CS151
Complexity Theory

Lecture 3
April 6, 2004

Introduction

A motivating question:
« Can computers replace mathematicians?

L ={ (x, 1¥ : statement x has a proof of
length at most k }

April 6, 2004 CS151 Lecture 3

Introduction

¢ This lecture:
— nondeterminism
—nondeterministic time classes
— NP, NP-completeness, P vs. NP
—CcoNP
— NTIME Hierarchy
— Ladner’'s Theorem

April 6, 2004 CS151 Lecture 3

Nondeterminism

* Recall deterministic TM

— Q finite set of states
— > alphabet including blank: “_"

— Ustarts qaccepn qreject in Q
— transition function:

5:0xYy —-QxYx{LR,-}

April 6, 2004 CS151 Lecture 3

Nondeterminism

* nondeterministic Turing Machine:
— Q finite set of states
— Y alphabet including blank: “_"
~ Ustarts Qaccept| c1reje(:'t in Q
— transition relation
AD@xZ)xQxyx{L R, -}
« given current state and symbol scanned,
several choices of what to do next.

April 6, 2004 CS151 Lecture 3

Nondeterminism

« deterministic TM: given current configuration,
unigue next configuration

QstartX1XpX3.-Xp T QstartX1XpX3.-Xp
xOL x0OL T
qacczpf I qrzjecf

« nondeterministic TM: given current configuration,
several possible next configurations

April 6, 2004 CS151 Lecture 3

Nondeterminism

GstartX1X2X3..- X GstartX1X2X3..- X
xOL “computation
xOL path”
g

“guess”

- qnccepf

qra_\ch
e asymmetric accept/reject criterion

April 6, 2004 CS151 Lecture 3 7

Nondeterminism

« all paths terminate

* time used: maximum length of paths from
root

 space used: maximum # of work tape
squares touched on any path from root

April 6, 2004 CS151 Lecture 3 8

Nondeterminism

* NTIME(f(n)) = languages decidable by a
multi-tape NTM that runs for at most f(n)
steps on any computation path, where n is
the input length, and f :N — N

NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f:N — N

April 6, 2004 CS151 Lecture 3 9

Nondeterminism

* Focus on time classes first:

NP = O, NTIME(n¥)

NEXP = O, NTIME(2"")

April 6, 2004 CS151 Lecture 3 10

Poly-time verifiers

Very useful alternat \/!1€SS" O I Np-

“certificate”

Theorem: language L is in NP if/z efficiently
it is expressible/as: verifiable
L={x|3y, lyl<IX (x,y) OR}

where R is a language in P.

* poly-time TM M, deciding R is a “verifier”

April 6, 2004 CS151 Lecture 3 11

Poly-time verifiers

« Example: 3SAT expressible as

3SAT ={o@ : @ is a 3-CNF formula for which
Oassignment A for which (¢, A) O R}

R ={(o, A) : Ais a sat. assign. for ¢}

— satisfying assignment A is a “witness” of the
satisfiability of ¢ (it “certifies” satisfiability of ¢)
— R is decidable in poly-time

April 6, 2004 CS151 Lecture 3 12

Poly-time verifiers

L={x]3y. Iyl<Ix (x,y) OR}
Proof: (O) give poly-time NTM deciding L

phase 1: “guess” y with -
|x|* nondeterministic

Poly-time verifiers

Proof: (=) given L OO NP, describe L as:
L={x[3y, lyl<Ix¥ (x,y)OR}
— L is decided by NTM M running in time nk
— define the language
R ={(x,y) :yis an accepting computation
history of M on input x}
— check: accepting history has length < |x|
— check: R is decidable in polynomial time
—check: M accepts x iff Oy, |y| < |x[%, (x, y) OR

April 6, 2004 CS151 Lecture 3 14

steps AN
phase 2:
decide if
x,y)OR
April 6, 2004 CS151 Lecture 3 13
Why NP?
problem object we

requirements stic model of are seeking)

efficient test:
er of nat{ does y meet
requirements?

e contains huge nu
problems

¢ many problems have for
L={x|3dyst (x,y)OR}

April 6, 2004 CS151 Lecture 3 15

Why NP?
* Why not EXP?

— too strong!
— important problems not complete.

April 6, 2004 CS151 Lecture 3 16

Relationships between classes

e Easy: P O NP, EXP O NEXP
— TM special case of NTM
¢ Recall: L O NP iff expressible as
L={x|3y, Iyl<IX (x,y) OR}
* NP [0 PSPACE (try all possible y)
¢ The central question:
PZNP

recognizing a solution vs. finding a solution

April 6, 2004 CS151 Lecture 3 17

NP-completeness

 Circuit SAT: given a Boolean circuit (gates
0, 0 —), with variables y,, y,, ..., Y, IS
there some assignment that makes it
output 1?

Theorem: Circuit SAT is NP-complete.

¢ Proof:
—clearly in NP

April 6, 2004 CS151 Lecture 3 18

NP-completeness

— Given L O NP of form
L={x|3dyst(x,y)OR}

‘XI‘XZ‘ 4..\x,‘\y1\y2\ ‘Ym‘
1iff (xy) DR CVAL reduction
— forR

— hardwire input x; leave y as variables

April 6, 2004 CS151 Lecture 3

19

NEXP-completeness

 Succinct Circuit SAT: given a succinctly
encoded Boolean circuit (gates [, [J, =),
with variables y,, y,, ..., Y, is there some
assignment that makes it output 1?

Theorem: Succinct Circuit SAT is NEXP-
complete.

* Proof:

— same trick as for Succinct CVAL EXP-
complete.

April 6, 2004 CS151 Lecture 3 20

Complement classes

¢ In general, if C is a complexity class

» co-C is the complement class, containing
all complements of languages in C
—LOC implies (*-L) Oco-C
—(X*-L)OCimpliesL Oco-C

* Some classes closed under complement:
—-e.g.co-P=P

April 6, 2004 CS151 Lecture 3

21

coNP
* Is NP closed under complement?
Can we transform xoL / xOL
this machine:
unCe
Pf qre_\ecf

mto this machine?

quccepf
q reject

April 6, 2004 CS151 Lecture 3 22

coNP

“proof system” interpretation:
Recall: L O NP iff expressible as
L= {XI3y lyl <Xl (x, y) DR}

“proof
verifier”
« languages in NP have “short proofs”

¢ coNP captures (in its complete problems)

pr‘oof”

problems least likely to have “short proofs”.

—e.g., UNSAT is coNP-complete

April 6, 2004 CS151 Lecture 3

23

coNP

e P = NP implies NP = coNP

* Belief:
NP # coNP

— another major open problem

April 6, 2004 CS151 Lecture 3 24

NTIME Hierarchy Theorem

Theorem (Nondeterministic Time Hierarchy
Theorem):
For every proper complexity function f(n) =
n, and g(n) = w(f(n+1)),

NTIME(f(n)) € NTIME(g(n)).

April 6, 2004 CS151 Lecture 3 25

NTIME Hierarchy Theorem

inputs
Proof 1
attempt Turing N
#1: Machines g’\:é:):

) NTM M
(what's accept x
wrong?) in f(n)

steps?
He:n[Y[n[Y]Y[n]Y]
April 6, 2004 CS151 Lecture 3 26

NTIME Hierarchy Theorem

 Let t(n) be large enough so that can
decide if NTM M running in time f(n)
accepts 1", in time t(n).

1t [m respon-
sible for

dealing with
NTM M,
(because |

Min |y [n |2]2]? can!)

Mmnlylyl2]2]? 2 O
o: [[l - WP

April 6, 2004 CS151 Lecture 3 27

in
"

NTIME Hierarchy Theorem

 Enough time on input 1t to do the
opposite of M;(1"):

1(n)

1 1
w CyPeeT -
b: . E

April 6, 2004 CS151 Lecture 3 28

NTIME Hierarchy Theorem

* For kin [n...t(n)] can to do same as
M;(1%*1) on input 1k

1t(n)

ln
m ..
o[[BEER] .. &

April 6, 2004 CS151 Lecture 3 29

NTIME Hierarchy Theorem

 Did we diagonalize against M;?
—if M; simulates D then:
1t

.

— equality along all arrows.
— contradiction.

April 6, 2004 CS151 Lecture 3 30

NTIME Hierarchy Theorem

¢ General scheme:
—interval [1...t(1)] kills M,
—interval [t(1)...t(t(1))] kills M,
—interval [t1(1)...ti(1)] kills M;
¢ Running time of D on 1" f(n+1) + time to
compute interval containing n

¢ conclude D in NTIME(g(n))

April 6, 2004 CS151 Lecture 3 31

Ladner’'s Theorem

e Assuming P # NP, what does the world
(inside NP) look like?

NP: NP:
NPC NPC
P P
April 6, 2004 CS151 Lecture 3 32

Ladner’'s Theorem

Theorem (Ladner): If P # NP, then there
exists L 00 NP that is neither in P nor NP-
complete.

« Proof: “lazy diagonalization”

— deal with similar problem as in NTIME
Hierarchy proof

April 6, 2004 CS151 Lecture 3 33

Ladner’'s Theorem

» Can enumerate (TMs deciding) all
languages in P.

—enumerate TMs so that each machine
appears infinitely often

—add clock to M; so that it runs in at most ni
steps

April 6, 2004 CS151 Lecture 3 34

Ladner’'s Theorem

e Can enumerate (TMs deciding) all NP-
complete languages.

—enumerate TMs f,computing all polynomial-
time functions

—machine N, decides language SAT reduces to
via f;if f;is reduction, else SAT (details
omitted...)

April 6, 2004 CS151 Lecture 3 35

Ladner’'s Theorem

¢ Our goal:]
Lone
that is M,
neither in -
P nor ‘ inputs
NP- No
complete |

NI

April 6, 2004 CS151 Lecture 3 36

Ladner’'s Theorem

¢ Top half, assuming P # NP:

« focus on M, I
«for any x, M,
can always |
find some z M,
> x on which

M, and SAT SAT|

differ (why?)

Ladner’'s Theorem

 Bottom half, assuming P # NP:
TRIV=3"

«focus on N, / /, input x input z
«for any x, Vad

can always TRIV ‘ ‘
find some z

> x on which No
N, and SAT |
differ (why?) N;

|

April 6, 2004 CS151 Lecture 3 38

—input x .
input z
April 6, 2004 CS151 Lecture 3 37
Ladner’'s Theorem
e Tryto “merge”: I
ST v
\
Mo]
e oninput x, either * i
— answer SAT(X) . -
— answer TRIV(x) N |_|
« if can decide which \O :
oneinP,L ONP N,
April 6, 2004 CS151 Lecture 3 39

Ladner’'s Theorem

» General scheme: f(n) slowly increasing
function

. I |
fxh[ofojo[t[1[1[2[2]2[2] ... | [N
—f(|x]) even: answer SAT(x)

—f(]x[) odd: answer TRIV(x)

« notice choice only depends on length of
input... that's OK

April 6, 2004 CS151 Lecture 3 40

Ladner’'s Theorem

¢ 1st attempt to define f(n)
« “eager f(n)": increase at 15t opportunity
« Inductive definition: f(0) = 0; f(n) =
—if f(n-1) = 2i, trying to kill M;
«if 3z < 10s.t. M(z) # SAT(z), then f(n) =
f(n-1) + 1; else f(n) = f(n-1)
—if f(n-1) = 2i+1, trying to kil N;
e if 3z <1Ms.t. Ni(z) # TRIV(z), then f(n) =
f(n-1) + 1; else f(n) = f(n-1)

April 6, 2004 CS151 Lecture 3 41

Ladner’'s Theorem

» Problem: eager f(n) too difficult to compute
« on input of length n,

— look at all strings z of length <n

— compute SAT(z) or Ni(z) for each !
* Solution: “lazy” f(n)

— on input of length n, only run for 2n steps

— if enough time to see should increase (over f(n-1)), do
it; else, stay same

— (alternate proof: give explicit f(n) that grows slowly
enough...)

April 6, 2004 CS151 Lecture 3 42

Ladner’'s Theorem

* I'm sup-
posed to
ensure M;
is killed

+ I finall
have v

¢ Key: n eventually large enough to
notice completed previous stage

M | |

enough
time to
check

input z

z

L B

f(|x|)\o\o\1\1\.,.\kwk‘]
inpuTz<xf/ {/
suppose k = 2i

« I notice
z gid the

Job,
increase f
to k+l

input x

April 6, 2004 CS151 Lecture 3 43

Ladner’'s Theorem

* Inductive definition of f(n)
—-f(0)=0
—f(n): for n steps compute f(0), f(1), f(2),...

L
flofof1]1]--[k[k[k] -- " |
got this far in n steps input x,
[x]=n
April 6, 2004 CS151 Lecture 3 44

Ladner’'s Theorem

—ifk =2i:
« for n steps try (lex order) to find z s.t.
SAT(z) # M;(z) and f(|z]) even
« if found, f(n) = f(n-1)+1 else f(n-1)
—ifk=2i+1:
« for n steps try (lex order) to find z s.t.
TRIV(z) # Ni(z) and f(|z]) odd
« if found, f(n) = f(n-1)+1 else f(n-1)

April 6, 2004 CS151 Lecture 3 45

Ladner’'s Theorem

* Finishing up:
L ={x|x OSAT if f(|x|) even,
x O TRIV if f(|x]) odd }

e L O NP since f(|x|) can be computed in
O(n) time

April 6, 2004 CS151 Lecture 3 46

Ladner’'s Theorem

» suppose M, decides L
— f gets stuck at 2i
—L=SATforz:|z|>n,
— implies SAT O P. Contradiction.
» suppose N, decides L
— f gets stuck at 2i+1
—L=TRIVforz:|z| > n,
— implies L(N;) O P. Contradiction.

« (last of diagonalization...)

April 6, 2004 CS151 Lecture 3 a7

Summary

* nondeterminism
* nondeterministic time classes:
NP, coNP, NEXP
NTIME Hierarchy Theorem:
NP # NEXP
* major open questions:

? ?
P<NP NP £ coNP

April 6, 2004 CS151 Lecture 3 48

Summary

NP-“intermediate” problems

— technique: delayed diagonalization
e complete problems:
— circuit SAT is NP-complete
— UNSAT is coNP-complete
— succinct circuit SAT is NEXP-complete

April 6, 2004 CS151 Lecture 3 49

Summary

coNEXP \

— NEXP

/

PSPACE

/ NP coNP

0

CS151 Lecture 3

April 6, 2004

