
1

CS21 
Decidability 
and 
Tractability

Lecture 17
February 12, 
2024

1

February 12, 2024 CS21 Lecture 17 2

Euclid’s Algorithm
on input <x, y>:
• (1) repeat until y = 0

• (2) set x = x mod y
• (3) swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Claim: value of x 
reduced by ½ at every 
execution of (2) except 
possibly first one.
Proof:
• after (2) x < y

• after (3) x > y
• if x/2 ≥ y, then x mod y 
< y ≤ x/2
• if x/2 < y, then x mod y 
= x – y < x/2

• every 2 times through loop, 
(x, y) each reduced by ½

• loops ≤ 2max{log2x, log2y} 
= O(n = |<x, y>|); poly time 
for each loop 

2

February 12, 2024

A puzzle
• Find an efficient algorithm to solve the 

following problem:
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (B, a)
• Goal: determine if it is possible to circle at 

least one symbol in each pair without 
circling upper and lower case of same 
symbol.

CS21 Lecture 17 3

3

February 12, 2024

A puzzle
• Find an efficient algorithm to solve the 

following problem.
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (b, a)
• Goal: determine if it is possible to circle at 

least one symbol in each pair without 
circling upper and lower case of same 
symbol.

CS21 Lecture 17 4

4

February 12, 2024

2SAT
• This is a disguised version of the language

2SAT = {formulas in Conjunctive Normal 
Form with 2 literals per clause for which 

there exists a satisfying truth assignment}
– CNF = “AND of ORs”

(A, b), (E, D), (d, C), (b, a)
(x1 ∨¬x2)∧(x5 ∨ x4)∧(¬x4 ∨ x3)∧(¬x2 ∨¬x1)
– satisfying truth assignment = assignment of 

TRUE/FALSE to each variable so that whole 
formula is TRUE 

CS21 Lecture 17 5

5

2SAT
Theorem: There is a polynomial-time 

algorithm deciding 2SAT (“2SAT ∈P”). 

Proof: algorithm described on next slides.

February 12, 2024 CS21 Lecture 17 6

6



2

February 12, 2024 CS21 Lecture 17 7

¬x2

¬x1
x4

x1

Algorithm for 2SAT
• Build a graph with separate nodes for 

each literal.
– add directed edge (x, y) iff formula includes 

clause (¬x ∨ y) (equiv. to x ⇒ y)

e.g. (x1 ∨¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨¬x1)
x5

¬x4

x3

x2

¬x5

¬x3

7

February 12, 2024 CS21 Lecture 17 8

Algorithm for 2SAT
Claim: formula is unsatisfiable iff there is 

some variable x with a path from x to ¬x 
and a path from ¬x to x in derived graph.

• Proof (⇐)
– edges represent implication ⇒. By transitivity 

of ⇒, a path from x to ¬x means x ⇒¬x, and 
a path from ¬x to x means ¬x ⇒ x.  

8

February 12, 2024 CS21 Lecture 17 9

Algorithm for 2SAT
• Proof (⇒)

– to construct a satisfying assign. (if no x with a 
path from x to ¬x and a path from ¬x to x):
• pick unassigned literal s with no path from s to ¬s 
• assign it TRUE, as well as all nodes reachable 

from it; assign negations of these literals FALSE
• note: path from s to t and s to ¬t implies path from 
¬t to ¬s and t to ¬s, implies path from s to ¬s

• note: path s to t (assigned FALSE) implies path 
from ¬t (assigned TRUE) to ¬s, so s already 
assigned at that point.

9

February 12, 2024 CS21 Lecture 17 10

Algorithm for 2SAT
• Algorithm:

– build derived graph
– for every pair x, ¬x check if there is a path 

from x to ¬x and from ¬x to x in the graph
• Running time of algorithm (input length n): 

– O(n) to build graph
– O(n) to perform each check
– O(n) checks
– running time O(n2). 2SAT ∈ P.

10

February 12, 2024 CS21 Lecture 17 11

Another puzzle
• Find an efficient algorithm to solve the 

following problem.
• Input: sequence of triples of symbols

e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
• Goal: determine if it is possible to circle at 

least one symbol in each triple without 
circling upper and lower case of same 
symbol.

11

February 12, 2024 CS21 Lecture 17 12

3SAT
• This is a disguised version of the language

3SAT = {formulas in Conjunctive Normal 
Form with 3 literals per clause for which 

there exists a satisfying truth assignment}
e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)

(x1∨¬x2∨x3) ∧( x5∨x4∨¬x2)∧(¬x4∨x1∨x3)∧(¬x3∨¬x2 ∨¬x1)

• observe that this language is in TIME(2n)

12



3

February 12, 2024 CS21 Lecture 17 13

Time Complexity
Key definition: “P” or “polynomial-time” is

P = ∪k ≥ 1 TIME(nk)
Definition: “EXP” or “exponential-time” is

EXP = ∪k ≥ 1 TIME(2nk)

decidable 
languages

P

EXP

13

February 12, 2024 CS21 Lecture 17 14

EXP
P = ∪k ≥ 1 TIME(nk)

EXP = ∪k ≥ 1 TIME(2nk)
• Note: P ⊆ EXP.
• We have seen 3SAT ∈ EXP. 

– does not rule out possibility that it is in P

• Is P different from EXP?

14

Time Hierarchy Theorem
Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• Note: P ⊆TIME(2n) ⊆TIME(2(2n)3) ⊆EXP
• Most natural functions (and 2n in 

particular) are proper complexity functions. 
We will ignore this detail in this class. 

February 12, 2024 CS21 Lecture 17 15

15

Time Hierarchy Theorem
Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).
• Proof idea:

– use diagonalization to construct a language 
that is not in TIME(f(n)).

– constructed language comes with a TM that 
decides it and runs in time f(2n)3.

February 12, 2024 CS21 Lecture 17 16

16


