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Euclid’s Algorithm
on input <x, y>:
• (1) repeat until y = 0

• (2) set x = x mod y
• (3) swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Claim: value of x 
reduced by ½ at every 
execution of (2) except 
possibly first one.
Proof:
• after (2) x < y

• after (3) x > y
• if x/2 ≥ y, then x mod y 
< y ≤ x/2
• if x/2 < y, then x mod y 
= x – y < x/2

• every 2 times through loop, 
(x, y) each reduced by ½

• loops ≤ 2max{log2x, log2y} 
= O(n = |<x, y>|); poly time 
for each loop 
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A puzzle
• Find an efficient algorithm to solve the 

following problem:
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (B, a)
• Goal: determine if it is possible to circle at 

least one symbol in each pair without 
circling upper and lower case of same 
symbol.
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A puzzle
• Find an efficient algorithm to solve the 

following problem.
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (b, a)
• Goal: determine if it is possible to circle at 

least one symbol in each pair without 
circling upper and lower case of same 
symbol.
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2SAT
• This is a disguised version of the language

2SAT = {formulas in Conjunctive Normal 
Form with 2 literals per clause for which 

there exists a satisfying truth assignment}
– CNF = “AND of ORs”

(A, b), (E, D), (d, C), (b, a)
(x1 ∨¬x2)∧(x5 ∨ x4)∧(¬x4 ∨ x3)∧(¬x2 ∨¬x1)
– satisfying truth assignment = assignment of 

TRUE/FALSE to each variable so that whole 
formula is TRUE 
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2SAT
Theorem: There is a polynomial-time 

algorithm deciding 2SAT (“2SAT ∈P”). 

Proof: algorithm described on next slides.
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¬x2

¬x1
x4

x1

Algorithm for 2SAT
• Build a graph with separate nodes for 

each literal.
– add directed edge (x, y) iff formula includes 

clause (¬x ∨ y) (equiv. to x ⇒ y)

e.g. (x1 ∨¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨¬x1)
x5

¬x4

x3

x2

¬x5

¬x3
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Algorithm for 2SAT
Claim: formula is unsatisfiable iff there is 

some variable x with a path from x to ¬x 
and a path from ¬x to x in derived graph.

• Proof (⇐)
– edges represent implication ⇒. By transitivity 

of ⇒, a path from x to ¬x means x ⇒¬x, and 
a path from ¬x to x means ¬x ⇒ x.  
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Algorithm for 2SAT
• Proof (⇒)

– to construct a satisfying assign. (if no x with a 
path from x to ¬x and a path from ¬x to x):
• pick unassigned literal s with no path from s to ¬s 
• assign it TRUE, as well as all nodes reachable 

from it; assign negations of these literals FALSE
• note: path from s to t and s to ¬t implies path from 
¬t to ¬s and t to ¬s, implies path from s to ¬s

• note: path s to t (assigned FALSE) implies path 
from ¬t (assigned TRUE) to ¬s, so s already 
assigned at that point.
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Algorithm for 2SAT
• Algorithm:

– build derived graph
– for every pair x, ¬x check if there is a path 

from x to ¬x and from ¬x to x in the graph
• Running time of algorithm (input length n): 

– O(n) to build graph
– O(n) to perform each check
– O(n) checks
– running time O(n2). 2SAT ∈ P.
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Another puzzle
• Find an efficient algorithm to solve the 

following problem.
• Input: sequence of triples of symbols

e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
• Goal: determine if it is possible to circle at 

least one symbol in each triple without 
circling upper and lower case of same 
symbol.
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3SAT
• This is a disguised version of the language

3SAT = {formulas in Conjunctive Normal 
Form with 3 literals per clause for which 

there exists a satisfying truth assignment}
e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)

(x1∨¬x2∨x3) ∧( x5∨x4∨¬x2)∧(¬x4∨x1∨x3)∧(¬x3∨¬x2 ∨¬x1)

• observe that this language is in TIME(2n)
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Time Complexity
Key definition: “P” or “polynomial-time” is

P = ∪k ≥ 1 TIME(nk)
Definition: “EXP” or “exponential-time” is

EXP = ∪k ≥ 1 TIME(2nk)

decidable 
languages

P

EXP
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EXP
P = ∪k ≥ 1 TIME(nk)

EXP = ∪k ≥ 1 TIME(2nk)
• Note: P ⊆ EXP.
• We have seen 3SAT ∈ EXP. 

– does not rule out possibility that it is in P

• Is P different from EXP?
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Time Hierarchy Theorem
Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• Note: P ⊆TIME(2n) ⊆TIME(2(2n)3) ⊆EXP
• Most natural functions (and 2n in 

particular) are proper complexity functions. 
We will ignore this detail in this class. 
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Time Hierarchy Theorem
Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).
• Proof idea:

– use diagonalization to construct a language 
that is not in TIME(f(n)).

– constructed language comes with a TM that 
decides it and runs in time f(2n)3.
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