CS 153 Current topics in theoretical computer science

Solution Set 2

Out: May 29

Please do not consult these solutions if you have not yet turned in the problem set!

1. Consider a $0 / 1$ matrix $n \times n$ matrix M with entries $M_{i, j}$. The function $g(M)$ defined by

$$
g(M)=\prod_{i, j, i^{\prime}, j^{\prime}: i=i^{\prime} \text { or } j=j^{\prime}}\left(1-M_{i, j} M_{i^{\prime}, j^{\prime}}\right)
$$

is 0 if there is any row or column of M with more than a single 1 in it, and 1 otherwise. The function $h(M)$ defined by

$$
h(M)=\prod_{i}\left(1-\prod_{j}\left(1-M_{i, j}\right)\right)
$$

is 0 if there is a row of all 0 's, and 1 otherwise. Together, $g(M) h(M)=1$ iff M is a permutation matrix.
Now, let $M^{k}[i, j]$ denote the (i, j) entry in the k-th power, M^{k}. Note that $M^{k}[i, j]$ is a polynomial of degree k in the entries $M_{i, j}$, which can be computed by an arithmetic circuit of polynomial size. A permutation matrix M represents an n-cycle iff $M^{k}[1,1]=0$ for $k=1,2, \ldots, n-1$. Using this, we see that

$$
f(M, X)=g(M) h(M) \prod_{k=1}^{n-1}\left(1-M^{k}[1,1]\right) \prod_{i, j} M_{i, j} X_{i, j}
$$

is equivalent to $\prod_{i} X_{i, \sigma(i)}$ when M represents the n-cycle permutation σ, and 0 otherwise. Thus

$$
\sum_{M \in\{0,1\}^{n \times n}} f(M, X)=\operatorname{HC}_{n}(X)
$$

which places HC in VNP.
2. Recall that a $M_{k}(f)$ is a lower bound on the noncommutative formula complexity of a polynomial f of degree n, where $M_{k}[i, j]$ for $i \in[n]^{k}$ and $j \in[n]^{n-k}$ is the coefficient on the monomial $X_{i_{1}} X_{i_{2}} \ldots X_{i_{k}} X_{j_{1}} X_{j_{2}} \ldots X_{j_{n-k}}$ in f.
Now consider $M_{k}\left(\operatorname{PERM}_{\mathrm{N}}\right)$, and recall that $\mathrm{PERM}_{\mathrm{N}}$ has variables $X_{a, b}$ for $a, b \in[n]$. All rows indexed by k-tuples $\left(a_{1}, b_{1}\right), \ldots\left(a_{k}, b_{k}\right)$ in which $\left(a_{1}, \ldots, a_{k}\right) \neq(1,2, \ldots k)$ or $\left(b_{1}, \ldots, b_{k}\right)$ has repeated entries are zero (since $X_{a_{1}, b_{1}}, \ldots, X_{a_{k}, b_{k}}$ is not a prefix of any monomial occurring in $\mathrm{PERM}_{\mathrm{N}}$). Similarly, columns indexed by $n-k$-tuples $\left(a_{1}, b_{1}\right), \ldots\left(a_{n-k}, b_{n-k}\right)$ in which $\left(a_{1}, \ldots, a_{n-k}\right) \neq(k+1, \ldots, n)$ or (b_{1}, \ldots, b_{n-k}) has repeated entries are zero (since $X_{a_{1}, b_{1}}, \ldots, X_{a_{n-k}, b_{n-k}}$ is not a suffix of any monomial occurring in PERM $_{\mathrm{N}}$). Thus the non-zero rows correspond to k-subsets of $[n]$ and the non-zero columns correspond to $(n-k)$-subsets
of $[n]$; the corresponding entry of M_{k} is 1 iff the row-subset and column-subset are disjoint. Thus M_{k} contains the I_{ℓ} for $\ell=\binom{n}{k}$ as a submatrix, and so its rank is at least $\binom{n}{k}$.
For DET_{n}, the same argument shows that the non-zero rows of $M_{k}\left(\mathrm{DET}_{\mathrm{N}}\right)$ correspond to k subsets of $[n]$ and the non-zero columns correspond to $(n-k)$-subsets of $[n]$; the corresponding entry of M_{k} is ± 1 iff the row-subset and column-subset are disjoint, and so the rank is again at least $\binom{n}{k}$.
3. (a) As in class, a monotone circuit for a degree n homogeneous polynomial f of size s implies that f can be written as

$$
f=\sum_{i=1}^{s} g_{i} h_{i}
$$

where $n / 3 \leq \operatorname{deg}\left(g_{i}\right) \leq 2 n / 3$ and $\operatorname{deg}\left(h_{i}\right)=n-\operatorname{deg}\left(g_{i}\right)$, and g_{i} and h_{i} have all nonnegative coefficients.
Let $f_{n}(X)$ be the perfect matching polynomial for graph G_{n}, and consider a particular $g_{i} h_{i}$. Let S be the vertices incident to edges mentioned in g_{i} and T be the vertices incident to edges mentioned in h_{i}. Each monomial in g_{i} must be a perfect matching on S and each monomial in h_{i} must be a perfect matching on T, and S, T must partition the vertices of G_{n}; otherwise a monomial appear in $g_{i} h_{i}$ that is not a perfect matching of G_{n}.
By the degree constraints on g_{i}, h_{i} we have that $|S|,|T|$ satisfy the conditions of the first lemma, which we will apply with t a large constant (say, 100), to obtain a set E^{\prime} of well-separated edges crossing the S, T cut.
For each edge $e \in E^{\prime}$, select a G_{22} subgraph that has the "distinguished vertex v " (from the second lemma) as an endpoint of e. By the well-separated-ness of E^{\prime}, these subgraphs are all vertex-disjoint.
Now, every perfect matching M of the whole graph G_{n} can be decomposed uniquely into (i) a matching M^{\prime} in G_{n} with no edges contained in any of the G_{22} subgraphs (but possibly including edges that touch the outer face of a G_{22} subgraph), and (ii) for each G_{22} subgraph, a perfect matching on the graph that remains after deleting the already-covered vertices on the outer face.
For each such matching M^{\prime}, we have by the second lemma, that the ratio of total perfect matchings within a G_{22} subgraph to perfect matchings within a G_{22} subgraph that exclude the $e \in E^{\prime}$ (that was used to select it) - of which there must be at least one since monomials of $g_{i} h_{i}$ are perfect matchings of G_{n} that exclude $E^{\prime}-$ is $c>1$. Thus the ratio of total perfect matchings that extend M^{\prime} to those that occur in $g_{i} h_{i}$ (and therefore exclude $\left.E^{\prime}\right)$ is $c^{\left|E^{\prime}\right|} \geq c^{\epsilon n}=\exp (n)$.
We conclude that a given $g_{i} h_{i}$ term contains monomials corresponding to only an exponentially small fraction of all perfect matchings, and thus s must be exponential in n, as desired.
(b) We prove that every $(+,-, \times)$ circuit of size s can be converted to one using only a single negation, of size $O(s)$. We then apply the fact that f_{n} is in VP.
The proof is by induction on the size of the circuit. If the original circuit is a single constant c or a variable X_{i}, then we replace it with $c-0$ if c is positive or $0-c$ if c is non-positive, or $X_{i}-0$ in the case of a variable.

Then, for a general circuit, if the top gate is computing $f=g+h$, then we have by induction monotone circuits computing $g^{\prime}, g^{\prime \prime}, h^{\prime}, h^{\prime \prime}$ such that $g=g^{\prime}-g^{\prime \prime}$ and $h=h^{\prime}-h^{\prime \prime}$. We then can write $f=f^{\prime}-f^{\prime \prime}$ with $f^{\prime}=g^{\prime}+h^{\prime}$ and $f^{\prime \prime}=g^{\prime \prime}+h^{\prime \prime}$.
Similarly, if the top gate is computing $f=g \times h$, then we have by induction monotone circuits computing $g^{\prime}, g^{\prime \prime}, h^{\prime}, h^{\prime \prime}$ such that $g=g^{\prime}-g^{\prime \prime}$ and $h=h^{\prime}-h^{\prime \prime}$ and we then can write $f=f^{\prime}-f^{\prime \prime}$ with $f^{\prime}=g^{\prime} h^{\prime}+g^{\prime \prime} h^{\prime \prime}$ and $f^{\prime \prime}=g^{\prime \prime} h^{\prime}+h^{\prime \prime} g^{\prime}$.
Finally, if the top gate is computing $f=g-h$, then we have by induction monotone circuits computing $g^{\prime}, g^{\prime \prime}, h^{\prime}, h^{\prime \prime}$ such that $g=g^{\prime}-g^{\prime \prime}$ and $h=h^{\prime}-h^{\prime \prime}$ and we then can write $f=f^{\prime}-f^{\prime \prime}$ with $f^{\prime}=g^{\prime \prime}+h^{\prime \prime}$ and $f^{\prime \prime}=g^{\prime}+h^{\prime}$.

