

1

Universal TMs and encoding

- the input to a TM is always a string in Σ^{*}
- often we want to interpret the input as representing another object
- examples:
- tuple of strings (x, y, z)
- 0/1 matrix
- graph in adjacency-list format
- Context-Free Grammar

January 29, 2024
CS21 Lecture 11

3

Universal TMs and encoding

- some strings not valid encodings and these are not in the language

make sure TM can recognize invalid encodings and reject them

Universal TMs and encoding

- the input to a TM is always a string in Σ^{*}
- we must encode our input as such a string
- examples:
- tuples separated by \#: \#x\#y\#z
$-0 / 1$ matrix given by: \#n\#x\# where $x \in\{0,1\}^{n^{2}}$
- any reasonable encoding is OK
- emphasize "encoding of X " by writing <X>

January 29, 2024
CS21 Lecture 11

4

Universal TMs and encoding

- We can easily construct a Universal TM that recognizes the language:
$A_{T M}=\{<M, w>: M$ is a $T M$ and M accepts $w\}$ -how?
- this is a remarkable feature of TMs (not possessed by FA or NPDAs...)
- means there is a general purpose TM whose input can be a "program" to run

January 29, 2024

Church-Turing Thesis

- many other models of computation
- we saw multitape TM, nondeterministic TM
- others don't resemble TM at all
- common features:
- unrestricted access to unlimited memory
- finite amount of work in a single step
- every single one can be simulated by TM
- many are equivalent to a TM
- problems that can be solved by computer does not depend on details of model!

January 29, 2024
CS21 Lecture 11

7

Recursive Enumerability

- Why is "Turing-recognizable" called RE?
- Definition: a language $L \subseteq \Sigma^{*}$ is recursively enumerable if there is exists a TM (an "enumerator") that writes on its output tape

$$
\# x_{1} \# x_{2} \# x_{3} \# \ldots
$$

and $L=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.

- The output may be infinite

January 29, $2024 \quad$ CS21 Lecture 11

9

Recursive Enumerability

Theorem: A language is Turing-recognizable iff some enumerator enumerates it. Proof:
(\Rightarrow) Let M recognize language $L \subseteq \Sigma^{*}$.

- let $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots$ be enumeration of Σ^{*} in lexicographic order.
- for $i=1,2,3,4, \ldots$
- simulate M for i steps on $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots, \mathrm{~s}_{\mathrm{i}}$
- if any simulation accepts, print out that s_{j}

Church-Turing Thesis

- the belief that TMs formalize our intuitive notion of an algorithm is:

The Church-Turing Thesis

everything we can compute on a physical computer
can be computed on a Turing Machine

- Note: this is a belief, not a theorem.

January 29, 2024
CS21 Lecture 11

8

Recursive Enumerability

Theorem: A language is Turing-recognizable iff some enumerator enumerates it.

Proof:
(\Leftarrow) Let E be the enumerator. On input w:

- Simulate E. Compare each string it outputs with w .
- If w matches a string output by E, accept.

10

12

Countable and Uncountable Sets

- the natural numbers $\mathbf{N}=\{1,2,3, \ldots\}$ are countable
- Definition: a set S is countable if it is finite, or it is infinite and there is a bijection
f: $\mathbf{N} \rightarrow \mathrm{S}$

13

Countable and Uncountable Sets

Theorem: the real numbers \mathbf{R} are NOT countable (they are "uncountable").

- How do you prove such a statement?
- assume countable (so there exists bijection f)
- derive contradiction (some element not mapped to by f)
- technique is called diagonalization (Cantor)

Countable and Uncountable Sets

- Proof:
- suppose \mathbf{R} is countable
- list \mathbf{R} according to the bijection f :

n	$\mathrm{f}(\mathrm{n})$	
1	3.14159...	set $x=0 . a_{1} a_{2} a_{3} a_{4} \ldots$
2	5.55555...	where digit $\mathrm{a}_{\mathrm{i}} \neq \mathrm{i}^{\text {th }}$ digit after decimal point of $f(i)($ not 0,9$)$
3	0.12345...	e.g. $x=0.2312 \ldots$
4	0.50000...	x cannot be in the list!

Countable and Uncountable Sets

- Theorem: the positive rational numbers
$\mathrm{Q}=\{\mathrm{m} / \mathrm{n}: \mathrm{m}, \mathrm{n} \in \mathbf{N}\}$ are countable.
- Proof:

January 29, 2024
CS21 Lecture 11
14

Countable and Uncountable Sets

- Proof:
- suppose \mathbf{R} is countable
- list \mathbf{R} according to the bijection f :

1 3.14159...
2 5.55555...
3 0.12345...
$40.50000 \ldots$

January 29, 2024
CS21 Lecture 11

16

non-RE languages

Theorem: there exist languages that are not Recursively Enumerable.
Proof outline:

- the set of all TMs is countable
- the set of all languages is uncountable
- the function $\mathrm{L}:\{\mathrm{TMs}\} \rightarrow\{$ languages $\}$ cannot be onto

non-RE languages

- Lemma: the set of all TMs is countable.
- Proof:
- each TM M can be described by a finitelength string <M>
- can enumerate these strings, and give the natural bijection with \mathbf{N}

non-RE languages

- suppose the set of all languages is countable
- list characteristic vectors of all languages according to the bijection f:
\qquad
1 0101010...
2 1010011...
3 1110001...
4 0100011...

January 29, 2024
CS21 Lecture 11

21

So far...

- This language might be an esoteric, artificially constructed one. Do we care?
- We will show a natural undecidable L next.

non-RE languages

- Lemma: the set of all languages is uncountable
- Proof:
- fix an enumeration of all strings $\mathbf{s}_{1}, s_{2}, s_{3}, \ldots$ (for example, lexicographic order)
- a language L is described by its characteristic vector χ_{L} whose $\mathrm{i}^{\text {th }}$ element is 0 if s_{i} is not in L and 1 if s_{i} is in L

January 29, 2024
CS21 Lecture 11
20
20

non-RE languages

- suppose the set of all languages is countable
- list characteristic vectors of all languages according to the bijection f :

1010011...
1110001...
0100011...
set $x=1101 \ldots$
where ith digit \neq ith $^{\text {digit of }} \mathrm{f}(\mathrm{i})$
x cannot be in the list!
therefore, the language with characteristic vector x is not in the list

January 29, 2024
CS21 Lecture 11
22
22

The Halting Problem

- Definition of the "Halting Problem": HALT $=\{<M, x>:$ TM M halts on input $x\}$
- HALT is recursively enumerable.
- proof?
- Is HALT decidable?

