
1

CS151
Complexity Theory

Lecture 6
April 15, 2004

April 15, 2004 CS151 Lecture 6 2

Outline

• CLIQUE

• monotone circuits and problems

• Razborov’s lower bound for monotone
circuits computing CLIQUE

April 15, 2004 CS151 Lecture 6 3

Clique

Recall…
IS = { (G, k) | G is a graph with an
independent set V’ � V of size � k }

(independent set = set of vertices no 2 of which
are connected by an edge)

• IS is NP-complete.

April 15, 2004 CS151 Lecture 6 4

Clique

CLIQUE = { (G, k) | G is a graph with a
clique of size � k }

(clique = set of vertices every pair of which are
connected by an edge)

• CLIQUE is NP-complete.
– reduction?

April 15, 2004 CS151 Lecture 6 5

Circuit lower bounds

• We think that NP requires exponential-size
circuits.

• Where should we look for a problem to
attempt to prove this?

• Intuition: “hardest problems” – i.e., NP-
complete problems

April 15, 2004 CS151 Lecture 6 6

Circuit lower bounds

• Formally:
– if any problem in NP requires super-

polynomial size circuits

– then every NP-complete problem requires
super-polynomial size circuits

– Proof idea: poly-time reductions can be
performed by poly-size circuits using a variant
of CVAL construction

2

April 15, 2004 CS151 Lecture 6 7

Monotone problems

• Definition: monotone language = language

L ⊂ {0,1}*

such that x ∈ L implies x’ ∈ L for all x � x’.

– flipping a bit of the input from 0 to 1 can only
change the output from “no” to “yes”
(or not at all)

April 15, 2004 CS151 Lecture 6 8

Monotone problems

• some NP-complete languages are
monotone
– e.g. CLIQUE (given as adjacency matrix):

– others: HAMILTON CYCLE, SET COVER…
– but not SAT, KNAPSACK…

April 15, 2004 CS151 Lecture 6 9

Monotone circuits

A restricted class of circuits:

• Definition: monotone circuit = circuit
whose gates are ANDs (∧), ORs (∨), but
no NOTs

• can only compute monotone functions
– monotone functions closed under AND, OR

April 15, 2004 CS151 Lecture 6 10

Monotone circuits

• A question:
Do all

poly-time computable monotone functions

have
poly-size monotone circuits?

– recall: true in non-monotone case

April 15, 2004 CS151 Lecture 6 11

Monotone circuits

A monotone circuit for CLIQUEn,k

• Input: graph G = (V,E) as adj. matrix, |V|=n
– variable xi,j for each possible edge (i,j)

• ISCLIQUE(S) = monotone circuit that = 1

iff S ⊂ V is a clique: ∧i,j ∈ S xi,j

• CLIQUEn, k computed by monotone circuit:

∨S ⊂ V, |S| = k ISCLIQUE(S)

April 15, 2004 CS151 Lecture 6 12

Monotone circuits

• Size of this monotone circuit for
CLIQUEn,k:

• when k = n1/4, size is approximately:

� �� �
� �� �

� �� �

� �

� �

()Ω� �� � ≈� � � �
� � � �

���
���

� ���
�

�

�

��

�
�

�

�

�

3

April 15, 2004 CS151 Lecture 6 13

Monotone circuits

• Theorem (Razborov 85): monotone
circuits for CLIQUEn, k with k = n1/4 must
have size at least

2�(n1/8).

• Proof:
– rest of lecture

April 15, 2004 CS151 Lecture 6 14

Proof idea

• “method of approximation”

• suppose C is a monotone circuit for
CLIQUEn, k

• build another monotone circuit CC that
“approximates” C gate-by-gate

∧∧∧∧

April 15, 2004 CS151 Lecture 6 15

Proof idea

• on test collection of positive/negative
instances of CLIQUEn,k:
– local property: few errors at each gate

– global property: many errors on test collection

• Conclude: C has many gates

April 15, 2004 CS151 Lecture 6 16

Notation

• input: graph G = (V, E)
• variable xj,k for each potential edge (j, k)
• CC(X1, X2, … Xm), where Xi ⊂ V, means:

∨i (∧ j,k ∈ Xi
xj,k)

• For example: CC(X1, X2, … Xm) where the
Xi range over all k-subsets of V
– this is the obvious monotone circuit for

CLIQUEn,k from a previous slide.

April 15, 2004 CS151 Lecture 6 17

Preview

• approximate circuit CC(X1, X2, … Xm)
• n = # nodes
• k = n1/4 = size of clique

• h = n1/8 = max. size of subsets Xi

– this is “global property” that ensures lots of
errors

– many graphs G with no k-cliques, but clique
on Xi of size h

�

�	

April 15, 2004 CS151 Lecture 6 18

Preview

• approximate circuit CC(X1, X2, … Xm)
• p = n1/8log n
• M = (p – 1)hh!

• max # of subsets is M (so m � M)
– critical for “local property” that ensures few

errors at each gate

4

April 15, 2004 CS151 Lecture 6 19

Building CC

• CC (“crude circuit”) for circuit C defined
inductively as follows:
– CC for single variable x is just CC({x})

• no errors yet!

– CC for circuit C of form:

– “approximate OR” of CC for C’, CC for C’’

∨∨∨∨

�
��

April 15, 2004 CS151 Lecture 6 20

Building CC

– CC for circuit C of form:

– “approximate AND” of CC for C’, CC for C’’

– “approximate OR” and “approximate AND”
steps introduce errors

∧∧∧∧

�
��

April 15, 2004 CS151 Lecture 6 21

Approximate OR

CC’(X1,X2,…Xm’) CC’’(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– set sizes still � h

– may be up to 2M sets; need to reduce to M

∨∨∨∨

�
��

April 15, 2004 CS151 Lecture 6 22

Approximate OR

– throw away sets? bad:many errors

– throw away overlapping sets? – better

– throw away special configuration of
overlapping sets – best

April 15, 2004 CS151 Lecture 6 23

Sunflowers

• Definition: (h, p)-sunflower is a family of p
sets (“petals”) each of size at most h, such
that intersection of every pair is a subset
S (the “core”).

April 15, 2004 CS151 Lecture 6 24

Sunflowers

Lemma (Erdös-Rado): Every family of more
than M = (p-1)hh! sets, each of size at
most h, contains an (h, p)-sunflower.

• Proof:
– not hard
– in Papadimitriou

5

April 15, 2004 CS151 Lecture 6 25

Approximate OR

• CC’(X1,X2,…Xm’)
• CC’’(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– while more than M sets, find (h, p)-sunflower;

replace with its core (“pluck”)

• approximate OR:

CC(pluck(X1,X2,…Xm’,Y1,Y2,…Ym’’))

∨∨∨∨

�
��

April 15, 2004 CS151 Lecture 6 26

Approximate AND

• CC’(X1,X2,…Xm’)

• CC’’(Y1,Y2,…Ym’’)
• exact AND:

CC({(Xi ∪ Yj) : 1 � i � m’, 1 � j � m’’})
– some sets may be larger than h; discard them
– may be up to M2 sets. While > M sets, find (h, p)-

sunflower; replace with its core (“pluck”)

• approximate AND:

CC(pluck ({(Xi∪Yj) : |Xi∪Yj| � h }))

∧∧∧∧

�
��

April 15, 2004 CS151 Lecture 6 27

Test collection

• Positive instances: all graphs G on n
nodes with a k-clique and no other edges.

�

April 15, 2004 CS151 Lecture 6 28

Test collection

• Negative instances:
– k-1 colors

– color each node uniformly

at random with one of the colors
– edge (x, y) iff x, y different colors

– no k-clique

– include graphs in their multiplicities
• makes analysis easier

��
��
����	��������

April 15, 2004 CS151 Lecture 6 29

Analysis

• “false positive”:
– negative example

– gate is supposed to output 0, but our CC
outputs 1

Lemma: each approximation step
introduces at most M2(k-1)n/2p false
positives.

April 15, 2004 CS151 Lecture 6 30

Analysis

• Proof:
– case 1: OR

CC’(X1,X2,…Xm’) CC’’(Y1,Y2,…Ym’’)
CC(pluck(X1,X2,…Xm’,Y1,Y2,…Ym’’))

– given “plucking”: replace Z1… Zp with Z

– bad case: clique on Z, and each petal is
missing at least one edge

∨∨∨∨

�
��

6

April 15, 2004 CS151 Lecture 6 31

Analysis

– what is the probability of a repeated color in
each Zi but no repeated colors in Z?

Pr[R(Z1)∧R(Z2)…R(Zp)∧ ¬R(Z)]

� Pr[R(Z1)∧R(Z2)…R(Zp)|¬R(Z)]
(definition of conditional probability)

= ∏i Pr[R(Zi) | ¬R(Z)]
(independent events given no repeats in Z)

� ∏i Pr[R(Zi)]
(obviously larger)

event R(S)
= repeated
colors in S

April 15, 2004 CS151 Lecture 6 32

Analysis

– for every pair of vertices in Zi, probability of
same color is 1/(k-1)

– R(Zi) � (h choose 2)/(k-1) � ½

– ∏i Pr[R(Zi)] � (½)p

– # negative examples is (k-1)n

– # false positives in given plucking step is at
most (½)p(k-1)n

– at most M plucking steps
– # false positives at OR � M(½)p(k-1)n

April 15, 2004 CS151 Lecture 6 33

Analysis

– case 2: AND

CC’(X1,X2,…Xm’) CC’’(Y1,Y2,…Ym’’)

CC(pluck({(Xi∪Yj) : |Xi∪Yj| � h }))

– discarding sets (Xi∪Yj) larger than h can only
make circuit accept fewer examples

• no false positives here

∧∧∧∧

�
��

April 15, 2004 CS151 Lecture 6 34

Analysis

– up to M2 pluckings

– each introduces at most
(½)p(k-1)n

false positives (previous slides)

– # false positives at AND � M2(½)p(k-1)n

April 15, 2004 CS151 Lecture 6 35

Analysis

• “false negative”:
– positive example;

– gate is supposed to output 1, but our CC
outputs 0

Lemma: each approximation step
introduces at most

false negatives.

− −� �
� �− −� �

� � � �
�

� � �

April 15, 2004 CS151 Lecture 6 36

Analysis

• Proof:
– Case 1: OR
– plucking can only make circuit accept more

examples
• no false negatives here.

– Case 2: AND

CC’(X1,X2,…Xm’) CC’’(Y1,Y2,…Ym’’)
CC(pluck({(Xi∪Yj) : |Xi∪Yj| � h }))

∧∧∧∧

�
��

7

April 15, 2004 CS151 Lecture 6 37

Analysis

– discarding set Z = (Xi∪Yj) larger than h may
introduce false negatives

– any clique that includes Z is a problem; there
are at most

such positive examples, since |Z|>h

– at most M2 such deletions
– we’ve seen plucking doesn’t matter

� � � � �

� � � � �

− − −� � � �
≤� � � �− − −� �� �

April 15, 2004 CS151 Lecture 6 38

Analysis

Lemma: every non-trivial CC outputs 1 on at least
½ of the negative examples.

• Proof:
– CC contains some set X of size at most h
– accepts all neg. examples with different colors in X
– probability X has repeated colors is

R(X) � (h choose 2)/(k-1) � ½
– probability over negative examples that CC accepts is

at least ½.

April 15, 2004 CS151 Lecture 6 39

Finishing up

• First possibility: trivial CC, rejects all
positive examples
– every positive example must have been false

negative at some gate

– number of gates must be at least:

− −� �� �
� �� � − −� � � �

�
� � � �

��
� � � �

April 15, 2004 CS151 Lecture 6 40

Finishing up

• Second possibility: CC accepts at least ½
of negative examples
– every negative example must have been false

positive at some gate

– number of gates must be at least:

−− −�� � ��
�� �� �� � �� ��

�

April 15, 2004 CS151 Lecture 6 41

Finishing up

Both quantities are at least 2
�

(n1/8)

− −� �� �
� �� � − −� � � �

�
� � � �

��
� � � �

−− −�� � ��
�� �� �� � �� ��

�

April 15, 2004 CS151 Lecture 6 42

Conclusions

• A question (true in non-monotone case):

Do all
poly-time computable monotone functions

have

poly-size monotone circuits?

• if yes, then we would have just proved P � NP
– why?

8

April 15, 2004 CS151 Lecture 6 43

Conclusions

• unfortunately, answer is no

• Razborov later showed similar (super-
polynomial) lower bound for MATCHING,
which is in P…

