CS 153 Current topics in theoretical computer science
Spring 2012
Solution Set 1
Out: May 15

1. We use the substitution method. By setting $b_{1,1}=1$ and $b_{2,1}=0$, we see that some product of a 's and b 's depends on $a_{1,1}$; set $a_{1,1}$ to a linear form in the a 's that makes this product zero. Then by setting $b_{1,1}=0$ and $b_{2,1}=1$, we see that some product of a 's and b 's depends on $a_{1,2}$; set $a_{1,2}$ to a linear form in the a 's that makes this product zero. What remains still computes a 1×2 by 2×2 matrix multiplication. Since $\langle 1,2,2\rangle$ has 4 linearly independent slices, there must be at least 4 remaining slices.
2. Set $\alpha_{i}=\log _{\left|G_{i}\right|}\left(\left|X_{i}\right| \cdot\left|Y_{i}\right| \cdot\left|Z_{i}\right|\right)$. From a theorem proved in class, we have that for each i,

$$
\left(\left|X_{i}\right|\left|Y_{i}\right|\left|Z_{i}\right|\right)^{\omega / 3} \leq D_{i}^{\omega-2}\left|G_{i}\right| .
$$

Taking logs and dividing by $\log \left|G_{i}\right|$ we get

$$
\alpha_{i} \omega / 3 \leq(1 / 2-\epsilon)(\omega-2)+1
$$

Replacing α_{i} with its supremum, we get

$$
\omega / 2 \leq(1 / 2-\epsilon)(\omega-2)+1
$$

which simplifies to $\epsilon \omega \leq 2 \epsilon$, hence $\omega=2$.
3. Recall that we found three subsets X, Y, Z of S_{n} with $|X|=|Y|=|Z|=\left|S_{n}\right|^{1 / 2-o(1)}$. For each $y \in Y$, define:

$$
\begin{aligned}
& A_{y}=\left\{x y^{-1}: x \in X\right\} \\
& B_{y}=\left\{y z^{-1}: z \in Z\right\}
\end{aligned}
$$

Observe that $A_{y} B_{y}=\left\{x z^{-1}: x \in X, z \in Z\right\}$, and these must all be distinct; if we had $(x, z) \neq$ $\left(x^{\prime}, z^{\prime}\right)$ with $x z^{-1}=x^{\prime}\left(z^{\prime}\right)^{-1}$ then $\left(x^{\prime}\right)^{-1} x z^{-1} z^{\prime}=1$ which violates the triple product property (since $1 \in Q(Y)$). Also, if $A_{u} B_{u} \cap A_{y} B_{y^{\prime}}$ with $y \neq y^{\prime}$, then we have $x z^{-1}=x^{\prime} y^{-1} y^{\prime}\left(z^{\prime}\right)^{-1}$, and thus $x^{-1} x^{\prime} y^{-1} y^{\prime}\left(z^{\prime}\right)^{-1} z=1$, which violates the triple product property.
4. Such a table has three types of columns - columns containing only 1's and 2's, columns containing only 2 's and 3 's, and columns containing only 3 's and 1 's. Let n_{1}, n_{2}, n_{3} denote the number of each type of column. The number of distinct $1 / 2$ patterns is $2^{n_{1}}$, the number of distinct $2 / 3$ patterns is $2^{n_{2}}$ and the number of distinct $3 / 1$ patterns is $2^{n_{3}}$. If $N>2^{n_{1}} 2^{n_{2}}$ then by the pigeonhole principle, there are two rows with identical $1 / 2$ patterns in the $1 / 2$ columns and $2 / 3$ patterns in the $2 / 3$ columns. Thus these two rows have identical " 2 -sets", and thus the table is not a strong USP. Thus $N \leq 2^{n_{1}+n_{2}}$. Similarly, the fact that a USP can have no duplicate " 1 -sets" implies $N \leq 2^{n_{1}+n_{3}}$, and the fact that a USP can have no duplicate " 2 -sets" implies that $N \leq 2^{n_{2}+n_{3}}$. Thus $N^{3} \leq 2^{2\left(n_{1}+n_{2}+n_{3}\right)}=2^{2 n}$.
5. (a) Consider the matrix M with $M[i, j]=\omega^{i+j}$, where ω is a primitive n-th root of unity, and note that M has rank 1. Let J be the all-ones matrix (also rank 1). Then $M-I$ has rank at most 2 , and it has the same support as $J-I$, which has rank $n-1$.
(b) We first show that $R(T)=3$. Clearly it is at most 3 . Now suppose for the purpose of contradiction that a_{1} and a_{2} were spanned by two rank one slices b_{1} and b_{2}. It cannot be the case that both b_{1} and b_{2} have 0 in the upper left corner since then they would not span a_{1}. It cannot be the case that exactly one has a 0 in the upper left corner, because then that slice must equal a_{2} (which is not a rank one slice). So (after scaling) we must have

$$
b_{1}=\begin{array}{|c|c|}
\hline \hline & x \\
\hline y & x y \\
\hline
\end{array} \quad b_{2}=\begin{array}{|c|c|}
\hline 1 & s \\
\hline t & s t \\
\hline
\end{array}
$$

from which we get the equation:

$$
\left(\begin{array}{cc}
1 & 1 \\
x & s \\
y & t \\
x y & s t
\end{array}\right) \cdot M=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right)
$$

where M is a 2×2 matrix. Thus M must be full rank, and so $(y, t)=(x y, s t)$. This equation leaves us with four possibilities: (1) $y=0$ and $t=0$; (2) $y=0$ and $s=1$; (3) $x=1$ and $t=0 ;(4) x=1$ and $s=1$. In case (1) we have $(0,0) M=(0,1)$ from the third row of the linear system, a contradiction. In case (4) we have we have $(1,1) M=(1,0)$ from the first row of the linear system and $(1,1) M=(1,1)$ from the second row of the linear system, a contradiction. In case (2), we know that $M=(1,1 ; 0, t)^{-1}=$ $(1,-1 / t ; 0,1 / t)$ from the first and third rows. But then $(x, 1) M=(1,1)$ implies $x=1$, and this is a contradiction, since M has full rank (from the upper half of the linear system). Case (3) is symmetric; i.e., we know that $M=(1,1 ; y, 0)^{-1}=(0,1 / y ; 1,1 / y)$ from the first and third rows. But then $(1, s) M=(1,1)$ implies $s=1$, and this is a contradiction. We conclude that $R(T)>2$.
Finally, the pseudorank of T is 2 . Consider the slices

$$
b_{1}=\begin{array}{|l|l|}
\hline & 1 \\
\hline 0 & 0 \\
\hline
\end{array} b_{2}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 1 & 2 \\
\hline
\end{array}
$$

Note that a_{1} has the same support as b_{1} and a_{2} has the same support as $b_{2}-b_{1}$.

