CS 153 Current topics in theoretical computer science

Spring 2022

Problem Set 2

Out: May 12
Due: May 27

Reminder: you are encouraged to work in small groups; however you must turn in your own writeup and note with whom you worked. You may consult any materials related to this course. The full honor code guidelines and collaboration policy can be found in the course syllabus.

Please attempt all problems. Please turn in a hard copy or email me your solutions.

1. Given a group G, a multiplicative matching of cardinality m in G is given by three sequences of group elements $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m}$ and $c_{1}, c_{2}, \ldots, c_{m}$, with the property that

$$
a_{i} b_{j} c_{k}=1 \quad \Leftrightarrow \quad i=j=k .
$$

Give a multiplicative matching in S_{n} of cardinality at $n!/ \exp (n)$. Hint: find a way to use the triangle TPP construction; use Stirling's approximation to help calculate the cardinality. You may take as given that the tensor $\langle n, n, n\rangle$ contains a diagonal of cardinality $c n^{2}$ for an absolute constant $c>0$.
2. Let $f: F_{p}^{n} \rightarrow F_{p}$ be a polynomial of total degree d. Set $N=p^{n}$ and define the matrix M_{f} to be the $N \times N$ matrix with $M[i, j]=f(i+j)$ (where $i, j \in F_{p}^{n}$).
(a) Give an example of a function f for which the matrix f for which M_{f} has full rank. Hint: your f will have total degree $(p-1) n$.
(b) Prove that in general, the rank of M_{f} is at most $2\left({ }_{n}^{d / 2+n}\right)$.
3. Recall that a two-families construction in an abelian group H consists of two families of subsets A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} with these properties:

- for all $i,\left|A_{i} B_{i}\right|=\left|A_{i}\right|\left|B_{i}\right|$, and
- for all i, and all $j \neq k,\left(A_{i}+B_{i}\right) \cap\left(A_{j}+B_{k}\right)=\emptyset$.

The "two-families" conjecture is that there is a sequence of groups H containing two-families constructions, for which $\left|A_{i}\right|=\left|B_{i}\right| \geq|H|^{1 / 2-o(1)}$ and $n \geq|H|^{1 / 2-o(1)}$. As we proved in class, this would imply $\omega=2$.
(a) Let H be an abelian group and recall that H is isomorphic to $\prod_{i} Z_{q_{i}}^{k_{i}}$, where the q_{i} are distinct prime powers. Given a two-families construction $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ in H, give a two-families construction $A_{1}^{\prime}, \ldots, A_{n}^{\prime}, B_{1}^{\prime}, \ldots, B_{n}^{\prime}$ in the H^{\prime}, the cyclic group of order $N=|H| \prod_{i} 2^{k_{i}}$, with matching sizes: i.e., $\left|A_{i}^{\prime}\right|=\left|A_{i}\right|$ and $\left|B_{i}^{\prime}\right|=\left|B_{i}\right|$.
(b) Show that that if $N=|H| \prod_{i} 2^{k_{i}}$ is greater than $|H|^{1+\delta}$ (for a constant $\delta>0$), then T_{H} (the tensor of H-multiplication) has slice-rank at most $|H|^{1-r(\delta)}$, where r is an increasing function of δ (i.e., as δ approaches zero, so does $r(\delta)$). You will want to use this theorem from class:

Theorem 2.1 If an abelian group H has a subgroup isomorphic to Z_{p}^{k} then T_{H} has slice-rank at most $|H| / c^{k}$ for an absolute constant $c>1$.
(c) You may recall from class that we showed that a two-families construction in H implies a STPP construction in H^{3}, and an STPP construction in H^{3} implies a multiplicative matching in H^{3}. Tracing through these constructions, we find that a two-families construction yielding the bound $\omega \leq 2+\delta$ implies a multiplicative matching in H^{3} of size at least $\left(|H|^{3}\right)^{1-c \delta}$, for an absolute constant $c>0$.
Prove that if the two-families conjecture is true for any sequence of abelian groups H, then the two-families conjecture is true for the sequence of groups $H=\mathrm{Cyc}_{N}$.

