
1

CS151
Complexity Theory

Lecture 6
April 15, 2004

April 15, 2004 CS151 Lecture 6 2

Outline

• CLIQUE

• monotone circuits and problems

• Razborov’s lower bound for monotone 
circuits computing CLIQUE
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Clique

Recall…
IS = { (G, k) | G is a graph with an 
independent set V’ � V of size � k }

(independent set = set of vertices no 2 of which 
are connected by an edge)

• IS is NP-complete.
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Clique

CLIQUE = { (G, k) | G is a graph with a 
clique of size � k }

(clique = set of vertices every pair of which are 
connected by an edge)

• CLIQUE is NP-complete.
– reduction?
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Circuit lower bounds

• We think that NP requires exponential-size 
circuits.

• Where should we look for a problem to 
attempt to prove this?

• Intuition: “hardest problems” – i.e., NP-
complete problems
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Circuit lower bounds

• Formally: 
– if any problem in NP requires super-

polynomial size circuits

– then every NP-complete problem requires 
super-polynomial size circuits

– Proof idea: poly-time reductions can be 
performed by poly-size circuits using a variant 
of CVAL construction
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Monotone problems

• Definition: monotone language = language 

L ⊂ {0,1}*

such that x ∈ L implies x’ ∈ L for all x � x’.

– flipping a bit of the input from 0 to 1 can only 
change the output from “no” to “yes”
(or not at all)
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Monotone problems

• some NP-complete languages are 
monotone
– e.g. CLIQUE (given as adjacency matrix):

– others: HAMILTON CYCLE, SET COVER…
– but not SAT, KNAPSACK…
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Monotone circuits

A restricted class of circuits:

• Definition: monotone circuit = circuit
whose gates are ANDs (∧), ORs (∨), but 
no NOTs

• can only compute monotone functions
– monotone functions closed under AND, OR
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Monotone circuits

• A question: 
Do all 

poly-time computable monotone functions

have 
poly-size monotone circuits?

– recall: true in non-monotone case
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Monotone circuits

A monotone circuit for CLIQUEn,k

• Input: graph G = (V,E) as adj. matrix, |V|=n
– variable xi,j for each possible edge (i,j)

• ISCLIQUE(S) = monotone circuit that = 1 

iff S ⊂ V is a clique: ∧i,j ∈ S xi,j

• CLIQUEn, k computed by monotone circuit:

∨S ⊂ V, |S| = k ISCLIQUE(S)
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Monotone circuits

• Size of this monotone circuit for 
CLIQUEn,k:

• when k = n1/4, size is approximately:
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Monotone circuits

• Theorem (Razborov 85): monotone 
circuits for CLIQUEn, k with k = n1/4 must 
have size at least

2�(n1/8).

• Proof: 
– rest of lecture

April 15, 2004 CS151 Lecture 6 14

Proof idea

• “method of approximation”

• suppose C is a monotone circuit for 
CLIQUEn, k

• build another monotone circuit CC that 
“approximates” C gate-by-gate

∧∧∧∧
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Proof idea

• on test collection of positive/negative 
instances of CLIQUEn,k:
– local property: few errors at each gate

– global property: many errors on test collection

• Conclude: C has many gates
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Notation

• input: graph G = (V, E)
• variable xj,k for each potential edge (j, k)
• CC(X1, X2, … Xm), where Xi ⊂ V, means:

∨i (∧ j,k ∈ Xi
xj,k)

• For example: CC(X1, X2, … Xm) where the 
Xi range over all k-subsets of V
– this is the obvious monotone circuit for 

CLIQUEn,k from a previous slide.
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Preview

• approximate circuit CC(X1, X2, … Xm)
• n = # nodes
• k = n1/4 = size of clique

• h = n1/8 = max. size of subsets Xi

– this is “global property” that ensures lots of 
errors

– many graphs G with no k-cliques, but clique 
on Xi of size h

�

�	
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Preview

• approximate circuit CC(X1, X2, … Xm)
• p = n1/8log n
• M = (p – 1)hh! 

• max # of subsets is M (so m � M)
– critical for “local property” that ensures few 

errors at each gate
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Building CC

• CC (“crude circuit”) for circuit C defined 
inductively as follows:
– CC for single variable x is just CC({x})

• no errors yet!

– CC for circuit C of form:

– “approximate OR” of CC for C’, CC for C’’

∨∨∨∨
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Building CC

– CC for circuit C of form:

– “approximate AND” of CC for C’, CC for C’’

– “approximate OR” and “approximate AND”
steps introduce errors 

∧∧∧∧
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Approximate OR

CC’(X1,X2,…Xm’)        CC’’(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– set sizes still � h

– may be up to 2M sets; need to reduce to M 
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Approximate OR

– throw away sets?   bad:many errors

– throw away overlapping sets? – better

– throw away special configuration of 
overlapping sets – best
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Sunflowers

• Definition: (h, p)-sunflower is a family of p
sets (“petals”) each of size at most h, such 
that  intersection of every pair is a subset 
S (the “core”).
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Sunflowers

Lemma (Erdös-Rado): Every family of more 
than M = (p-1)hh! sets, each of size at 
most h, contains an (h, p)-sunflower.

• Proof: 
– not hard
– in Papadimitriou
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Approximate OR

• CC’(X1,X2,…Xm’) 
• CC’’(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– while more than M sets, find (h, p)-sunflower; 

replace with its core (“pluck”)

• approximate OR:

CC(pluck(X1,X2,…Xm’,Y1,Y2,…Ym’’) )
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Approximate AND

• CC’(X1,X2,…Xm’) 

• CC’’(Y1,Y2,…Ym’’)
• exact AND:

CC( {(Xi ∪ Yj) : 1 � i � m’, 1 � j � m’’} )
– some sets may be larger than h; discard them
– may be up to M2 sets. While > M sets, find (h, p)-

sunflower; replace with its core (“pluck”)

• approximate AND:

CC( pluck ( {(Xi∪Yj) : |Xi∪Yj| � h } ))

∧∧∧∧
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Test collection

• Positive instances: all graphs G on n 
nodes with a k-clique and no other edges. 

�
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Test collection

• Negative instances:
– k-1 colors

– color each node uniformly 

at random with one of the colors
– edge (x, y) iff x, y different colors

– no k-clique

– include graphs in their multiplicities 
• makes analysis easier 
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Analysis

• “false positive”:
– negative example

– gate is supposed to output 0, but our CC 
outputs 1

Lemma: each approximation step 
introduces at most M2(k-1)n/2p false 
positives.
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Analysis

• Proof:
– case 1: OR

CC’(X1,X2,…Xm’)        CC’’(Y1,Y2,…Ym’’)
CC(pluck(X1,X2,…Xm’,Y1,Y2,…Ym’’))

– given “plucking”: replace Z1… Zp with Z

– bad case: clique on Z, and each petal is 
missing at least one edge

∨∨∨∨
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Analysis

– what is the probability of a repeated color in 
each Zi but no repeated colors in Z?

Pr[R(Z1)∧R(Z2)…R(Zp)∧ ¬R(Z)]

� Pr[R(Z1)∧R(Z2)…R(Zp)|¬R(Z)]
(definition of conditional probability)

= ∏i Pr[R(Zi) | ¬R(Z)]
(independent events given no repeats in Z)

� ∏i Pr[R(Zi)]
(obviously larger)

event R(S) 
= repeated 
colors in S
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Analysis

– for every pair of vertices in Zi, probability of 
same color is 1/(k-1)

– R(Zi) � (h choose 2)/(k-1) � ½

– ∏i Pr[R(Zi)] � (½)p

– # negative examples is (k-1)n

– # false positives in given plucking step is at 
most (½)p(k-1)n

– at most M plucking steps
– # false positives at OR � M(½)p(k-1)n
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Analysis

– case 2: AND

CC’(X1,X2,…Xm’)        CC’’(Y1,Y2,…Ym’’)

CC(pluck( {(Xi∪Yj) : |Xi∪Yj| � h } )) 

– discarding sets (Xi∪Yj) larger than h can only 
make circuit accept fewer examples 

• no false positives here

∧∧∧∧
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Analysis

– up to M2 pluckings

– each introduces at most 
(½)p(k-1)n

false positives (previous slides)

– # false positives at AND � M2(½)p(k-1)n
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Analysis

• “false negative”: 
– positive example; 

– gate is supposed to output 1, but our CC 
outputs 0

Lemma: each approximation step 
introduces at most 

false negatives.
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Analysis

• Proof:
– Case 1: OR
– plucking can only make circuit accept more 

examples
• no false negatives here.

– Case 2: AND

CC’(X1,X2,…Xm’)        CC’’(Y1,Y2,…Ym’’)
CC(pluck( {(Xi∪Yj) : |Xi∪Yj| � h } ))
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Analysis

– discarding set Z = (Xi∪Yj) larger than h may 
introduce false negatives

– any clique that includes Z is a problem; there 
are at most

such positive examples, since |Z|>h

– at most M2 such deletions
– we’ve seen plucking doesn’t matter

� � � � �
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Analysis

Lemma: every non-trivial CC outputs 1 on at least 
½ of the negative examples.

• Proof: 
– CC contains some set X of size at most h
– accepts all neg. examples with different colors in X
– probability X has repeated colors is

R(X) � (h choose 2)/(k-1) � ½
– probability over negative examples that CC accepts is 

at least ½.  
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Finishing up

• First possibility: trivial CC, rejects all 
positive examples
– every positive example must have been false 

negative at some gate

– number of gates must be at least:
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Finishing up

• Second possibility: CC accepts at least ½
of negative examples
– every negative example must have been false 

positive at some gate

– number of gates must be at least:
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Finishing up

Both quantities are at least 2
�

(n1/8)
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Conclusions

• A question (true in non-monotone case): 

Do all 
poly-time computable monotone functions

have 

poly-size monotone circuits?

• if yes, then we would have just proved P � NP
– why?
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Conclusions

• unfortunately, answer is no

• Razborov later showed similar (super-
polynomial) lower bound for MATCHING, 
which is in P…


