

1

Hardness vs. randomness

- BMY pseudo-random generator:
- one generator fooling all poly-size bounds - one-way-permutation is hard function - implies hard function in NP \cap coNP
- New idea (Nisan-Wigderson): - for each poly-size bound, one generator
- hard function allowed to be in

$$
E=U_{k} \operatorname{DTIME}\left(2^{k n}\right)
$$

May 4,2023
CS151 Lecture 10 2

2

Comparison

BMY: $\forall \delta>0$ PRG G ${ }^{\delta}$	NW: PRG G
$\begin{array}{ll} \text { seed length } & \mathbf{t}=\mathrm{m}^{\bar{\delta}} \\ \text { running time } & \mathrm{t}^{\mathrm{c}} \mathrm{~m} \\ \text { output length } & \mathrm{m} \\ \text { error } & \varepsilon<1 / \text { had }^{\mathrm{d}}(\text { all d }) \\ \text { fooling size } & \mathrm{s}=\mathrm{m}^{\mathrm{e}}(\text { all e }) \end{array}$	$\begin{aligned} & \mathbf{t}=\mathrm{O}(\log \mathrm{~m}) \\ & \mathrm{m}^{c} \\ & \mathbf{m} \\ & \boldsymbol{\varepsilon}<\boldsymbol{\mathrm { vm }} \\ & \mathbf{s}=\mathrm{m} \end{aligned}$
May 4, 2023 CS151 Lecture 10	

3

NW PRG

- NW: for fixed constant $\delta, G=\left\{G_{n}\right\}$ with seed length $\quad \mathbf{t}=\mathrm{O}(\log n) \quad \mathbf{t}=\mathrm{O}(\log \mathrm{m})$ running time n^{c} output length $\mathbf{m}=n^{\delta}$ m
error
$m=n$
$\mathrm{s}=\mathrm{m}$
fooling size
- Using this PRG we obtain BPP = \mathbf{P}
- to fool size n^{k} use $G_{n / \delta}$
- running time $O\left(n^{k}+n^{c k / \delta}\right) 2^{t}=\operatorname{poly}(n)$ May 4, 2023 CS151 Lecture 10

4

NW PRG

- First attempt: build PRG assuming E contains unapproximable functions

Definition: The function family

$$
f=\left\{f_{n}\right\}, f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}
$$

is $\mathrm{s}(\mathrm{n})$-unapproximable if for every family of size $s(n)$ circuits $\left\{\mathrm{C}_{n}\right\}$:
$\operatorname{Pr}_{x}\left[C_{n}(x)=f_{n}(x)\right] \leq 1 / 2+1 / s(n)$.
May 4, 2023
CS151 Lecture 10 ${ }^{5}$

One bit

- Suppose $f=\left\{f_{n}\right\}$ is $s(n)$-unapproximable, for $s(n)=2^{\Omega(n)}$, and in E
- a "1-bit" generator family $G=\left\{G_{n}\right\}$:

$$
G_{n}(y)=y \circ f_{\log n}(y)
$$

- Idea: if not a PRG then exists a predictor that computes $f_{\log n}$ with better than $1 / 2+$ $1 / s(\log n)$ agreement; contradiction.

May 4, 2023
6

One bit	
- Suppose $f=\left\{f_{n}\right\}$ is $s(n)$-unapproximable, for $s(n)=2^{\text {бn }}$, and in E - a "1-bit" generator family $G=\left\{G_{n}\right\}$: $G_{n}(y)=y \circ f_{\log n}(y)$ - seed length $\mathbf{t}=\log \mathrm{n}$ - output length $\mathbf{m}=\log \mathrm{n}+1$ (want $\mathrm{n}^{\bar{\delta}}$) - fooling size $\mathbf{s} \approx \mathrm{s}(\log \mathrm{n})=\mathrm{n}^{\text {® }}$ - running time n^{c} - error $\varepsilon \approx 1 / s(\log n)=1 / n^{\delta}$	
May 4, 2023	${ }_{7}$

7

Many bits

- Try outputting many evaluations of f: $G(y)=f\left(b_{1}(y)\right) \circ f\left(b_{2}(y)\right) \circ \ldots \circ f\left(b_{m}(y)\right)$
- Seems that a predictor must evaluate $f\left(b_{i}(y)\right)$ to predict i-th bit
- Does this work?

May 4, 2023
CS151 Lecture 10
${ }^{8}$
8

Nearly-Disjoint Subsets

- Proof sketch:
- pick random ($\log \mathrm{n}$)-subset of $\{1 \ldots \mathrm{t}\}$
- set $t=O(\log n)$ so that expected overlap with a fixed S_{i} is $\varepsilon \log n / 2$
- probability overlap with S_{i} is $>\varepsilon \log n$ is at most $1 / n$
- union bound: some subset has required smal overlap with all S_{i} picked so far.
- find it by exhaustive search; repeat n times.

May 4, 2023
CS151 Lecture 10
12

13

The NW generator

Theorem (Nisan-Wigderson): $G=\left\{\mathrm{G}_{n}\right\}$ is a pseudo-random generator with:

- seed length $\mathbf{t}=\mathrm{O}(\log \mathrm{n})$
- output length $\mathbf{m}=\mathrm{n}^{\delta / 3}$
- running time $\mathrm{n}^{\text {c }}$
- fooling size $\mathbf{s}=m$
- error $\boldsymbol{\varepsilon}=1 / \mathrm{m}$

The NW generator
Theorem (Nisan-Wigderson): $G=\left\{G_{n}\right\}$ is a pseudo-random generator with: - seed length $\mathbf{t}=\mathrm{O}(\log \mathrm{n})$ - output length $\mathbf{m}=\mathrm{n}^{\delta / 3}$ - running time n^{c} - fooling size $\mathbf{s}=\mathrm{m}$ - error $\boldsymbol{\varepsilon}=1 / \mathrm{m}$
May 4,2023

14

The NW generator

- Proof:
- assume does not ε-pass statistical test $\mathrm{C}=$ $\left\{\mathrm{C}_{\mathrm{m}}\right\}$ of size s :

$$
\left|\operatorname{Pr}_{x}[C(x)=1]-\operatorname{Pr}_{y}\left[C\left(G_{n}(y)\right)=1\right]\right|>\varepsilon
$$

- can transform this distinguisher into a predictor P of size s ' $=\mathrm{s}+\mathrm{O}(\mathrm{m})$:
$\operatorname{Pr}_{y}\left[P\left(G_{n}(y)_{1} \ldots j-1\right)=G_{n}(y)\right]>1 / 2+\varepsilon / m$

May 4, 2023
CS151 Lecture 10
15

16

The NW generator
$G_{n}(y)=f_{\log n}\left(y_{\mid S_{1} 1}\right) \circ f_{\log n}\left(y_{\mid S_{2}}\right) \circ \ldots \circ f_{\log n}\left(y_{\mid S_{m}}\right)$ $\mathrm{f}_{\log n}: 010100101111101010111001010$

Proof (continued):
$-G_{n}\left(\alpha y^{\prime} \beta\right)_{i}$ is exactly $f_{\log n}\left(y^{\prime}\right)$

- for $\mathrm{j} \neq \mathrm{i}$, as vary $\mathrm{y}^{\prime}, \mathrm{G}_{\mathrm{n}}\left(\alpha \mathrm{y}^{\prime} \beta\right)_{\mathrm{j}}$ varies over 2^{a} values!
- hard-wire up to ($\mathrm{m}-1$) tables of 2^{a} values to provide $\mathrm{G}_{\mathrm{n}}\left(\alpha \mathrm{y}^{\prime} \beta\right)_{1 \ldots \mathrm{j}-1}$
May 4,2023
CS151 Lecture 10 ${ }^{17}$

17

The NW generator

18

Worst-case vs. Average-case

Theorem (NW): if E contains $2^{\Omega(n)}$-unapproximable functions then $B P=\mathbf{P}$

- How reasonable is unapproximability assumption?
- Hope: obtain BPP = P from worst-case complexity assumption
- try to fit into existing framework without new notion of "unapproximability"

мax 4,2023
CS15 L Ledure 10

19

Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan) If E contains functions that require size $2^{\Omega(n)}$ circuits, then E contains $2^{\Omega(n)}$-unapproximable functions.

- Proof:
- main tool: error correcting code

May 4, 2023
CS151 Lecture 10
${ }^{20}$
20

Error-correcting codes

- Error Correcting Code (ECC)
message $m \in \sum^{k}$

$$
\mathrm{C}: \Sigma^{\mathrm{k}} \rightarrow \Sigma^{\mathrm{n}}
$$

message $m \in \Sigma^{k}$

received word R
C(m)

- C(m) with some positions corrupted
- if not too many errors, can decode: $D(R)=m$
- parameters of interest
- rate: k/n
- distance

$$
d=\min _{m \neq m} \cdot \Delta\left(C(m), C\left(m^{\prime}\right)\right)
$$

May 4, 2023 CS151 Lecture 10

21

Distance and error correction

- C is an ECC with distance d
- can uniquely decode from up to [d/2] errors
ay 4,2023 CS151 Lecture 10

22

Distance and error correction

- can find short list of messages (one correct) after closer to d errors!

Theorem (Johnson): a binary code with distance $\left(1 / 2-\delta^{2}\right) n$ has at most $O\left(1 / \delta^{2}\right)$ codewords in any ball of radius ($1 / 2-\delta$)n.

May 4, 2023
CS151 Lecture 10 ${ }^{23}$
23

Example: Reed-Solomon

- alphabet $\Sigma=F_{q}$: field with q elements
- message $m \in \Sigma^{k}$
- polynomial of degree at most k -1

$$
p_{m}(x)=\Sigma_{i=0 \ldots k-1} m_{i} x^{i}
$$

- codeword $C(m)=\left(p_{m}(x)\right)_{x \in F_{q}}$
- rate = k/q

May 4, 2023
CS151 Lecture 10
${ }^{24}$
24

Example: Reed-Solomon

- Claim: distance $\mathrm{d}=\mathrm{q}-\mathrm{k}+1$
- suppose $\Delta\left(C(m), C\left(m^{\prime}\right)\right)<q-k+1$
- then there exist polynomials $p_{m}(x)$ and $p_{m}(x)$ that agree on more than $k-1$ points in F_{q}
- polnomial $p(x)=p_{m}(x)-p_{m^{\prime}}(x)$ has more than $\mathrm{k}-1$ zeros
- but degree at most $k-1 . .$.
- contradiction.

May 4,2023
CS151 Lecture 10
25
25

Example: Reed-Muller

- Parameters: t (dimension), h (degree)
- alphabet $\Sigma=F_{q}$: field with q elements
- message $m \in \Sigma^{k}$
- multivariate polynomial of total degree at most h:

$$
p_{m}(x)=\sum_{i=0 \ldots k-1} m_{i} M_{i}
$$

$\left\{M_{i}\right\}$ are all monomials of degree $\leq h$ May 4, 2023

CS151 Lecture 10
${ }^{26}$
26

Example: Reed-Muller

- M_{i} is monomial of total degree h
- e.g. $x_{1}{ }^{2} x_{2} x_{4}{ }^{3}$
- need \# monomials ($\mathrm{h}+\mathrm{t}$ choose t) $>\mathrm{k}$
- codeword $\left.C(m)=\left(p_{m}(x)\right)_{x \in\left(F_{q}\right)}\right)^{t}$
- rate $=k / q^{t}$
- Claim: distance d = (1-h/q) q^{\dagger}
- proof: Schwartz-Zippel: polynomial of degree h can have at most h / q fraction of zeros
мay 4, 2023

27

Codes and hardness

- Reed-Solomon (RS) and Reed-Muller (RM) codes are efficiently encodable
- efficient unique decoding?
- yes (classic result)
- efficient list-decoding?
- yes (RS on problem set)

May 4,2023
CS151 Lecture 10
28

Codes and Hardness

- Use for worst-case to average case: truth table of $\mathrm{f}:\{0,1\}^{\log \mathrm{k}} \rightarrow\{0,1\}$
(worst-case hard)

truth table of $f^{\prime}:\{0,1\}^{\log n} \rightarrow\{0,1\}$ (average-case hard)
 May 4, 2023

29

Codes and Hardness

- if $\mathrm{n}=\mathrm{poly}(\mathrm{k})$ then
$f \in E$ implies $f^{\prime} \in E$
- Want to be able to prove:
if f^{\prime} is s'-approximable,
then f is computable by a size s = poly(s') circuit

May 4, 2023
CS151 Lecture 10

Codes and Hardness

- Key: circuit C that approximates f^{\prime} implicitly gives received word R

Enc(m): 0
- Decoding procedure D "computes" f exactly
 - Requires special - Requires special decoding
May 4,2023 ${ }^{31}$

32

Encoding

- use a (variant of) Reed-Muller code concatenated with the Hadamard code
-q (field size), t (dimension), h (degree)
- encoding procedure:
- message $m \in\{0,1\}^{k}$ \qquad so, need $h^{\mathrm{t}} \geq \mathrm{k}$
- subset $S \subseteq F_{q}$ of size h
- efficient 1-1 function Emb: $[k] \rightarrow S^{t}$
- find coeffs of degree h polynomial $p_{m}: F_{q}{ }^{\dagger} \rightarrow F_{q}$ for which $p_{m}(E \mathrm{Emb}(\mathrm{i}))=\mathrm{m}_{\mathrm{i}}$ for all i (linear algebra)
may 4, 2023
CS151 Lecture 10
33

Encoding

- encoding procedure (continued):
- Hadamard code Had: $\{0,1\}^{\log q} \rightarrow\{0,1\}^{q}$
- = Reed-Muller with field size 2, dim. $\log \mathrm{q}$, deg. 1
- distance $1 / 2$ by Schwartz-Zippel
- final codeword: $\left(\operatorname{Had}\left(p_{m}(\mathbf{x})\right)\right)_{x \in F_{q}}$
- evaluate p_{m} at all points, and encode each evaluation with the Hadamard code

May 4,2023
CS151 Lecture 10
34
34

35

Decoding

- small circuit C computing R , agreement $1 / 2+\delta$

- Decoding step 1

- produce circuit C' from C
- given $\mathbf{x} \in \mathrm{F}_{\mathrm{q}}{ }^{\mathrm{t}}$ outputs "guess" for $\mathrm{p}_{\mathrm{m}}(\mathbf{x})$
- C' computes $\{z$: $\operatorname{Had}(z)$ has agreement $1 / 2+\delta / 2$ with x-th block\}, outputs random z in this set

May 4, 2023
CS151 Lecture 10
36

Decoding

- Decoding step 1 (continued):
- for at least $\delta / 2$ of blocks, agreement in block is at least $1 / 2+\delta / 2$
- Johnson Bound: when this happens, list size is $S=O\left(1 / \delta^{2}\right)$, so probability C^{\prime} correct is $1 / \mathrm{S}$
- altogether:
- $\operatorname{Pr}_{x}\left[C^{\prime}(x)=p_{m}(x)\right] \geq \Omega\left(\delta^{3}\right)$
- C' makes q queries to C
- C' runs in time poly(q)

May 4, 2023
CS151 Lecture 10
37

Decoding

$\mathrm{p}_{\mathrm{m}}:$| 5 | 2 | 7 | 1 | 1 | 2 | 9 | 0 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- small circuit C' computing R', agreement $\delta^{\prime}=\Omega\left(\delta^{3}\right)$
- Decoding step 2
- produce circuit C" from C'
- given $\mathbf{x} \in \operatorname{emb}(1,2, \ldots, k)$ outputs $p_{m}(\mathbf{x}$
- idea: restrict p_{m} to a random curve; apply efficient R-S list-decoding; fix "good" random choices

May 4, 2023
CS151 Lecture 10
${ }^{38}$
38

Restricting to a curve

- points $x=\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{r} \in F_{q}{ }^{t}$ specify a degree r curve $L: F_{q} \rightarrow F_{q}{ }^{t}$ - $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{r}}$ are distinct
elements of F_{q}
- for each $\mathrm{i}, \mathrm{L}_{\mathrm{i}}: \mathrm{F}_{\mathrm{q}} \rightarrow \mathrm{F}_{\mathrm{q}}$
is the degree r poly for which
$\mathrm{L}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{j}}\right)=\left(\alpha_{\mathrm{j}} \mathrm{j}_{\mathrm{i}}\right.$ for all j
- Write $p_{m}(L(z))$ to mean
$p_{m}\left(L_{1}(z), L_{2}(z), \ldots, L_{t}(z)\right)$
- $p_{\mathrm{m}}\left(\mathrm{L}\left(\mathrm{w}_{\mathrm{i}}\right)\right)=\mathrm{p}_{\mathrm{m}}(\mathrm{x})$
may 4,2023

