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Introduction

A puzzle:
two kinds
of trees

« cover up nodes with ¢ colors
« promise: never color “arrow” same as “blank”
» determine which kind of tree in poly(n, c) steps?
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A puzzle

depth
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Introduction

* ldeas
— depth-first-search; stop if see Q)

—how many times may we see a given “arrow
color"?

e at most n+1
— pruning rule?
« if see a color > n+1 times, it can’t be an
arrow node; prune
—# nodes visited before know answer?
* at most c(n+2)
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Outline

« sparse languages and NP

¢ nondeterminism applied to space

reachability

Savitch’'s Theorem

« Immerman/Szelepcsényi Theorem
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Sparse languages and NP

« We often say NP-compete languages are
“hard”

« More accurate: NP-complete languages
are “expressive”

— lots of languages reduce to them
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Sparse languages and NP

» Sparse language: one that contains at
most poly(n) strings of length < n

¢ not very expressive — can we show this
cannot be NP-complete (assuming P #
NP) ?
—yes: Mahaney '82 (homework problem)

« Unary language: subset of 1* (at most n
strings of length < n)
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Sparse languages and NP

Theorem (Berman '78): if a unary language
is NP-complete then P = NP.

* Proof:

—let U O 1* be a unary language and assume
SAT < U via reduction R

— @(X1,Xy,...,X,) instance of SAT
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Sparse languages and NP

— self-reduction tree for ¢:

w(xlfxz’”' ’xﬂ)
00Xz, X,) @t{)(l,xz,m,xn)

w(O,O,A--,O)O O\ Qp(l,l,u.,l)

satisfying assignment
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Sparse languages and NP

 Applying reduction R:

R(®(X1. Xz, Xn)
R(@(O,xz,---,xn))mk(tp(l,xzp--lxn))

R(6(00,..0) q C%(q)(l,l,.“,l))

satisfying assignment
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Sparse languages and NP

« on input of length < |@(X;,X,,....X,)|, R
produces string of length < p(n)

¢ R’s different outputs are “colors”
— 1 color for strings not in 1*
— at most p(n) other colors

* puzzle solution = can solve SAT in
poly(p(n)+1, n+1) = poly(n) time!
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Nondeterministic space

* NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f:N — N
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Nondeterministic space

» Robust nondeterministic space classes:
NL = NSPACE(log n)

NPSPACE = [0, NSPACE(n)
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Reachability

» Recall: at most nk configurations of given
NTM M running in NSPACE(log n).

* easy to QstartX1X2X3--Xq
determine if C xOL ¢~ e xOL
yields C’ in one
step

« configuration
graph for M on
input x:

Reachability

* Conclude:NL O P
—and NPSPACE [0 EXP

e S-T-Connectivity (STCONN): given
directed graph G = (V, E) and nodes s, t, is
there a path fromstot

Theorem: STCONN is NL-complete under
logspace reductions.
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qaccepf qreJecT qaccepf qreJecT
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Reachability
* Proof:
—in NL: guess path from s to t one node at a
time

—given L O NL decided by NTM M construct
configuration graph for M on input x (can be
done in logspace)

—s = starting configuration; t = Qaccept
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Two startling theorems

« Strongly believe P # NP

* nondeterminism seems to add enormous
power

« for space: Savitch ‘70:
NPSPACE = PSPACE
and
NL O SPACE(log?n)
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Two startling theorems

¢ Strongly believe NP # coNP

« seems impossible to convert existential
into universal

« for space: Immerman/Szelepscényi '87/'88:

NL = coNL
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Savitch’s Theorem

Theorem: STCONN 0O SPACE(log?n)
« Corollary: NL 0 SPACE(log?n)

* Corollary: NPSPACE = PSPACE
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Proof of Theorem

—input: G = (V, E), two nodes s and t
— recursive algorithm:

/* return true iff path from x to y of length at most 21 */
PATH(X, y, i)
ifi=0return ((x,y) E) /* base case */
forzinV

if PATH(X, z, i-1) and PATH(z, y, i-1) return(true);
return(false);
end
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Proof of Theorem

—answer to STCONN: PATH(s, t, log n)
— space used:
* (depth of recursion) x (size of “stack record”)
—depth =log n
— claim stack record: “(x, y, i)" sufficient
* size O(log n)
—when return from PATH(a, b, i) can figure out

what to do next from record (a, b, i) and
previous record
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I-S Theorem

Theorem: ST-NON-CONN [0 NL
« Proof: slightly tricky setup:
—input: G = (V, E), two nodes s, t

s

uyesu }}

+
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[-S Theorem

— want nondeterministic procedure using only
O(log n) space with behavior:

" o n

no
input input

¢ ¢ 6/
~— qaccepf %( QreJecf
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I-S Theorem

— observation: given count of # nodes
reachable from s, can solve problem
« foreach v 0V, guess if it is reachable
« if yes, guess path from s to v
—if guess doesn’t lead to v, reject.
—if v =t, reject.
—else counter++
« if counter = count accept
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|-S Theorem

— every computation path has sequence of
guesses...

—only way computation path can lead to
accept:

« correctly guessed reachable/unreachable
for each node v

« correctly guessed path from s to v for each
reachable node v

* saw all reachable nodes
* t not among reachable nodes
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I-S Theorem

—R(i) = # nodes reachable from s in at most i
steps
—R(0) =1: node s

—we will compute R(i+1) from R(i) using
O(log n) space and nondeterminism

— computation paths with “bad guesses” all lead
to reject
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[-S Theorem

— Outline: in n phases, compute
R(1), R(2), R(3), ... R(n)
—only O(log n) bits of storage between phases
—in end, lots of computation paths that lead to
reject
—only computation paths that survive have
computed correct value of R(n)

— apply observation.
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I-S Theorem

— computing R(i+1) from R(i):

R(i)=R(2)=6

— Initialize R(1+1) = 0
— For each v OV, guess if v reachable from s in
at most i+1 steps
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[-S Theorem

—if “yes”, guess path from s to v of at most i+1
steps. Increment R(i+1)

—if “no”, visit R(i) nodes reachable in at most i
steps, check that none is v or adjacent to v

« for u OV guess if reachable in < i steps;
guess path to u; counter++

* KEY: if counter # R(i), reject
« at this point: can be sure v not reachable
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I-S Theorem

« correctness of procedure:
 two types of errors we can make

¢ (1) might guess v is reachable in at most
i+1 steps when it is not

—won't be able to guess path from s to v of
L correct length, so we will reject.

—

—————— "easy" type of error
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|-S Theorem

* (2) might guess v is not reachable in at
most i+1 steps when it is
—then must not see v or neighbor of v while
visiting nodes reachable in i steps.
— but forced to visit R(i) distinct nodes

— therefore must try to visit node v that is not
reachable in < i steps

—won't be able to guess path from s to v of )
correct length, so we will reject. )

“easy" type of error
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Summary

¢ unary languages not NP-complete unless
P=NP

— true for sparse languages as well (homework)

¢ nondeterministic space classes
NL and NPSPACE

¢ ST-CONN NL-complete
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Summary

Savitch: NPSPACE = PSPACE
— Proof: ST-CONN O SPACE(log?n)
—open question:

NL =L?

» Immerman/Szelepcsényi : NL = coNL
— Proof: ST-NON-CONN [0 NL
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