

1

3

5

Outline

NP-complete problems: independent set, vertex cover, clique

- NP-complete problems: Hamilton path and cycle,Traveling Salesperson Problem
- NP-complete problems: Subset Sum
- NP-complete problems: NAE-3-SAT, max cut

February 23, $2024 \quad$ CS2 L Lecture 21
2

4

6

Undirected Hamilton Cycle

- Definition: given a undirected graph $G=$ (V, E), a Hamilton cycle in G is a cycle in G that touches every node exactly once
- Is finding one easier than finding a Hamilton path?
- A language (decision problem) UHAMCYCLE $=\{\mathrm{G}: \mathrm{G}$ has a Hamilton cycle $\}$
\qquad CS22 Lecture 21

13

UHAMCYCLE is NP-complete

- The reduction (from UHAMPATH):
Fobraar 23. 2024

15

TSP is NP-complete

Theorem: the following language is NP-
complete:
$T S P=\left\{\left(\left\{d_{i, j}: 1 \leq i<j \leq n\right\}, k\right)\right.$: these cities have a TSP tour of length $\leq k\}$

- Proof:
- Part 1: TSP \in NP. Proof?
- Part 2: TSP is NP-hard.
- reduce from?

Februar 23, $2024 \quad$ Cs22 Lecture 2

17

UHAMCYCLE is NP-complete

Theorem: the following language is NP-
complete:
UHAMCYCLE $=\{\mathrm{G}: \mathrm{G}$ has a Hamilton cycle $\}$

- Proof:
- Part 1: UHAMCYCLE \in NP. Proof?
- Part 2: UHAMCYCLE is NP-hard.
- reduce from?

Fobtuary 23. $2024 \quad$ CS22 Leoture 22
14

Traveling Salesperson Problem

- Definition: given n cities $v_{1}, v_{2}, \ldots, v_{n}$ and inter-city distances $\mathrm{d}_{\mathrm{i}, \mathrm{j}}$ a TSP tour in G is a permutation π of \{1...n\}. The tour's length is $\Sigma_{i=1 \ldots n} d_{\pi(i), \pi(i+1)}$ (where $n+1$ means 1).
- A search problem:
given the $\left\{\mathrm{d}_{\mathrm{i}, \mathrm{j}}\right\}$, find the shortest TSP tour
- corresponding language (decision problem) TSP $=\left\{\left(\left\{d_{i, j}: 1 \leq i<j \leq n\right\}, k\right):\right.$ these cities have a SP tour of length $\leq k$

$$
\text { Febraar 23, 2024 } \quad \text { CS21 Lectur e } 21
$$

$$
{ }^{16}
$$

16

TSP is NP-complete

- We are reducing from the language:

UHAMCYCLE $=\{G: G$ has a Hamilton cycle $\}$
to the language:
TSP $=\left\{\left(\left\{\mathrm{d}_{\mathrm{i}, \mathrm{j}}: 1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}\right\}, \mathrm{k}\right)\right.$: these cities have a TSP tour of length $\leq k\}$
Fobtuary 23, 2024 CS21 Lecture 21

18

TSP is NP-complete

- The reduction:
- given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with n nodes
produce:
- n cities corresponding to the n nodes
$-d_{u, v}=1$ if $(u, v) \in E$
$-d_{u, v}=2$ if $(u, v) \notin E$
- set $\mathrm{k}=\mathrm{n}$

TSP is NP-complete

- YES maps to YES?
- if G has a Hamilton cycle, then visiting cities in that order gives TSP tour of length n
- NO maps to NO?
-if TSP tour of length $\leq n$, it must have length - if TSP tou
- all distances in tour are 1. Must be edges between every successive pair of cities in tour

Fobtraary 23.2024	Cs21 Lecture 21	19

19

Hamilton Path

- Definition: given a directed graph $\mathrm{G}=(\mathrm{V}$, E), a Hamilton path in G is a directed path that touches every node exactly once.
- A language (decision problem)

HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}): \mathrm{G}$ has a Hamilton path from s to t\}
\qquad
-
Februar 23.202

20

HAMPATH is NP-complete

Theorem: the following language is NP-
complete:
HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}): \mathrm{G}$ has a Hamilton path
from s to $t\}$

- Proof:
- Part 1: HAMPATH \in NP. Proof?
- Part 2: HAMPATH is NP-hard.
- reduce from?

Fobruary 23.2024
CS21 Lecture 21
21
22

HAMPATH is NP-complete

- We are reducing from the language:

3SAT $=\{\varphi: \varphi$ is a 3-CNF formula that has a satisfying assignment $\}$
to the language
HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}): \mathrm{G}$ has a Hamilton path from s to $t\}$
Fobtrayy 23. 2024 Cs21 Lecture 21

23

HAMPATH is NP-complete

- We want to construct a graph from φ with the following properties:
- a satisfying assignment to φ translates into a Hamilton Path from s to t
- a Hamilton Path from s to t can be translated into a satisfying assignment for φ
- We will build the graph up from pieces called gadgets that "simulate" the clauses and variables of φ.
footrayy 23.2024
24

31

33

35

32

34

36

UHAMPATH is NP-complete

Theorem: the following language is NP-
complete:
UHAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t})$: undirected graph G has a Hamilton path from s to t\}

- Proof:
- Part 1: UHAMPATH \in NP. Proof?
- Part 2: UHAMPATH is NP-hard. - reduce from?
${ }_{37}$
37

UHAMPATH is NP-complete

- We are reducing from the language:

HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}):$ directed graph G has a Hamilton path from s to t
to the language:
UHAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}):$ undirected graph G has a Hamilton path from s to t \}

Fobrary 23.2024 C 521 Lecture 21

38

UHAMPATH is NP-complete

- The reduction:

39

UHAMPATH is NP-complete

- Does the reduction run in poly-time?
- YES maps to YES?
- Hamilton path in G: $\mathrm{s}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{k}}, \mathrm{t}$
- Hamilton path in G^{\prime} :
$\mathrm{S}_{\text {out }},\left(\mathrm{u}_{1}\right)_{\text {in }},\left(\mathrm{u}_{1}\right)_{\text {mid }},\left(\mathrm{u}_{1}\right)_{\text {out }},\left(\mathrm{u}_{2}\right)_{\text {in }},\left(\mathrm{u}_{2}\right)_{\text {mid }},\left(\mathrm{u}_{2}\right)_{\text {out },}$ $\left(u_{k}\right)_{\text {in }},\left(u_{k}\right)_{\text {mid }},\left(u_{k}\right)_{\text {out }} t_{\text {in }}$

40

UHAMPATH is NP-complete

- NO maps to NO?
- Hamilton path in G
$S_{\text {out, }}, V_{1}, V_{2}, V_{3}, V_{4}, v_{5}, V_{6}, \ldots, V_{k-2}, v_{k-1}, v_{k k}, t_{i n}$
$-v_{1}=\left(u_{i 1}\right)_{\text {in }}$ for some i_{1} (only edges to ins)
$-v_{2}=\left(u_{i 1}\right)_{\text {mid }}$ for some i_{1} (only way to enter mid)
$-v_{3}=\left(u_{11}\right)_{\text {out }}$ for some i_{1} (only way to exit mid)
$-v_{4}=\left(u_{i 2}\right)_{\text {in }}$ for some i_{2} (only edges to ins)
_ Hamilton path in G: s, $\mathrm{u}_{11}, \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \ldots, \mathrm{u}_{\mathrm{i},}, \mathrm{t}$
\qquad

Undirected Hamilton Cycle

- Definition: given a undirected graph $\mathrm{G}=$ (V, E), a Hamilton cycle in G is a cycle in G that touches every node exactly once.
- Is finding one easier than finding a Hamilton path?
- A language (decision problem): UHAMCYCLE $=\{\mathrm{G}: \mathrm{G}$ has a Hamilton cycle $\}$

February 23. 2024
Fobtruar 23.202

$$
\text { Cs21 Lecture } 21
$$

$$
{ }^{42}
$$

UHAMCYCLE is NP-complete

Theorem: the following language is NPcomplete:

UHAMCYCLE $=\{\mathrm{G}: \mathrm{G}$ has a Hamilton cycle $\}$

- Proof:
- Part 1: UHAMCYCLE \in NP. Proof?
- Part 2: UHAMCYCLE is NP-hard. - reduce from?

Traveling Salesperson Problem

- Definition: given n cities $v_{1}, v_{2}, \ldots, v_{n}$ and inter-city distances $\mathrm{d}_{\mathrm{i}, \mathrm{j}}$ a TSP tour in G is a permutation π of $\{1 \ldots n\}$. The tour's length is $\sum_{i=1 \cdots n} d_{\pi(i), \pi(i+1)}$ (where $n+1$ means 1).
- A search problem: given the $\left\{\mathrm{d}_{\mathrm{i}, \mathrm{j}}\right\}$, find the shortest TSP tour
- corresponding language (decision problem): TSP $=\left\{\left(\left\{\mathrm{d}_{\mathrm{i}, \mathrm{j}}: 1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}\right\}, \mathrm{k}\right)\right.$: these cities have a TSP tour of length $\leq k\}$

$$
\begin{array}{lll}
\text { Febtraay 23, 2024 } & \text { CS2 L Lecture 21 } & 45 \\
\hline
\end{array}
$$

45

TSP is NP-complete

- We are reducing from the language:
UHAMCYCLE $=\{\mathrm{G}: \mathrm{G}$ has a Hamilton cycle $\}$
to the language:
TSP $=\left\{\left(\left\{d_{i, j}: 1 \leq i<j \leq n\right\}, k\right)\right.$: these cities have a TSP tour of length $\leq k\}$
Fobruay 23. 2024 CS21 Leoture 21
47

UHAMCYCLE is NP-complete

- The reduction (from UHAMPATH):

44

TSP is NP-complete

Theorem: the following language is NPcomplete:
TSP $=\left\{\left(\left\{\mathrm{d}_{\mathrm{i}, \mathrm{j}}: 1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}\right\}, \mathrm{k}\right)\right.$: these cities have a

- Proof:
- Part 1: TSP \in NP. Proof?
- Part 2: TSP is NP-hard. - reduce from?

Fobruary $23.2024 \quad$ CS2 Lecture 21 ${ }^{46}$
46

TSP is NP-complete

- The reduction:
- given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with n nodes
produce:
-n cities corresponding to the n nodes
$-d_{u, v}=1$ if $(u, v) \in E$
$-d_{u, v}=2$ if $(u, v) \notin E$
- set $\mathrm{k}=\mathrm{n}$
Fobruary 23. 2024 CS21 Leecture 21
${ }^{48}$
48

TSP is NP-complete

- YES maps to YES?
- if G has a Hamilton cycle, then visiting cities in that order gives TSP tour of length n
- NO maps to NO?
- if TSP tour of length $\leq n$, it must have length exactly n .
- all distances in tour are 1. Must be edges between every successive pair of cities in tour.
Fobtrasy 23, 2024 CS2 Leecure 21 $\quad 49$ 49

Subset Sum

SUBSET-SUM $=\left\{\left(S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right\}, B\right)\right.$: here is a subset of S that sums to $B\}$

- Is this problem NP-complete? in P?
- Problem set: in TIME(B•poly(k))
\qquad
51

SUBSET-SUM is NP-complete

- We are reducing from the language:

3SAT $=\{\varphi: \varphi$ is a 3-CNF formula that has a satisfying assignment $\}$
to the language:
SUBSET-SUM $=\left\{\left(S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right\}, B\right)\right.$. there is a subset of S that sums to $B\}$
Fobruary 23.2024
cs21 Leoture 2

53

Subset Sum

- A language (decision problem):

SUBSET-SUM $=\left\{\left(S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right\}, B\right)\right.$ there is a subset of S that sums to $B\}$

- example:
$-\mathrm{S}=\{1,7,28,3,2,5,9,32,41,11,8\}$
-B = 30
$-30=7+3+9+11$. yes.
Fobtrany 23. $2024 \quad$ CS21 Lecture 21
50

SUBSET-SUM is NP-complete

Theorem: the following language is NP-
complete:
SUBSET-SUM = our reduction had
there is a sub better produce super-
there is a sub polynomially large B

- Proof: (unless we want to
- Part 1: SUBSET-S prove P=NP
- Part 2: SUBSET-SUM is NP-hard
- reduce from?

Fobraary 23,2024
CS21 Lecture 21
52

SUBSET-SUM is NP-complete

- $\varphi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{3}\right) \wedge \ldots \wedge(\ldots)$
- Need integers to play the role of truth assignments
- For each variable x_{i} include two integers in our set S.
$-\mathrm{x}_{\mathrm{i}}^{\text {TRUE }}$ and $\mathrm{x}_{\mathrm{i}}^{\text {FALSE }}$
- set B so that exactly one must be in sum

Sotuary $23.2024 \quad$ CS2 L Lecture $21 \quad$ si
54

55

57

SUBSET-SUM is NP-complete

- $\varphi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{3}\right) \wedge \ldots \wedge(\ldots)$
- Need to force subset to "choose" at least one true literal from each clause
- Idea:
- add more digits
- one digit for each clause
- set B to force each clause to be satisfied.

Fobruary 23.2024
56

SUBSET-SUM is NP-complete

$-\mathrm{B}=1111 \ldots 1$? ? ?

- if clause i is satisfied sum might be 1,2 , or 3 in corresponding column
- want ? to "mean" ≥ 1
- solution: set? $=3$
- add two "filler" elements for each clause i:
- FILL1 $=0000 \ldots 00 \ldots 010 \ldots 0$
- FILL2 $=0000 \ldots 00 \ldots 010 \ldots 0$ column for clause i
fobtuar 23,2024
cs22 Lecture 21
58

SUBSET-SUM is NP-complete

- Reduction: m variables, k clauses - for each variable x_{i} :
- $x_{i}^{\text {TRUE }}$ has ones in positions $k+i$ and $\{j$: clause j
 indudes literal - x_{i}
- for each clause i :
- FILL1i and FILL2i have one in position i
- bound B has 3 in positions $1 \ldots k$ and 1 in positions $k+1 \ldots k+m$
\qquad

59

