
1

Lecture10
May 4, 2023

1

May 4, 2023

Hardness vs. randomness

• BMY pseudo-random generator:
– one generator fooling all poly-size bounds
– one-way-permutation is hard function
– implies hard function in NP ∩ coNP

• New idea (Nisan-Wigderson):
– for each poly-size bound, one generator
– hard function allowed to be in

E = ∪k DTIME(2kn)

2CS151 Lecture 10

2

May 4, 2023

Comparison

BMY: ∀ δ > 0 PRG Gδ NW: PRG G

seed length t = mδ t = O(log m)
running time tcm mc

output length m m
error ε < 1/md (all d) ε < 1/m
fooling size s = me (all e) s = m

<< >

3CS151 Lecture 10

3

May 4, 2023

NW PRG

• NW: for fixed constant δ, G = {Gn} with
seed length t = O(log n) t = O(log m)
running time nc mc

output length m = nδ m
error ε < 1/m
fooling size s = m

• Using this PRG we obtain BPP = P
– to fool size nk use Gnk/δ

– running time O(nk + nck/δ)2t = poly(n)
4CS151 Lecture 10

4

May 4, 2023

NW PRG
• First attempt: build PRG assuming E

contains unapproximable functions

Definition: The function family
f = {fn}, fn:{0,1}n → {0,1}

is s(n)-unapproximable if for every family
of size s(n) circuits {Cn}:

Prx[Cn(x) = fn(x)] ≤ ½ + 1/s(n).

5CS151 Lecture 10

5

May 4, 2023

One bit

• Suppose f = {fn } is s(n)-unapproximable,
for s(n) = 2Ω(n), and in E

• a “1-bit” generator family G = {Gn}:
Gn(y) = y◦flog n(y)

• Idea: if not a PRG then exists a predictor
that computes flog n with better than ½ +
1/s(log n) agreement; contradiction.

6CS151 Lecture 10

6

2

May 4, 2023

One bit

• Suppose f = {fn } is s(n)-unapproximable,
for s(n) = 2δn, and in E

• a “1-bit” generator family G = {Gn}:
Gn(y) = y◦flog n(y)

– seed length t = log n
– output length m = log n + 1 (want nδ)
– fooling size s ≈ s(log n) = nδ

– running time nc

– error ε ≈ 1/s(log n) = 1/nδ

7CS151 Lecture 10

7

May 4, 2023

Many bits

• Try outputting many evaluations of f:
G(y) = f(b1(y))◦f(b2(y))◦…◦f(bm(y))

• Seems that a predictor must evaluate
f(bi(y)) to predict i-th bit

• Does this work?

8CS151 Lecture 10

8

May 4, 2023

Many bits

• Try outputting many evaluations of f:
G(y) = f(b1(y))◦f(b2(y))◦…◦f(bm(y))

• predictor might notice correlations without
having to compute f

• but, more subtle argument works for a
specific choice of b1…bm

9CS151 Lecture 10

9

May 4, 2023

Nearly-Disjoint Subsets

Definition: S1,S2,…,Sm ⊆ {1…t} is an (h, a)
design if
– for all i, |Si| = h
– for all i ≠ j, |Si ∩ Sj| ≤ a

{1..t}

S1

S2

S3

10CS151 Lecture 10

10

May 4, 2023

Nearly-Disjoint Subsets

Lemma: for every ε > 0 and m < n can in
poly(n) time construct an

(h = log n, a = εlog n) design
S1,S2,…,Sm ⊆ {1…t} with t = O(log n).

11CS151 Lecture 10

11

May 4, 2023

Nearly-Disjoint Subsets

• Proof sketch:
– pick random (log n)-subset of {1…t}
– set t = O(log n) so that expected overlap with

a fixed Si is εlog n/2
– probability overlap with Si is > εlog n is at

most 1/n
– union bound: some subset has required small

overlap with all Si picked so far…
– find it by exhaustive search; repeat n times.

12CS151 Lecture 10

12

3

May 4, 2023

The NW generator

• f ∈ E s(n)-unapproximable, for s(n) = 2δn

• S1,…,Sm ⊆ {1…t} (log n, a = δlog n/3)
design with t = O(log n)

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

010100101111101010111001010flog n:

seed y

13CS151 Lecture 10

13

May 4, 2023

The NW generator

Theorem (Nisan-Wigderson): G={Gn} is a
pseudo-random generator with:

– seed length t = O(log n)
– output length m = nδ/3

– running time nc

– fooling size s = m
– error ε = 1/m

14CS151 Lecture 10

14

May 4, 2023

The NW generator

• Proof:
– assume does not ε-pass statistical test C =

{Cm} of size s:
|Prx[C(x) = 1] – Pry[C(Gn(y)) = 1]| > ε

– can transform this distinguisher into a
predictor P of size s’ = s + O(m):

Pry[P(Gn(y)1…i-1) = Gn(y)i] > ½ + ε/m

15CS151 Lecture 10

15

May 4, 2023

The NW generator

• Proof (continued):
Pry[P(Gn(y)1…i-1) = Gn(y)i] > ½ + ε/m

– fix bits outside of Si to preserve advantage:
Pry’[P(Gn(𝛼y’𝛽)1…i-1) = Gn(𝛼y’𝛽)i] > ½ + ε/m

𝛽𝛼

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

010100101111101010111001010flog n:

y ’ Si

16CS151 Lecture 10

16

May 4, 2023

𝛼 𝛽

The NW generator

• Proof (continued):
– Gn(𝛼y’𝛽)i is exactly flog n(y’)
– for j ≠ i, as vary y’, Gn(𝛼y’𝛽)j varies over 2a values!

– hard-wire up to (m-1) tables of 2a values to provide
Gn(𝛼y’𝛽)1…i-1

010100101111101010111001010flog n:

y ’ Si

17

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

CS151 Lecture 10

17

May 4, 2023

The NW generator

010100101111101010111001010flog n:

P

output
flog n(y ’)

y’

• size m + O(m) + (m-1)2a

< s(log n) = nδ

• advantage ε/m=1/m2 >
1/s(log n) = n-δ

• contradiction hardwired tables

18

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

CS151 Lecture 10

18

4

May 4, 2023

Worst-case vs. Average-case

Theorem (NW): if E contains 2Ω(n)-unapp-
roximable functions then BPP = P.

• How reasonable is unapproximability
assumption?

• Hope: obtain BPP = P from worst-case
complexity assumption
– try to fit into existing framework without new

notion of “unapproximability”

19CS151 Lecture 10

19

May 4, 2023

Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan)

If E contains functions that require size
2Ω(n) circuits, then E contains 2Ω(n) –unapp-
roximable functions.

• Proof:
– main tool: error correcting code

20CS151 Lecture 10

20

May 4, 2023

Error-correcting codes
• Error Correcting Code (ECC):

C:Σk → Σn

• message m ∈ Σk

• received word R
– C(m) with some positions corrupted

• if not too many errors, can decode: D(R) = m
• parameters of interest:

– rate: k/n
– distance:

d = minm≠m ’Δ(C(m), C(m’))

C(m) R

21CS151 Lecture 10

21

May 4, 2023

Distance and error correction

• C is an ECC with distance d
• can uniquely decode from up to
⌊d/2⌋ errors

Σn

d

22CS151 Lecture 10

22

May 4, 2023

Distance and error correction

• can find short list of messages (one
correct) after closer to d errors!

Theorem (Johnson): a binary code with
distance (½ - δ2)n has at most O(1/δ2)
codewords in any ball of radius (½ - δ)n.

23CS151 Lecture 10

23

May 4, 2023

Example: Reed-Solomon

• alphabet Σ = Fq : field with q elements
• message m ∈ Σk

• polynomial of degree at most k-1
pm(x) = Σi=0…k-1 mixi

• codeword C(m) = (pm(x))x ∈ Fq

• rate = k/q

24CS151 Lecture 10

24

5

May 4, 2023

Example: Reed-Solomon

• Claim: distance d = q – k + 1
– suppose Δ(C(m), C(m’)) < q – k + 1
– then there exist polynomials pm(x) and pm’(x)

that agree on more than k-1 points in Fq

– polnomial p(x) = pm(x) - pm’(x) has more than
k-1 zeros

– but degree at most k-1…
– contradiction.

25CS151 Lecture 10

25

May 4, 2023

Example: Reed-Muller

• Parameters: t (dimension), h (degree)
• alphabet Σ = Fq : field with q elements

• message m ∈ Σk

• multivariate polynomial of total degree at
most h:

pm(x) = Σi=0…k-1 miMi

{Mi} are all monomials of degree ≤ h
26CS151 Lecture 10

26

May 4, 2023

Example: Reed-Muller

• Mi is monomial of total degree h
– e.g. x12x2x43

– need # monomials (h+t choose t) > k
• codeword C(m) = (pm(x))x ∈ (Fq)t

• rate = k/qt

• Claim: distance d = (1 - h/q)qt

– proof: Schwartz-Zippel: polynomial of degree
h can have at most h/q fraction of zeros

27CS151 Lecture 10

27

May 4, 2023

Codes and hardness

• Reed-Solomon (RS) and Reed-Muller
(RM) codes are efficiently encodable

• efficient unique decoding?
– yes (classic result)

• efficient list-decoding?
– yes (RS on problem set)

28CS151 Lecture 10

28

May 4, 2023

Codes and Hardness

• Use for worst-case to average case:
truth table of f:{0,1}log k → {0,1}

(worst-case hard)

truth table of f’:{0,1}log n → {0,1}
(average-case hard)

0 1 0 01 0 1 0m:

0 1 0 01 0 1 0Enc(m): 0 00 1 0

29CS151 Lecture 10

29

May 4, 2023

Codes and Hardness

• if n = poly(k) then
f ∈ E implies f’ ∈ E

• Want to be able to prove:
if f’ is s’-approximable,

then f is computable by a
size s = poly(s’) circuit

30CS151 Lecture 10

30

6

May 4, 2023

Codes and Hardness

• Key: circuit C that approximates f’ implicitly
gives received word R

• Decoding procedure D “computes” f
exactly

0 1 1 00 0 1 0R: 0 10 0 0

0 1 0 01 0 1 0Enc(m): 0 00 1 0

D C
• Requires special
notion of efficient
decoding

31CS151 Lecture 10

31

May 4, 2023

Codes and Hardness

0 1 0 01 0 1 0m:

0 1 0 01 0 1 0Enc(m): 0 00 1 0

0 1 1 00 0 1 0R: 0 10 0 0

D
C

f:{0,1}log k → {0,1}

f ’:{0,1}log n → {0,1}

small circuit C
approximating f’

decoding
procedure

i ∈ {0,1}log k

small circuit
that computes
f exactly

f(i)
32CS151 Lecture 10

32

May 4, 2023

Encoding

• use a (variant of) Reed-Muller code
concatenated with the Hadamard code
– q (field size), t (dimension), h (degree)

• encoding procedure:
– message m ∈ {0,1}k

– subset S ⊆ Fq of size h

– efficient 1-1 function Emb: [k] → St

– find coeffs of degree h polynomial pm:Fqt → Fq
for which pm(Emb(i)) = mi for all i (linear algebra)

so, need ht ≥ k

33CS151 Lecture 10

33

May 4, 2023

Encoding

• encoding procedure (continued):
– Hadamard code Had:{0,1}log q → {0,1}q

• = Reed-Muller with field size 2, dim. log q, deg. 1
• distance ½ by Schwartz-Zippel

– final codeword: (Had(pm(x)))x ∈ Fqt

• evaluate pm at all points, and encode each
evaluation with the Hadamard code

34CS151 Lecture 10

34

May 4, 2023

Encoding
0 1 0 01 0 1 0m:

Emb: [k] → St

St

Fq
t

pm degree h
polynomial with
pm(Emb(i)) = mi

5 7 2 92 1 0 3 8 36

0 1 0 0 1 0 1 0

evaluate at
all x ∈ Fq

t

encode each symbol
with
Had:{0,1}log q→{0,1}q

35CS151 Lecture 10

35

May 4, 2023

Decoding

• small circuit C computing R, agreement ½ + 𝛿
• Decoding step 1

– produce circuit C’ from C
• given x ∈ Fq

t outputs “guess” for pm(x)
• C’ computes {z : Had(z) has agreement ½ + 𝛿/2

with x-th block}, outputs random z in this set

0 1 0 01 0 1 0Enc(m): 0 00 1

0 1 1 00 0 1 0R: 0 10 0

36CS151 Lecture 10

36

7

May 4, 2023

Decoding

• Decoding step 1 (continued):
– for at least 𝛿/2 of blocks, agreement in block

is at least ½ + 𝛿/2
– Johnson Bound: when this happens, list size

is S = O(1/𝛿2), so probability C’ correct is 1/S
– altogether:

• Prx[C’(x) = pm(x)] ≥ Ω(𝛿3)
• C’makes q queries to C
• C’ runs in time poly(q)

37CS151 Lecture 10

37

May 4, 2023

Decoding

• small circuit C’ computing R’, agreement 𝛿’ = Ω(𝛿3)
• Decoding step 2

– produce circuit C’’ from C’
• given x ∈ emb(1,2,…,k) outputs pm(x)
• idea: restrict pm to a random curve; apply efficient

R-S list-decoding; fix “good” random choices

5 7 2 92 1 0 3 8 36pm:

5 7 6 99 1 0 3R’: 8 16

38CS151 Lecture 10

38

May 4, 2023

Restricting to a curve

– points x=𝛼1, 𝛼2, 𝛼3, …, 𝛼r ∈ Fqt specify a
degree r curve L : Fq → Fqt

• w1, w2, …, wr are distinct
elements of Fq

• for each i, Li :Fq → Fq

is the degree r poly for which
Li(wj) = (𝛼j)i for all j

• Write pm(L(z)) to mean
pm(L1(z), L2(z), …, Lt(z))

• pm(L(w1)) = pm(x)
degree r⋅h⋅t univariate poly

x=𝛼1

𝛼2

𝛼3

𝛼r

39CS151 Lecture 10

39

