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Introduction

A motivating question:

• Can computers replace mathematicians?

L = { (x, 1k) : statement x has a proof of 
length at most k }
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Introduction

• This lecture:
– nondeterminism

– nondeterministic time classes

– NP, NP-completeness, P vs. NP
– coNP
– NTIME Hierarchy

– Ladner’s Theorem
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Nondeterminism

• Recall deterministic TM

– Q finite set of states
– � alphabet including blank: “_”

– qstart, qaccept, qreject in Q

– transition function:
� : Q x �� Q x � x {L, R, -}
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Nondeterminism

• nondeterministic Turing Machine:
– Q finite set of states

– � alphabet including blank: “_”

– qstart, qaccept, qreject in Q
– transition relation

� ⊂ (Q x �) x (Q x � x {L, R, -}) 

• given current state and symbol scanned, 
several choices of what to do next.
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Nondeterminism
• deterministic TM: given current configuration, 

unique next configuration

• nondeterministic TM: given current configuration, 
several  possible next configurations
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Nondeterminism

• asymmetric accept/reject criterion

�����������	
�� �����������	
��

����
��
��
�
��

��∈ � ��∉ �

���
���

�������������
�����

April 6, 2004 CS151 Lecture 3 8

Nondeterminism

• all paths terminate

• time used: maximum length of paths from 
root

• space used: maximum # of work tape 
squares touched on any path from root 
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Nondeterminism

• NTIME(f(n)) = languages decidable by a 
multi-tape NTM that runs for at most f(n) 
steps on any computation path, where n is 
the input length, and f :N� N

• NSPACE(f(n)) = languages decidable by a 
multi-tape NTM that touches at most f(n) 
squares of its work tapes along any 
computation path, where n is the input 
length, and f :N� N
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Nondeterminism

• Focus on time classes first:

NP = ∪∪∪∪k NTIME(nk) 

NEXP = ∪∪∪∪k NTIME(2nk)
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Poly-time verifiers

Very useful alternate definition of NP:

Theorem: language L is in NP if and only if 
it is expressible as:

L = { x | � y, |y| � |x|k, (x, y) ∈ R }

where R is a language in P.

• poly-time TM MR deciding R is a “verifier”

“witness” or 
“certificate”

efficiently 
verifiable
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Poly-time verifiers

• Example: 3SAT expressible as
3SAT = {� : � is a 3-CNF formula for which  

∃ assignment A for which (�, A) ∈ R}
R = {(�, A) : A is a sat. assign. for �}

– satisfying assignment A is a “witness” of the 
satisfiability of � (it “certifies” satisfiability of �)

– R is decidable in poly-time
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Poly-time verifiers

L = { x | � y, |y| � |x|k, (x, y) ∈ R }

Proof: (⇐)  give poly-time NTM deciding L

phase 1: “guess” y with 
|x|k nondeterministic 
steps

phase 2: 
decide if 
(x, y) ∈ R 
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Poly-time verifiers

Proof: (�) given L ∈ NP, describe L as:
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

– L is decided by NTM M running in time nk

– define the language
R = { (x, y) : y is an accepting computation 

history of M on input x}
– check: accepting history has length � |x|k

– check: R is decidable in polynomial time
– check: M accepts x iff ∃y, |y| � |x|k, (x, y) ∈ R
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Why NP?

• not a realistic model of computation
• but, captures important computational 

feature of many problems: 
exhaustive search works

• contains huge number of natural, practical 
problems

• many problems have form:
L = { x | � y s.t. (x, y) ∈ R }

problem 
requirements

object we 
are seeking

efficient test: 
does y meet 

requirements?

April 6, 2004 CS151 Lecture 3 16

Why NP?

• Why not EXP?

– too strong! 

– important problems not complete.
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Relationships between classes
• Easy: P ⊂ NP, EXP ⊂ NEXP

– TM special case of NTM

• Recall: L ∈ NP iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

• NP ⊂ PSPACE (try all possible y)
• The central question:

P = NP
recognizing a solution vs. finding a solution

�
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NP-completeness

• Circuit SAT: given a Boolean circuit (gates 
∧, ∨, ¬), with variables y1, y2, …, ym is 
there some assignment that makes it 
output 1?

Theorem: Circuit SAT is NP-complete.
• Proof:  

– clearly in NP
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NP-completeness

– Given L ∈ NP of form
L = { x | � y s.t. (x, y) ∈ R }
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– hardwire input x; leave y as variables
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NEXP-completeness

• Succinct Circuit SAT: given a succinctly 
encoded Boolean circuit (gates ∧, ∨, ¬), 
with variables y1, y2, …, ym is there some 
assignment that makes it output 1?

Theorem: Succinct Circuit SAT is NEXP-
complete.

• Proof: 
– same trick as for Succinct CVAL EXP-

complete.
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Complement classes

• In general, if C is a complexity class
• co-C is the complement class, containing 

all complements of languages in C
– L ∈ C implies (�* - L) ∈ co-C
– (�* - L) ∈ C implies L ∈ co-C

• Some classes closed under complement:
– e.g. co-P = P
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coNP

• Is NP closed under complement?
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Can we transform 
this machine:

into this machine?
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coNP

• “proof system” interpretation:

• Recall: L ∈ NP iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }
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• languages in NP have “short proofs”
• coNP captures (in its complete problems) 

problems least likely to have “short proofs”.
– e.g., UNSAT is coNP-complete
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coNP

• P = NP implies NP = coNP

• Belief: 

NP � coNP

– another major open problem
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NTIME Hierarchy Theorem

Theorem (Nondeterministic Time Hierarchy 
Theorem): 

For every proper complexity function f(n) �
n, and g(n) = �(f(n+1)), 

NTIME(f(n)) � NTIME(g(n)).
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NTIME Hierarchy Theorem
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Proof 
attempt 
#1:

(what’s 
wrong?)
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NTIME Hierarchy Theorem

• Let t(n) be large enough so that can 
decide if NTM M running in time f(n) 
accepts 1n, in time t(n).
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I’m respon-
sible for 
dealing with 
NTM Mi
(because I 
can!)
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NTIME Hierarchy Theorem

• Enough time on input 1t(n) to do the 
opposite of Mi(1n):
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NTIME Hierarchy Theorem

• For k in [n…t(n)] can to do same as 
Mi(1k+1) on input 1k
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NTIME Hierarchy Theorem

• Did we diagonalize against Mi?
– if Mi simulates D then:

– equality along all arrows.
– contradiction.
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NTIME Hierarchy Theorem

• General scheme: 
– interval [1...t(1)] kills M1

– interval [t(1)…t(t(1))] kills M2

– interval [ti-1(1)…ti(1)] kills Mi

• Running time of D on 1n: f(n+1) +  time to 
compute interval containing n

• conclude D in NTIME(g(n))
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Ladner’s Theorem

• Assuming P � NP, what does the world 
(inside NP) look like?
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Ladner’s Theorem

Theorem (Ladner): If P � NP, then there 
exists L ∈ NP that is neither in P nor NP-
complete.

• Proof: “lazy diagonalization”
– deal with similar problem as in NTIME 

Hierarchy proof  
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Ladner’s Theorem

• Can enumerate (TMs deciding) all 
languages in P.
– enumerate TMs so that each machine 

appears infinitely often

– add clock to Mi so that it runs in at most ni

steps
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Ladner’s Theorem

• Can enumerate (TMs deciding) all NP-
complete languages.
– enumerate TMs fi computing all polynomial-

time functions

– machine Ni decides language SAT reduces to 
via fi if fi is reduction, else SAT (details 
omitted…)
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Ladner’s Theorem

• Our goal: 
L ∈ NP
that is 
neither in 
P nor 
NP-
complete
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Ladner’s Theorem

• Top half, assuming P � NP:
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• focus on Mi

• for any x, 
can always 
find some z 
� x on which 
Mi and SAT 
differ (why?)
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Ladner’s Theorem

• Bottom half, assuming P � NP:
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• focus on Ni

• for any x, 
can always 
find some z 
� x on which 
Ni and SAT 
differ (why?)
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Ladner’s Theorem

• Try to “merge”:

• on input x, either
– answer SAT(x)
– answer TRIV(x)

• if can decide which 
one in P, L ∈ NP

1 � * * !3�
+�

+0

�

,0

,�

� �

� �

-�-�-�
7

7

7

7

April 6, 2004 CS151 Lecture 3 40

Ladner’s Theorem

• General scheme: f(n) slowly increasing 
function

– f(|x|) even: answer SAT(x)
– f(|x|) odd: answer TRIV(x)

• notice choice only depends on length of 
input… that’s OK

� -�-�-�

 "8�8$ 0 0 0 � � � � � � � -�-�-

1 � *
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Ladner’s Theorem 

• 1st attempt to define f(n)
• “eager f(n)”: increase at 1st opportunity
• Inductive definition: f(0) = 0; f(n) = 

– if f(n-1) = 2i, trying to kill Mi
• if � z < 1n s.t. Mi(z) � SAT(z), then f(n) =  

f(n-1) + 1; else f(n) = f(n-1)
– if f(n-1) = 2i+1, trying to kill Ni

• if � z < 1n s.t. Ni(z) � TRIV(z), then f(n) = 
f(n-1) + 1; else f(n) = f(n-1)
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Ladner’s Theorem

• Problem: eager f(n) too difficult to compute

• on input of length n,
– look at all strings z of length < n
– compute SAT(z) or Ni(z) for each ! 

• Solution: “lazy” f(n) 
– on input of length n, only run for 2n steps
– if enough time to see should increase (over f(n-1)), do 

it; else, stay same
– (alternate proof: give explicit f(n) that grows slowly 

enough…)
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Ladner’s Theorem

• Key: n eventually large enough to 
notice completed previous stage
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Ladner’s Theorem

• Inductive definition of f(n)
– f(0) = 0

– f(n): for n steps compute f(0), f(1), f(2),…
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Ladner’s Theorem

– if k = 2i:

• for n steps try (lex order) to find z s.t. 
SAT(z) � Mi(z) and f(|z|) even

• if found, f(n) = f(n-1)+1 else f(n-1)
– if k = 2i + 1:

• for n steps try (lex order) to find z s.t. 
TRIV(z) � Ni(z) and f(|z|) odd

• if found, f(n) = f(n-1)+1 else f(n-1)

April 6, 2004 CS151 Lecture 3 46

Ladner’s Theorem

• Finishing up:

L = { x | x ∈ SAT if f(|x|) even, 
x ∈ TRIV if f(|x|) odd }

• L ∈ NP since f(|x|) can be computed in 
O(n) time
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Ladner’s Theorem

• suppose Mi decides L
– f gets stuck at 2i
– L ≡ SAT for z : |z| > no

– implies SAT ∈ P. Contradiction.

• suppose Ni decides L
– f gets stuck at 2i+1
– L ≡ TRIV for z : |z| > no

– implies L(Ni) ∈ P. Contradiction.

• (last of diagonalization…)
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Summary

• nondeterminism
• nondeterministic time classes: 

NP, coNP, NEXP
• NTIME Hierarchy Theorem:

NP � NEXP
• major open questions:

P = NP NP = coNP
� �
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Summary

• NP-“intermediate” problems

– technique: delayed diagonalization

• complete problems:
– circuit SAT is NP-complete
– UNSAT is coNP-complete

– succinct circuit SAT is NEXP-complete
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Summary
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