
1

CS151
Complexity Theory

Lecture 3
April 6, 2004

April 6, 2004 CS151 Lecture 3 2

Introduction

A motivating question:

• Can computers replace mathematicians?

L = { (x, 1k) : statement x has a proof of
length at most k }

April 6, 2004 CS151 Lecture 3 3

Introduction

• This lecture:
– nondeterminism

– nondeterministic time classes

– NP, NP-completeness, P vs. NP
– coNP
– NTIME Hierarchy

– Ladner’s Theorem

April 6, 2004 CS151 Lecture 3 4

Nondeterminism

• Recall deterministic TM

– Q finite set of states
– � alphabet including blank: “_”

– qstart, qaccept, qreject in Q

– transition function:
� : Q x �� Q x � x {L, R, -}

April 6, 2004 CS151 Lecture 3 5

Nondeterminism

• nondeterministic Turing Machine:
– Q finite set of states

– � alphabet including blank: “_”

– qstart, qaccept, qreject in Q
– transition relation

� ⊂ (Q x �) x (Q x � x {L, R, -})

• given current state and symbol scanned,
several choices of what to do next.

April 6, 2004 CS151 Lecture 3 6

Nondeterminism
• deterministic TM: given current configuration,

unique next configuration

• nondeterministic TM: given current configuration,
several possible next configurations

�����������	
�� �����������	
��

����
�� ��
�
��

�∈ � ��∉ �

2

April 6, 2004 CS151 Lecture 3 7

Nondeterminism

• asymmetric accept/reject criterion

�����������	
�� �����������	
��

����
��
��
�
��

��∈ � ��∉ �

���
���

�������������
�����

April 6, 2004 CS151 Lecture 3 8

Nondeterminism

• all paths terminate

• time used: maximum length of paths from
root

• space used: maximum # of work tape
squares touched on any path from root

April 6, 2004 CS151 Lecture 3 9

Nondeterminism

• NTIME(f(n)) = languages decidable by a
multi-tape NTM that runs for at most f(n)
steps on any computation path, where n is
the input length, and f :N� N

• NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f :N� N

April 6, 2004 CS151 Lecture 3 10

Nondeterminism

• Focus on time classes first:

NP = ∪∪∪∪k NTIME(nk)

NEXP = ∪∪∪∪k NTIME(2nk)

April 6, 2004 CS151 Lecture 3 11

Poly-time verifiers

Very useful alternate definition of NP:

Theorem: language L is in NP if and only if
it is expressible as:

L = { x | � y, |y| � |x|k, (x, y) ∈ R }

where R is a language in P.

• poly-time TM MR deciding R is a “verifier”

“witness” or
“certificate”

efficiently
verifiable

April 6, 2004 CS151 Lecture 3 12

Poly-time verifiers

• Example: 3SAT expressible as
3SAT = {� : � is a 3-CNF formula for which

∃ assignment A for which (�, A) ∈ R}
R = {(�, A) : A is a sat. assign. for �}

– satisfying assignment A is a “witness” of the
satisfiability of � (it “certifies” satisfiability of �)

– R is decidable in poly-time

3

April 6, 2004 CS151 Lecture 3 13

Poly-time verifiers

L = { x | � y, |y| � |x|k, (x, y) ∈ R }

Proof: (⇐) give poly-time NTM deciding L

phase 1: “guess” y with
|x|k nondeterministic
steps

phase 2:
decide if
(x, y) ∈ R

April 6, 2004 CS151 Lecture 3 14

Poly-time verifiers

Proof: (�) given L ∈ NP, describe L as:
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

– L is decided by NTM M running in time nk

– define the language
R = { (x, y) : y is an accepting computation

history of M on input x}
– check: accepting history has length � |x|k

– check: R is decidable in polynomial time
– check: M accepts x iff ∃y, |y| � |x|k, (x, y) ∈ R

April 6, 2004 CS151 Lecture 3 15

Why NP?

• not a realistic model of computation
• but, captures important computational

feature of many problems:
exhaustive search works

• contains huge number of natural, practical
problems

• many problems have form:
L = { x | � y s.t. (x, y) ∈ R }

problem
requirements

object we
are seeking

efficient test:
does y meet

requirements?

April 6, 2004 CS151 Lecture 3 16

Why NP?

• Why not EXP?

– too strong!

– important problems not complete.

April 6, 2004 CS151 Lecture 3 17

Relationships between classes
• Easy: P ⊂ NP, EXP ⊂ NEXP

– TM special case of NTM

• Recall: L ∈ NP iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

• NP ⊂ PSPACE (try all possible y)
• The central question:

P = NP
recognizing a solution vs. finding a solution

�

April 6, 2004 CS151 Lecture 3 18

NP-completeness

• Circuit SAT: given a Boolean circuit (gates
∧, ∨, ¬), with variables y1, y2, …, ym is
there some assignment that makes it
output 1?

Theorem: Circuit SAT is NP-complete.
• Proof:

– clearly in NP

4

April 6, 2004 CS151 Lecture 3 19

NP-completeness

– Given L ∈ NP of form
L = { x | � y s.t. (x, y) ∈ R }

�� ��
 �� �� ��
 ��

��� ���
��������
 ���!

��� "�#�$�∈ !

– hardwire input x; leave y as variables

April 6, 2004 CS151 Lecture 3 20

NEXP-completeness

• Succinct Circuit SAT: given a succinctly
encoded Boolean circuit (gates ∧, ∨, ¬),
with variables y1, y2, …, ym is there some
assignment that makes it output 1?

Theorem: Succinct Circuit SAT is NEXP-
complete.

• Proof:
– same trick as for Succinct CVAL EXP-

complete.

April 6, 2004 CS151 Lecture 3 21

Complement classes

• In general, if C is a complexity class
• co-C is the complement class, containing

all complements of languages in C
– L ∈ C implies (�* - L) ∈ co-C
– (�* - L) ∈ C implies L ∈ co-C

• Some classes closed under complement:
– e.g. co-P = P

April 6, 2004 CS151 Lecture 3 22

coNP

• Is NP closed under complement?

����
�� ��
�
��

��∈ � ��∉ �

����
����
�
��

��∉ ���∈ �

Can we transform
this machine:

into this machine?

April 6, 2004 CS151 Lecture 3 23

coNP

• “proof system” interpretation:

• Recall: L ∈ NP iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

����� � ����� �
%
�� �
��

• languages in NP have “short proofs”
• coNP captures (in its complete problems)

problems least likely to have “short proofs”.
– e.g., UNSAT is coNP-complete

April 6, 2004 CS151 Lecture 3 24

coNP

• P = NP implies NP = coNP

• Belief:

NP � coNP

– another major open problem

5

April 6, 2004 CS151 Lecture 3 25

NTIME Hierarchy Theorem

Theorem (Nondeterministic Time Hierarchy
Theorem):

For every proper complexity function f(n) �
n, and g(n) = �(f(n+1)),

NTIME(f(n)) � NTIME(g(n)).

April 6, 2004 CS151 Lecture 3 26

NTIME Hierarchy Theorem

�������

&

�

&

�

�

&

�

& � & & �� &' ()

* ������
+�����
�� "+#��$)�

��
��
,*+�+�
������ ��
���	
�$�
�������

Proof
attempt
#1:

(what’s
wrong?)

April 6, 2004 CS151 Lecture 3 27

NTIME Hierarchy Theorem

• Let t(n) be large enough so that can
decide if NTM M running in time f(n)
accepts 1n, in time t(n).

� � � � � � �

� � � � � � �

� � � � � � �

-�-�-�
��"�$��

+�

+�.�

+�
-
-
-�

-
-
-�

/ �) -�-�-�

I’m respon-
sible for
dealing with
NTM Mi
(because I
can!)

April 6, 2004 CS151 Lecture 3 28

NTIME Hierarchy Theorem

• Enough time on input 1t(n) to do the
opposite of Mi(1n):

� � � � �+�

�/ �) -�-�-�

-�-�-�
��"�$��

April 6, 2004 CS151 Lecture 3 29

NTIME Hierarchy Theorem

• For k in [n…t(n)] can to do same as
Mi(1k+1) on input 1k

� � � � �+�

�/ �) -�-�-�

-�-�-�
��"�$��

April 6, 2004 CS151 Lecture 3 30

NTIME Hierarchy Theorem

• Did we diagonalize against Mi?
– if Mi simulates D then:

– equality along all arrows.
– contradiction.

� � � � �+�

�/ �) -�-�-�

-�-�-�
��"�$��

6

April 6, 2004 CS151 Lecture 3 31

NTIME Hierarchy Theorem

• General scheme:
– interval [1...t(1)] kills M1

– interval [t(1)…t(t(1))] kills M2

– interval [ti-1(1)…ti(1)] kills Mi

• Running time of D on 1n: f(n+1) + time to
compute interval containing n

• conclude D in NTIME(g(n))

April 6, 2004 CS151 Lecture 3 32

Ladner’s Theorem

• Assuming P � NP, what does the world
(inside NP) look like?

�
�

�
�

�
�

�
�

April 6, 2004 CS151 Lecture 3 33

Ladner’s Theorem

Theorem (Ladner): If P � NP, then there
exists L ∈ NP that is neither in P nor NP-
complete.

• Proof: “lazy diagonalization”
– deal with similar problem as in NTIME

Hierarchy proof

April 6, 2004 CS151 Lecture 3 34

Ladner’s Theorem

• Can enumerate (TMs deciding) all
languages in P.
– enumerate TMs so that each machine

appears infinitely often

– add clock to Mi so that it runs in at most ni

steps

April 6, 2004 CS151 Lecture 3 35

Ladner’s Theorem

• Can enumerate (TMs deciding) all NP-
complete languages.
– enumerate TMs fi computing all polynomial-

time functions

– machine Ni decides language SAT reduces to
via fi if fi is reduction, else SAT (details
omitted…)

April 6, 2004 CS151 Lecture 3 36

Ladner’s Theorem

• Our goal:
L ∈ NP
that is
neither in
P nor
NP-
complete

+�

+0

��������

,0

,�

� �

� �

7

April 6, 2004 CS151 Lecture 3 37

Ladner’s Theorem

• Top half, assuming P � NP:

+�

+0

1 � *

� �

�������
������2

• focus on Mi

• for any x,
can always
find some z
� x on which
Mi and SAT
differ (why?)

April 6, 2004 CS151 Lecture 3 38

Ladner’s Theorem

• Bottom half, assuming P � NP:

* !3�

,0

,�

� �

������� ������2
* !3��4�56

• focus on Ni

• for any x,
can always
find some z
� x on which
Ni and SAT
differ (why?)

April 6, 2004 CS151 Lecture 3 39

Ladner’s Theorem

• Try to “merge”:

• on input x, either
– answer SAT(x)
– answer TRIV(x)

• if can decide which
one in P, L ∈ NP

1 � * * !3�
+�

+0

�

,0

,�

� �

� �

-�-�-�
7

7

7

7

April 6, 2004 CS151 Lecture 3 40

Ladner’s Theorem

• General scheme: f(n) slowly increasing
function

– f(|x|) even: answer SAT(x)
– f(|x|) odd: answer TRIV(x)

• notice choice only depends on length of
input… that’s OK

� -�-�-�

 "8�8$ 0 0 0 � � � � � � � -�-�-

1 � *

* !3�

April 6, 2004 CS151 Lecture 3 41

Ladner’s Theorem

• 1st attempt to define f(n)
• “eager f(n)”: increase at 1st opportunity
• Inductive definition: f(0) = 0; f(n) =

– if f(n-1) = 2i, trying to kill Mi
• if � z < 1n s.t. Mi(z) � SAT(z), then f(n) =

f(n-1) + 1; else f(n) = f(n-1)
– if f(n-1) = 2i+1, trying to kill Ni

• if � z < 1n s.t. Ni(z) � TRIV(z), then f(n) =
f(n-1) + 1; else f(n) = f(n-1)

April 6, 2004 CS151 Lecture 3 42

Ladner’s Theorem

• Problem: eager f(n) too difficult to compute

• on input of length n,
– look at all strings z of length < n
– compute SAT(z) or Ni(z) for each !

• Solution: “lazy” f(n)
– on input of length n, only run for 2n steps
– if enough time to see should increase (over f(n-1)), do

it; else, stay same
– (alternate proof: give explicit f(n) that grows slowly

enough…)

8

April 6, 2004 CS151 Lecture 3 43

Ladner’s Theorem

• Key: n eventually large enough to
notice completed previous stage

�

 "8�8$ 0 0 � � 9 9 9

-�-�-�

-�-�-� -�-�-�

+�

-�-�-�

�������
������2�:��

7

������
�9�4���

; 3(�����.
���
�����

����
�+�
���9�<<
�

; 3� ���<<��
��%
�

������
���
����
��
�9�
������2

; 3������
�
2�������
�
��=#�
����
��
� �
���9>�

April 6, 2004 CS151 Lecture 3 44

Ladner’s Theorem

• Inductive definition of f(n)
– f(0) = 0

– f(n): for n steps compute f(0), f(1), f(2),…

�

 0 0 � � 9 9 9

-�-�-�

-�-�-� -�-�-�

-�-�-�

�������#�
8�8�4��

��������� ����������
��

April 6, 2004 CS151 Lecture 3 45

Ladner’s Theorem

– if k = 2i:

• for n steps try (lex order) to find z s.t.
SAT(z) � Mi(z) and f(|z|) even

• if found, f(n) = f(n-1)+1 else f(n-1)
– if k = 2i + 1:

• for n steps try (lex order) to find z s.t.
TRIV(z) � Ni(z) and f(|z|) odd

• if found, f(n) = f(n-1)+1 else f(n-1)

April 6, 2004 CS151 Lecture 3 46

Ladner’s Theorem

• Finishing up:

L = { x | x ∈ SAT if f(|x|) even,
x ∈ TRIV if f(|x|) odd }

• L ∈ NP since f(|x|) can be computed in
O(n) time

April 6, 2004 CS151 Lecture 3 47

Ladner’s Theorem

• suppose Mi decides L
– f gets stuck at 2i
– L ≡ SAT for z : |z| > no

– implies SAT ∈ P. Contradiction.

• suppose Ni decides L
– f gets stuck at 2i+1
– L ≡ TRIV for z : |z| > no

– implies L(Ni) ∈ P. Contradiction.

• (last of diagonalization…)

April 6, 2004 CS151 Lecture 3 48

Summary

• nondeterminism
• nondeterministic time classes:

NP, coNP, NEXP
• NTIME Hierarchy Theorem:

NP � NEXP
• major open questions:

P = NP NP = coNP
� �

9

April 6, 2004 CS151 Lecture 3 49

Summary

• NP-“intermediate” problems

– technique: delayed diagonalization

• complete problems:
– circuit SAT is NP-complete
– UNSAT is coNP-complete

– succinct circuit SAT is NEXP-complete

April 6, 2004 CS151 Lecture 3 50

Summary

��

�
� ��

�

� ��

�
 ���

��� ��

