CS151
Complexity Theory

Lecture 4
April 8, 2004

Introduction

A puzzle:
two kinds
of trees

« cover up nodes with ¢ colors
« promise: never color “arrow” same as “blank”
» determine which kind of tree in poly(n, c) steps?

April 8, 2004 CS151 Lecture 4

2

A puzzle

April 8, 2004 CS151 Lecture 4

A puzzle

depth

April 8, 2004 CS151 Lecture 4

Introduction

* ldeas
— depth-first-search; stop if see Q)

—how many times may we see a given “arrow
color"?

e at most n+1
— pruning rule?
« if see a color > n+1 times, it can’t be an
arrow node; prune
—# nodes visited before know answer?
* at most c(n+2)

April 8, 2004 CS151 Lecture 4

Outline

« sparse languages and NP

¢ nondeterminism applied to space

reachability

Savitch’'s Theorem

« Immerman/Szelepcsényi Theorem

April 8, 2004 CS151 Lecture 4

Sparse languages and NP

« We often say NP-compete languages are
“hard”

« More accurate: NP-complete languages
are “expressive”

— lots of languages reduce to them

April 8, 2004 CS151 Lecture 4

Sparse languages and NP

» Sparse language: one that contains at
most poly(n) strings of length < n

¢ not very expressive — can we show this
cannot be NP-complete (assuming P #
NP) ?
—yes: Mahaney '82 (homework problem)

« Unary language: subset of 1* (at most n
strings of length < n)

April 8, 2004 CS151 Lecture 4 8

Sparse languages and NP

Theorem (Berman '78): if a unary language
is NP-complete then P = NP.

* Proof:

—let U O 1* be a unary language and assume
SAT < U via reduction R

— @(X1,Xy,...,X,) instance of SAT

April 8, 2004 CS151 Lecture 4 9

Sparse languages and NP

— self-reduction tree for ¢:

w(xlfxz’”' ’xﬂ)
00Xz, X,) @t{)(l,xz,m,xn)

w(O,O,A--,O)O O\ Qp(l,l,u.,l)

satisfying assignment

April 8, 2004 CS151 Lecture 4 10

Sparse languages and NP

 Applying reduction R:

R(®(X1. Xz, Xn)
R(@(O,xz,---,xn))mk(tp(l,xzp--lxn))

R(6(00,..0) q C%(q)(l,l,.“,l))

satisfying assignment

April 8, 2004 CS151 Lecture 4 11

Sparse languages and NP

« on input of length < |@(X;,X,,....X,)|, R
produces string of length < p(n)

¢ R’s different outputs are “colors”
— 1 color for strings not in 1*
— at most p(n) other colors

* puzzle solution = can solve SAT in
poly(p(n)+1, n+1) = poly(n) time!

April 8, 2004 CS151 Lecture 4 12

Nondeterministic space

* NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f:N — N

April 8, 2004 CS151 Lecture 4 13

Nondeterministic space

» Robust nondeterministic space classes:
NL = NSPACE(log n)

NPSPACE = [0, NSPACE(n)

April 8, 2004 CS151 Lecture 4 14

Reachability

» Recall: at most nk configurations of given
NTM M running in NSPACE(log n).

* easy to QstartX1X2X3--Xq
determine if C xOL ¢~ e xOL
yields C’ in one
step

« configuration
graph for M on
input x:

Reachability

* Conclude:NL O P
—and NPSPACE [0 EXP

e S-T-Connectivity (STCONN): given
directed graph G = (V, E) and nodes s, t, is
there a path fromstot

Theorem: STCONN is NL-complete under
logspace reductions.

April 8, 2004 CS151 Lecture 4 16

qaccepf qreJecT qaccepf qreJecT
April 8, 2004 CS151 Lecture 4 15
Reachability
* Proof:
—in NL: guess path from s to t one node at a
time

—given L O NL decided by NTM M construct
configuration graph for M on input x (can be
done in logspace)

—s = starting configuration; t = Qaccept

April 8, 2004 CS151 Lecture 4 17

Two startling theorems

« Strongly believe P # NP

* nondeterminism seems to add enormous
power

« for space: Savitch ‘70:
NPSPACE = PSPACE
and
NL O SPACE(log?n)

April 8, 2004 CS151 Lecture 4 18

Two startling theorems

¢ Strongly believe NP # coNP

« seems impossible to convert existential
into universal

« for space: Immerman/Szelepscényi '87/'88:

NL = coNL

April 8, 2004 CS151 Lecture 4 19

Savitch’s Theorem

Theorem: STCONN 0O SPACE(log?n)
« Corollary: NL 0 SPACE(log?n)

* Corollary: NPSPACE = PSPACE

April 8, 2004 CS151 Lecture 4 20

Proof of Theorem

—input: G = (V, E), two nodes s and t
— recursive algorithm:

/* return true iff path from x to y of length at most 21 */
PATH(X, y, i)
ifi=0return ((x,y) E) /* base case */
forzinV

if PATH(X, z, i-1) and PATH(z, y, i-1) return(true);
return(false);
end

April 8, 2004 CS151 Lecture 4 21

Proof of Theorem

—answer to STCONN: PATH(s, t, log n)
— space used:
* (depth of recursion) x (size of “stack record”)
—depth =log n
— claim stack record: “(x, y, i)" sufficient
* size O(log n)
—when return from PATH(a, b, i) can figure out

what to do next from record (a, b, i) and
previous record

April 8, 2004 CS151 Lecture 4 22

I-S Theorem

Theorem: ST-NON-CONN [0 NL
« Proof: slightly tricky setup:
—input: G = (V, E), two nodes s, t

s

uyesu }}

+

April 8, 2004 CS151 Lecture 4 23

[-S Theorem

— want nondeterministic procedure using only
O(log n) space with behavior:

" o n

no
input input

¢ ¢ 6/
~— qaccepf %(QreJecf

April 8, 2004 CS151 Lecture 4 24

I-S Theorem

— observation: given count of # nodes
reachable from s, can solve problem
« foreach v 0V, guess if it is reachable
« if yes, guess path from s to v
—if guess doesn’t lead to v, reject.
—if v =t, reject.
—else counter++
« if counter = count accept

April 8, 2004 CS151 Lecture 4 25

|-S Theorem

— every computation path has sequence of
guesses...

—only way computation path can lead to
accept:

« correctly guessed reachable/unreachable
for each node v

« correctly guessed path from s to v for each
reachable node v

* saw all reachable nodes
* t not among reachable nodes

April 8, 2004 CS151 Lecture 4 26

I-S Theorem

—R(i) = # nodes reachable from s in at most i
steps
—R(0) =1: node s

—we will compute R(i+1) from R(i) using
O(log n) space and nondeterminism

— computation paths with “bad guesses” all lead
to reject

April 8, 2004 CS151 Lecture 4 27

[-S Theorem

— Outline: in n phases, compute
R(1), R(2), R(3), ... R(n)
—only O(log n) bits of storage between phases
—in end, lots of computation paths that lead to
reject
—only computation paths that survive have
computed correct value of R(n)

— apply observation.

April 8, 2004 CS151 Lecture 4 28

I-S Theorem

— computing R(i+1) from R(i):

R(i)=R(2)=6

— Initialize R(1+1) = 0
— For each v OV, guess if v reachable from s in
at most i+1 steps

April 8, 2004 CS151 Lecture 4 29

[-S Theorem

—if “yes”, guess path from s to v of at most i+1
steps. Increment R(i+1)

—if “no”, visit R(i) nodes reachable in at most i
steps, check that none is v or adjacent to v

« for u OV guess if reachable in < i steps;
guess path to u; counter++

* KEY: if counter # R(i), reject
« at this point: can be sure v not reachable

April 8, 2004 CS151 Lecture 4 30

I-S Theorem

« correctness of procedure:
 two types of errors we can make

¢ (1) might guess v is reachable in at most
i+1 steps when it is not

—won't be able to guess path from s to v of
L correct length, so we will reject.

—

—————— "easy" type of error

April 8, 2004 CS151 Lecture 4 31

|-S Theorem

* (2) might guess v is not reachable in at
most i+1 steps when it is
—then must not see v or neighbor of v while
visiting nodes reachable in i steps.
— but forced to visit R(i) distinct nodes

— therefore must try to visit node v that is not
reachable in < i steps

—won't be able to guess path from s to v of)
correct length, so we will reject.)

“easy" type of error
April 8, 2004 CS151 Lecture 4 32

Summary

¢ unary languages not NP-complete unless
P=NP

— true for sparse languages as well (homework)

¢ nondeterministic space classes
NL and NPSPACE

¢ ST-CONN NL-complete

April 8, 2004 CS151 Lecture 4 33

Summary

Savitch: NPSPACE = PSPACE
— Proof: ST-CONN O SPACE(log?n)
—open question:

NL =L?

» Immerman/Szelepcsényi : NL = coNL
— Proof: ST-NON-CONN [0 NL

April 8, 2004 CS151 Lecture 4 34

