

NW PRG

- Using this PRG we obtain BPP = P

 to fool size n^k use G_nk/δ

 $- \text{running time } O(n^k + n^{ck/\delta})2^t = poly(n)$ May 4, 2023 CS151 Lecture 10

NW PRG • First attempt: build PRG assuming **E** contains **unapproximable** functions **Definition**: The function family $f = \{f_n\}, f_n: \{0,1\}^n \rightarrow \{0,1\}$ is s(n)-unapproximable if for every family of size s(n) circuits $\{C_n\}$: $Pr_x[C_n(x) = f_n(x)] \le \frac{1}{2} + \frac{1}{s(n)}$.

CS151 Lecture 10

May 4, 2023

5

One bit

- Suppose f = {f_n } is s(n)-unapproximable, for s(n) = $2^{\Omega(n)},$ and in E
- a "1-bit" generator family G = {G_n}:

$G_n(y) = y \circ f_{\log n}(y)$

• Idea: if not a PRG then exists a predictor that computes $f_{log n}$ with better than $\frac{1}{2}$ + $\frac{1}{s}(log n)$ agreement; contradiction.

CS151 Lecture 10

May 4, 2023

4

• Try outputting many evaluations of f: $G(y) = f(b_1(y)) \circ f(b_2(y)) \circ \ldots \circ f(b_m(y))$

• Seems that a predictor must evaluate f(b_i(y)) to predict i-th bit

CS151 Lecture 10

• Does this work?

8

- Try outputting many evaluations of f: $G(y) = f(b_1(y)) \circ f(b_2(y)) \circ \ldots \circ f(b_m(y))$
- predictor might notice correlations without having to compute f
- but, more subtle argument works for a specific choice of b₁...b_m

CS151 Lecture 10

9

9

May 4, 2023

8

11

Nearly-Disjoint Subsets

 $\label{eq:linear_line$

CS151 Lecture 10

10

11

May 4, 2023

 $\begin{array}{c} \textbf{The NW generator} \\ \textbf{G}_n(y)=f_{\log n}(y_{|S_1}) \circ f_{\log n}(y_{|S_2}) \circ \ldots \circ f_{\log n}(y_{|S_m}) \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100111111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100111111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100111111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100111111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010010111111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010010111111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100101111110010111001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100101111110010111001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100101111110010111001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010010111110010111001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010001111110010111001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000111110010111001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100011111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100011111001011001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100011111001010100}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10100011110001010}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000111000100}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000111000100} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000111000100}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000111000100}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000110}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O1010000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O101000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O100000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O100000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O100000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O100000}} \\ \textbf{f}_{\log n}: \underbrace{\textbf{O10000}} \\ \textbf$

 $\label{eq:constraints} \frac{\mbox{Theorem}}{\mbox{If E contains functions that require size}} If E contains functions that require size $2^{\Omega(n)}$ circuits, then E contains $2^{\Omega(n)}$-unapproximable functions.}$

Proof:

- main tool: error correcting code

May 4, 2023 CS151 Lecture 10

20

21

20

23

Distance and error correction

• can find **short list** of messages (one correct) after closer to d errors!

<u>Theorem</u> (Johnson): a binary code with distance $(\frac{1}{2} - \delta^2)n$ has at most $O(1/\delta^2)$ codewords in any ball of radius $(\frac{1}{2} - \delta)n$.

CS151 Lecture 10

May 4, 2023

23

- $p_m(x) = \sum_{i=0...k-1} m_i x^i$
- codeword $C(m) = (p_m(x))_x \in F_q$

rate = k/q

May 4, 2023 CS151 Lecture 10

24

28

- yes (RS on problem set) May 4, 2023 CS151 Lecture 10

• Use for worst-case to average case: truth table of f: $\{0,1\}^{\log k} \rightarrow \{0,1\}$ (worst-case hard) m: 0 1 1 0 0 0 1 0 truth table of $f': \{0,1\}^{\log n} \rightarrow \{0,1\}$ (average-case hard) Enc(m): 0 1 1 0 0 0 1 0 0 0 1 0 CS151 Lecture 10 May 4, 2023 29 29

Codes and Hardness

Codes and Hardness if n = poly(k) then $f \in E$ implies $f' \in E$ • Want to be able to prove: if f' is s'-approximable, then f is computable by a size s = poly(s') circuit CS151 Lecture 10 May 4, 2023 30

30

28

