CS151
Complexity Theory

Lecture 7
April 20, 2004

Outline

« 3 examples of the power of
randomness

—communication complexity
—polynomial identity testing
—complexity of finding unique solutions

« randomized complexity classes
» Adelman’s Theorem

April 20, 2004 CS151 Lecture 7

Communication complexity

two parties: Alice and Bob
function f:{0,1}" x {0,1}" - {0,1}
Alice holds x [0{0,1}"; Bob holds y (0 {0,1}"

* Goal: compute f(x, y) while communicating as
few bits as possible between Alice and Bob

¢ count number of bits exchanged (computation free)

« at each step: one party sends bits that are a
function of held input and received bits so far
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Communication complexity

simple function (equality):
EQ(x,y)=1liffx=y

 simple protocol:
— Alice sends x to Bob (n bits)

— Bob sends EQ(X, y) to Alice (1 bit)
—total: n + 1 bits

— (works for any predicate f)
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Communication complexity

« Can we do better?
— deterministic protocol?
— probabilistic protocol?

« at each step: one party sends bits that are
a function of held input and received bits so
far and the result of some coin tosses

« required to output f(x, y) with high
probability over all coin tosses
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Communication complexity

Theorem: no deterministic protocol can

compute EQ(X, y) while exchanging fewer
than n+1 bits.

Y ={01}"

* Proof:
— “input matrix”: m]

X = {0,1)r /

fixy) —1
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Communication complexity

—assume without loss of generality 1 bit sent at

atime
— A sends 1 bit depending only on x:
Y ={0,1)"
inputs x causing
Atosendl
X ={0,1} -
inputs x causing
A to send O
-
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Communication complexity

— B sends 1 bit depending only on y and

received bit:
Y ={0,1}n
inputs y causing
B tosend1
X={01} —

inputs y causing
B to send 0
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Communication complexity

— at end of protocol involving k bits of
communication, matrix is partitioned into at
most 2k combinatorial rectangles

— bits sent in protocol are the same for every
input (x, y) in given rectangle

— conclude: f(x,y) must be constant on each
rectangle
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Communication complexity

Y ={01}n

Matrix for EQ:

X={01}

— any partition into combinatorial rectangles with
constant f(x,y) must have 2" + 1 rectangles

— protocol that exchanges < n bits can only create 2"
rectangles, so must exchange at least n+1 bits.
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Communication complexity

« protocol for EQ employing randomness?

— Alice picks random prime p in {1...4n%}, sends:
°p
* (xmod p)

— Bob sends:
* (y mod p)

— players output 1 if and only if:

(x mod p) = (y mod p)
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Communication complexity

— O(log n) bits exchanged

—if x =y, always correct

—if x #y, incorrect if and only if:
p divides |x —y|

—# primes in range is = 2n

—# primes dividing [x —y|is<n

— probability incorrect £ 1/2

Randomness gives an exponential advantage!!
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Polynomial identity testing

 Given: polynomial p(x;, X,, .., X,) over
field F
* Is p identically zero?

—i.e.,isp(x)=0forallx OF"
— (assume |F| larger than degree...)

* “polynomial identity testing” because given
two polynomials p, g, we can check the
identity p = g by checking if (p —q) =0
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Polynomial identity testing

* polynomial p(x,, X,, ..., X,) given as
arithmetic circuit:

« multiplication (fan-in 2) NG
+ *

« addition (fan-in 2) NN
A N |
X; X, X3 .. X

* negation (fan-in 1)

n
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Polynomial identity testing

e try all |F|"inputs?
—may be exponentially many

¢ multiply out symbolically, check that all
coefficients are zero?

—may be exponentially many coefficients

 can randomness help?

—i.e., flip coins, allow small probability of wrong
answer
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Polynomial identity testing

Lemma (Schwartz-Zippel): Let

P(X1, Xa1 -0y Xp)
be a total degree d polynomial over a field

F and let S be any subset of F. Then if p is
not identically O,

Prrl,rz,--..rnus[ p(ry, ry ..., 1) = 01 < d/|S].
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Polynomial identity testing

¢ Proof:
—induction on number of variables n

—base case: n = 1, p is univariate polynomial of
degree at most d

—at most d roots, so
Pr[p(r,) = 0] < d/|S|
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Polynomial identity testing

—write p(Xy, Xy, ..., X,) @S
P(Xqs Xas e Xn) = Zi (X0)' Pi(Xas -5 X)
—k = max. i for which pi(x,, ..., X;) notid. zero
— by induction hypothesis:
Prl py(rs, ..., 1) = 0] < (d-k)/|S]

—whenever p(ty, ..., ) #0, p(Xy, Iy, ..., ) isa
univariate polynomial of degree k

Prip(ry,ra, . 1)=0 | Pe(ras-...r,) # 0] <k/|S|
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Polynomial identity testing

Prip(ry, .., ry) = 0] < (d-K)/|S|
PIIO(ry M0 1)=0 | Py(rs....1) # O] < K/IS|
—conclude:
Prl p(ry, ..., r,) = 0] < (d-K)/[S| + k/|S| = d/|S]|

— Note: can add these probabilities because
Pr(E,] = Pr[E,|E,]Pr[E,] + Pr[E, |- E,]Pr[- E,]
< Pr[E,] + Pr[E;|-E,]
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Polynomial identity testing

* Given: polynomial p(x,, X,, ..., X,,) over

field F N
N
« |Is p identically zero? * *
PN
NS
Xy X X3 .. X,

* Note: degree d is at most the size of input
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Polynomial identity testing

» randomized algorithm: pick a subset S O F
of size 2d
—pick ry, 1y, ..., r,from S uniformly at random
—ifp(ry, 1y, ..., 1) = 0, @answer “yes”
—ifp(ry, 1y, ..., 1) # 0, answer “no”

« if p identically zero, never wrong

« if not, Schwartz-Zippel ensures probability
of error at most %2
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Unique solutions

* a positive instance of SAT may have many
satisfying assignments

» maybe the difficulty comes from not
knowing which to “work on”

« if we knew # satisfying assignments was 1
or 0, could we zero in on the 1 efficiently?
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Unique solutions

Question: given polynomial-time algorithm
that works on SAT instances with at most
1 satisfying assignment, can we solve
general SAT instances efficiently?

* Answer: yes
— but only if “efficiently” allows randomness
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Unique solutions

Theorem (Valiant-Vazirani): there is a
randomized poly-time procedure that given
a 3-CNF formula

QX1 Xy -evs Xp)
outputs a 3-CNF formula ¢’ such that
—if @ is not satisfiable then ¢’ is not satisfiable

—if @ is satisfiable then with probability at least
1/(8n) @’ has exactly one satisfying
assignment
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Unique solutions

¢ Proof:

—given subset S [1{1, 2, ..., n}, there exists a
3-CNF formula 65 on x4, Xy, ..., X, and
additional variables such that:

* 18] = O(n)

* B¢ is satisfiable iff an even number of
variables in {x};;s are true

« for each such setting of the x; variables, this
satisfying assignment is unique

« not difficult; details omitted
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Unique solutions

—set@y=¢
—fori=1,2,...,n
* pick random subset S;
*set @ = @ 06,
— output random @,

— T = set of satisfying assignments for ¢
— Claim: if [T| > 0, then
P2, a6 S [T 2] 2 1/n
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Unique solutions

Claim: if 2k < |T| < 2¥*1, then the probability @,,,
has exactly one satisfying assignment is = 1/8
—fixtdT

t=0101|00101|0111

t' = 1010|11100/0101
s

— Pr[t “agrees with” t' on S] =%
—Prtagrees witht' on S, S,, ..., Sy.o] = (¥2)K*2
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Unique solutions

— Pr[t agrees with some t' on S,..., Sy,,]
< (IT]-1)(%a)k+2 < ¥
— Prlt satisfies Sy, S,, ..., Sy.,] = (¥2)*2
— Pr[t unique satisfying assignment of @,,,]
> (1/2)k+3

—sum over at least 2 different t O T (disjoint
events); claim follows.
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Randomized complexity classes

« model: probabilistic Turing Machine
— deterministic TM with additional read-only
tape containing “coin flips”
e BPP (Bounded-error Probabilistic Poly-time)
—L OBPPifthereisap.p.t. TM M:
x 0L = Pr,[M(xy) accepts] 2 2/3
x OL = Pr,[M(xy) rejects] = 2/3
—“p.p.t" = probabilistic polynomial time
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Randomized complexity classes

* RP (Random Polynomial-time)
—L ORP ifthereisap.p.t. TM M:
x O L = Pr,[M(x,y) accepts] 2 %2
x OL = Pr[M(xy) rejects] = 1
¢ CORP (complement of Random Polynomial-time)
—L OcoRPifthereisap.p.t. TM M:
x O L = Pr,[M(x,y) accepts] = 1
x 0L = Pr[M(xy) rejects] = %2
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Randomized complexity classes

These classes may capture “efficiently
computable” better than P.

¢ “1/2” in RP, coRP definition unimportant
— can replace by 1/poly(n)

¢ “2/3” in BPP definition unimportant
— can replace by % + 1/poly(n)

* Why? error reduction
— we will see simple error reduction by repetition
— more sophisticated error reduction later
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Error reduction for RP

e givenL and p.p.t TM M:
x O L = Pr[M(x,y) accepts] 2 ¢
x OL = Pr[M(xy) rejects] = 1
* new p.p.t TM M’

—simulate M k/e times, each time with
independent coin flips

—accept if any simulation accepts
— otherwise reject
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Error reduction

x 0L = Pr[M(xy) accepts] = €
x O L = Pr[M(x)y) rejects] = 1
e ifx OL:
— probability a given simulation “bad” < (1 —¢)
— probability all simulations “bad” < (1—¢)e) < gk
Pr,[M'(x, y') accepts] 2 1 — e
e ifxOL:
Pr,[M’(x,y’) rejects] = 1
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Error reduction for BPP

e given L, and p.p.t. TM M:
x OL = Pr[M(x,y) accepts] =2 % + ¢
x O L = Pr[M(x,y) rejects] 2 %2 + ¢
* new p.p.t. TM M’:
— simulate M k/€? times, each time with
independent coin flips

— accept if majority of simulations accept
— otherwise reject
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Error reduction for BPP

— X; random variable indicating “correct”
outcome in i-th simulation (out of m = k/e?)
e PriX;=1]2%+¢
s Pr[X;=0]<%-¢
—E[X] = ¥+¢
—X=ZX
—H=EX]z(%2+em

— Chernoff: Pr[X < m/2] < 2 2(? 1)
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Error reduction for BPP

x OL = Pr[M(x,y) accepts] =2 % + ¢
x O L = Pr[M(x,y) rejects] 2 %2 + ¢
—ifxOL

Pr,[M'(x, y') accepts] 2 1 - (%)Q(k)
—ifxOL

Pr, [M'(x,y") rejects] = 1 — (v2)20)
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Randomized complexity classes

One more important class:

e ZPP (Zero-error Probabilistic Poly-time)
—ZPP =RP n coRP
- Pr,[M(x,y) outputs “fail’] < %2
— otherwise outputs correct answer
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Randomized complexity classes
« We have shown:
— polynomial identity testing is in coRP

— a poly-time algorithm for detecting unique
solutions to SAT implies
NP = RP
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Relationship to other classes

« all these classes contain P

—they can simply ignore the tape with coin flips
¢ all are in PSPACE

— can exhaustively try all strings y

— count accepts/rejects; compute probability
* RP ONP (and coRP [0 coNP)

— multitude of accepting computations

— NP requires only one
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Relationship to other classes

PSPACE

/e \
VN
RP coRP

I P/
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BPP

« How powerful is BPP?
* We have seen an example of a problem in
BPP
that we only know how to solve in EXP.

Is randomness a panacea
for intractability?
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BPP

* It is not known if BPP = EXP (or even
NEXP!)
— but there are strong hints that it does not

* |s there a deterministic simulation of BPP
that does better than brute-force search?
—yes, if allow non-uniformity

Theorem (Adelman): BPP [0 P/poly
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BPP and Boolean circuits

* Proof:
—language L O BPP
— error reduction gives TM M such that
eifxOL
Pr,[M(x, y) accepts] 2 1 — (1/2)|X\2
eifxOL
Pr,[M(x, y) rejects] 2 1 — (1/2)|x|2
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BPP and Boolean circuits

—say "y is bad for x” if M(x,y) gives incorrect
answer

— for fixed x: Pr,y is bad for x] < (1/2)\X|2
— Pr,y is bad for some x] < 2|X\(1/z)|x\2< 1

— Conclude: there exists some y on which
M(x, y) is always correct

— build circuit for M, hardwire this y
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BPP and Boolean circuits

e Does BPP = EXP ?
* Adelman’s Theorem shows:
BPP = EXP implies EXP O P/poly

If you believe that randomness is
all-powerful, you must also believe
that non-uniformity gives an
exponential advantage.
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BPP
* Next:
further explore the relationship between
randomness
and

nonuniformity

» Main tool: pseudo-random generators
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