathrm{x}$ is a production, else return NO
for all $\mathrm{n}-1$ ways of splitting $\mathrm{x}=\mathrm{yz}$
for all $\leq m$ productions of form $\mathrm{A} \rightarrow \mathrm{BC}$
if IsGenerated(y, B) and IsGenerated(z, C), return YES
return NO

- worst case running time?

3

Deciding CFLs

IsGenerated($\left.x=x_{1} x_{2} x_{3} \ldots x_{n}, G\right)$
for $\mathrm{i}=1$ to n
$\mathrm{T}[\mathrm{i}, \mathrm{i}]=\left\{\mathrm{A}:\right.$ " $\mathrm{A} \rightarrow \mathrm{x}_{\mathrm{i}}$ " is a production in G$\}$
for $\mathrm{k}=1$ to $\mathrm{n}-1$
for $\mathrm{i}=1$ to $\mathrm{n}-\mathrm{k}$
for k splittings $x[i, i+k]=x[i, i+j] x[i+j+1, i+k]$
$T[i, i+k]=\{A: ~ " A \rightarrow B C$ " is a production in G and $B \in T[i, i+j]$ and $C \in T[i+j+1, i+k]\}$
output "YES" if $S \in T[1, n]$, else output "NO"

Deciding CFLs

- Convert CFG into Chomsky Normal Form
- parse tree for string \times generated by nonterminal A:

If $A \rightarrow^{k} x(k>1)$ then there must be a way to split x :
$x=y z$

- $A \rightarrow B C$ is a production and
- $\mathrm{B} \rightarrow{ }^{\mathrm{i}} \mathrm{y}$ and $\mathrm{C} \Rightarrow \mathrm{z}$ for $\mathrm{i}, \mathrm{j}<\mathrm{k}$

January 24, 2024
CS21Lecture 9 2

2

Deciding CFLs

- worst case running time $\exp (\mathrm{n})$
- Idea: avoid recursive calls
- build table of YES/NO answers to calls to IsGenerated, in order of length of substring
- example of general algorithmic strategy called dynamic programming
- notation: $x[i, j]=$ substring of x from i to j
- table: T(i, j) contains
$\left\{A\right.$: A nonterminal such that $\left.A \rightarrow{ }^{*} x[i, j]\right\}$

CS21 Lecture 9

4

Deciding CFLs

IsGenerated($\mathrm{x}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \ldots \mathrm{x}_{\mathrm{n}}$, G)
$\mathrm{O}(\mathrm{nm})$ steps
for $\mathrm{i}=1$ to n
$T[i, i]=\left\{A:\right.$ " $A \rightarrow x_{i}$ " is a production in $\left.G\right\}$
for $\mathrm{k}=1$ to $\mathrm{n}-1$
for $\mathrm{i}=1$ to $\mathrm{n}-\mathrm{k}$
for k splittings $x[i, i+k]=x[i, i+j] x[i+j+1, i+k]$
$\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~m}^{3}\right)$ steps
$\mathrm{T}[\mathrm{i}, \mathrm{i}+\mathrm{k}]=\{\mathrm{A}:$ " $\mathrm{A} \rightarrow \mathrm{BC}$ " is a production in G and $B \in T[i, i+j]$ and $C \in T[i+j+1, i+k]\}$
output "YES" if $S \in T[1, n]$, else output "NO"
January 24, 2024
CS21 Lecture 9

6

Deterministic PDA

- A NPDA is a 6-tuple (Q, $\left.\Sigma, \Gamma, \delta, q_{0}, F\right)$ where:
$-\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ is a function called the transition function
- A deterministic PDA has only one option at every step:
- for every state $q \in Q, a \in \Sigma$, and $t \in \Gamma$, exactly 1 element in $\delta(q, a, t)$, or
- exactly 1 element in $\delta(\mathrm{q}, \varepsilon, \mathrm{t})$, and $\delta(\mathrm{q}, \mathrm{a}, \mathrm{t})$ empty for all $a \in \Sigma$
January 24, 2024
CS21 Lecture 9

7

Example deterministic PDA

$$
L=\left\{0^{n} 1^{n}: n \geq 0\right\}
$$

(unpictured transitions go to a "reject" state and stay there) January 24, 2024

CS21 Lecture 9

9

Example of problem

Language of this DPDA is $0 \Sigma^{*}$

Deterministic PDA

- A technical detail: we will give our deterministic machine the ability to detect end of input string
- add special symbol \square to alphabet
- require input tape to contain x
- language recognized by a deterministic PDA is called a deterministic CFL (DCFL)

January 24, 2024
CS21 Lecture 9

8

Deterministic PDA

Theorem: DCFLs are closed under complement
(complement of L in Σ^{*} is $\left(\Sigma^{*}-L\right)$)
Proof attempt:

- swap accept/non-accept states
- problem: might enter infinite loop before reading entire string
- machine for complement must accept in these cases, and read to end of string

Example of problem

Language of this DPDA is $\{\epsilon\}$

Deterministic PDA

Proof:

- convert machine into "normal form"
- always reads to end of input
- always enters either an accept state or single distinguished "reject" state, and stay there
- step 1: keep track of when we have read to end of input
- step 2: eliminate infinite loops

Deterministic PDA

step 1: keep track of when we have read to end of input

for accept state q': replace outgoing " $\varepsilon, ? \rightarrow$?" transition with self-loop with same label

January 24, 2024
CS21 Lecture 9

Deterministic PDA

step 2: eliminate infinite loops

- on input x, if infinite loop, then:

Deterministic PDA

step 1: keep track of when we have read to end of input

January 24, 2024
CS21 Lecture 9
14
14

Deterministic PDA

step 2: eliminate infinite loops

- add new "reject" states

Deterministic PDA

step 2: eliminate infinite loops

- infinite seq. $i_{0}<i_{1}<\ldots$ such that for all k, stack height never decreases below ht $\left(\mathrm{i}_{\mathrm{k}}\right)$ after time i_{k}
- infinite subsequence $\mathrm{j}_{0}<\mathrm{j}_{1}<\mathrm{j}_{2}<\ldots$ such that same transition is applied at each time j_{k}
- never see any stack symbol below

t from j_{k} on
- we are in a periodic, deterministic sequence of stack operations independent of the input

Deterministic PDA

step 2: eliminate infinite loops

- infinite subsequence $\mathrm{j}_{0}<\mathrm{j}_{1}<\mathrm{j}_{2}<\ldots$ such that same transition is applied at each time j_{k}

19

Summary

- Nondeterministic Pushdown Automata (NPDA)
- Context-Free Grammars (CFGs) describe Context-Free Languages (CFLs)
- terminals, non-terminals
- productions
- yields, derivations
- parse trees

Summary

- deterministic PDAs recognize DCFLs
- DCFLs are closed under complement
- there is an efficient algorithm (based on dynamic programming) to determine if a string x is generated by a given grammar G

So far...

- several models of computation
- finite automata
- pushdown automata
- fail to capture our intuitive notion of what is computable

January 24, 2024
CS21 Lecture 9
24

24

So far...

- We proved (using constructions of FA and NPDAs and the two pumping lemmas):

January 24, 2024
CS21 Lecture 9
25

Turing Machines

- New capabilities:
- infinite tape
- can read OR write to tape
- read/write head can move left and right

CS21 Lecture 9
27

Example Turing Machine

language $L=\left\{w \# w: w \in\{0,1\}^{*}\right\}$

A more powerful machine

- limitation of NPDA related to fact that their memory is stack-based (last in, first out)
- What is the simplest alteration that adds general-purpose "memory" to our machine?
- Should be able to recognize, e.g., $\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$

January 24, 2024
CS21 Lecture 9

Turing Machine

- Informal description:
- input written on left-most squares of tape
- rest of squares are blank
- at each point, take a step determined by
- current symbol being read
- current state of finite control
- a step consists of
- writing new symbol
- moving read/write head left or right
- changing state

January 24, 2024
CS21 Lecture 9
28
28

Turing Machine diagrams

transition label: (tape symbol read \rightarrow
tape symbol written, direction moved)
" " means

- R man "rank tape
$-\mathrm{a} \rightarrow \mathrm{L}$ means "read a, move left"
$-a \rightarrow b, R$ means "read a, write b, move right

31

