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Optimization Problems

¢ many hard problems (especially NP-hard)
are optimization problems

—e.g. find shortest TSP tour
—e.g. find smallest vertex cover
—e.g. find largest clique

—may be minimization or maximization problem
— “opt” = value of optimal solution
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Outline

 approximation algorithms
« Probabilistically Checkable Proofs

« elements of the proof of the PCP Theorem
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Approximation Algorithms

often happy with approximately optimal
solution

—warning: lots of heuristics

—we want approximation algorithm with
guaranteed approximation ratio of r
— meaning: on every input X, output is
guaranteed to have value
at most r*opt for minimization
at least opt/r for maximization
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Approximation Algorithms

* “gap-producing” reduction from NP-
complete problem L;to L,

no rk

yes opt

L

L, (min. problem)
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Gap producing reductions

r-gap-producing reduction:

—f computable in poly time

—-x 0L; = opt(f(x)) < k

—x 0L, = opt(f(x)) > rk

— for max. problems use “= k” and “< k/r”
Note: target problem is not a language
—promise problem (yes O no not all strings)
— “promise”: instances always from (yes O no)
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Gap producing reductions

no yes
no \— rk yes \— k
i i
yes k no k/r
yes no
L1 L2 (mln) Ll Lz (max.

* Main purpose:
— r-approximation algorithm for L, distinguishes
between f(yes) and f(no); can use to decide L,
—“NP-hard to approximate to within r”
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Gap preserving reductions

 gap-producing reduction difficult (more later)
* but gap-preserving reductions easier

Gap preserving reductions

« Example gap-preserving reduction:
—reduce MAX-k-SAT with gap e—
—to MAX-3-SAT with gap €’

— “MAX-k-SAT is NP-hard to approx. within € =
MAX-3-SAT is NP-hard to approx. within € ”

MAXSNP (PY) — a class of problems

reducible to each other in this way

— PTAS for MAXSNP-complete problem iff
PTAS for all problems in MAXSNP
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yes

Warning: many yes K rk

reductions not r

gap-preserving f K

k X no
no f/— L, (min.)
L; (min.)
May 25, 2004 CS151 Lecture 16 8
MAX-k-SAT

 Missing link: first gap-producing reduction

— history’s guide
it should have something to do with SAT

* Definition: MAX-k-SAT with gap €
—instance: k-CNF ¢
— YES: some assignment satisfies all clauses
— NO: no assignment satisfies more than (1 — €)

fraction of clauses
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Proof systems viewpoint

* k-SAT NP-hard = for any language L [J
NP proof system of form:
— given x, compute reduction to k-SAT: ¢,
— expected proof is satisfying assignment for ¢,

— verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x O L = Pr|verifier accepts] = 1
x O L = Pr|verifier accepts] < 1
May 25, 2004
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Proof systems viewpoint

* MAX-k-SAT with gap € NP-hard = for any
language L [0 NP proof system of form:
— given x, compute reduction to MAX-k-SAT: ¢,
— expected proof is satisfying assignment for ¢,

— verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x O L = Pr|verifier accepts] = 1
x O L = Pr{verifier accepts] < (1 — )
— can repeat O(1/g) times for error < %2
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Proof systems viewpoint

« can think of reduction showing k-SAT NP-hard
as designing a proof system for NP in which:
— verifier only performs local tests

can think of reduction showing MAX-k-SAT with
gap € NP-hard as designing a proof system for
NP in which:

— verifier only performs local tests

— invalidity of proof* evident all over: “holographic proof”
and an ¢ fraction of tests notice such invalidity
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PCP

e PCP[r(n),q(n)]: set of languages L with
p.p.t. verifier V that has (r, q)-restricted
access to a string “proof”

—V tosses O(r(n)) coins

—V accesses proof in O(q(n)) locations

— (completeness) x 0 L = Oproof such that
Pr[V(x, proof) accepts] = 1

— (soundness) x O L = O proof*
Pr[V(x, proof*) accepts] < %2
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PCP

« Probabilistically Checkable Proof (PCP)
permits novel way of verifying proof:
— pick random local test
— query proof in specified k locations
— accept iff passes test

« fancy name for a NP-hardness reduction
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PCP

* Two observations:
—PCP[1, poly n] = NP
proof?

—PCP[log n, 1] O NP
proof?

The PCP Theorem (AS, ALMSS):
PCP[log n, 1] = NP.
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PCP

Corollary: MAX-k-SAT is NP-hard to
approximate to within some constant .
—using PCPJlog n, 1] protocol for, say, VC
— enumerate all 20029 ") = poly(n) sets of queries
— construct a k-CNF ¢, for verifier's test on each

« note: k-CNF since function on only k bits
—“YES” VC instance = all clauses satisfiable
—“NO” VC instance = every assignment fails

to satisfy at least %2 of the ¢, = fails to satisfy
an ¢ = (%2)2% fraction of clauses.

May 25, 2004 CS151 Lecture 16 17

The PCP Theorem

» Elements of proof:

— arithmetization of 3-SAT
« we will do this

— low-degree test
» we will state but not prove this

— self-correction of low-degree polynomials
« we will state but not prove this

— proof composition
» we will describe the idea
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The PCP Theorem

» Two major components:

— NP O PCPJ[log n, polylog n] (“outer verifier”)
« we will prove this from scratch, assuming low-

degree test, and self-correction of low-degree
polynomials

— NP 0O PCP[n8, 1] (“inner verifier”)
« we will not prove
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Proof Composition (idea)

NP 0O PCP[log n, polylog n] (“outer verifier”)
NP [0 PCP[n3, 1] (“inner verifier”)

e composition of verifiers (continued):
— final proof contains proof that C(ry, r,, r5) = 1
for inner verifier's use
— use inner verifier to verify that C(ry,r,,rg) = 1
— O(log n)+polylog n randomness
—O(1) queries
— tricky issue: consistency
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Proof Composition (idea)

NP [0 PCP[log n, polylog n] (“outer verifier”)
NP O PCP[n3, 1] (“inner verifier”)

e composition of verifiers:

— reformulate “outer” so that it uses O(log n)
random bits to make 1 query to each of 3
provers

—replies ry, r,, r3 have length polylog n

— Key: accept/reject decision computable from
I, Iy, I3 by small circuit C
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Proof Composition (idea)

* NP O PCPJlog n, 1] comes from
— repeated composition

— PCP[log n, polylog n] with PCP[log n, polylog n] yields
PCPJlog n, polyloglog n]

— PCPllog n, polyloglog n] with PCP[n3, 1] yields
PCPJlog n, 1]
¢ many details omitted...
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The outer verifier

Theorem: NP [0 PCPJ[log n, polylog n]

Proof (first steps):

— define: Polynomial Constraint Satisfaction
(PCS) problem

— prove: PCS gap problem is NP-hard
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NP [0 PCPJ[log n, polylog n]

* MAX-k-SAT
— given: k-CNF ¢
— output: max. # of simultaneously satisfiable clauses
« generalization: MAX-k-CSP
—given:
* variables xy, X,, ..., X, taking values from set S
* k-ary constraints C,, C,, ..., C,

— output: max. # of simultaneously satisfiable
constraints
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NP 0O PCPJ[log n, polylog n]

« algebraic version: MAX-k-PCS

—given:
« variables xy, X,, ..., X, taking values from field Fq
* n=q" for some integer m
« k-ary constraints C,, C,, ..., C,

—assignment viewed as f:(F)™ - F,

— output: max. # of constraints simultaneously

satisfiable by an assignment that has deg. = d
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NP 0O PCPJ[log n, polylog n]

* MAX-k-PCS gap problem:
—given:
* variables xy, X,, ..., X, taking values from field Fq
* n=q" for some integer m
« k-ary constraints C,, C,, ..., C,
—assignment viewed as f:(F)™ - F,

— YES: some degree d assignment satisfies all
constraints

— NO: no degree d assignment satisfies more
than (1-¢) fraction of constraints
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NP [0 PCPJ[log n, polylog n]

Lemma: for every constant 1 > € > 0, the
MAX-k-PCS gap problem with
t k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = g™ variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)
gap ¢
is NP-hard.
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NP O PCPJlog n, polylog n]

t k-ary constraints with k = polylog(n)
field size g = polylog(n)
n = qM variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)
 check: headed in right direction
— log n random bits to pick a constraint
— query assignment in polylog(n) locations to determine
if it is satisfied
— completeness 1; soundness 1-¢
(if prover keeps promise to supply degree d polynomial)
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NP [0 PCPJlog n, polylog n]

¢ Proof of Lemma:
—reduce from 3-SAT
— 3-CNF @(Xq, Xg,-..s Xp)
—can encode as :[n] x [n] x [n] x {0,1}% - {0,1}
—Y(iy, Iy, i3, by, by, bg) = 1iff @ contains clause
(x‘lbl 0 xizbz O xi3b3)

—e.g. (xThxg%,) = Y(3,5,2,1,0,1) = 1
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NP [0 PCPJ[log n, polylog n]

—pick H O F, with {0,1} O H, |H| = polylog n
— pick m = O(log n/loglog n) so |H|™=n
— identify [n] with H™
—:HM x H™ x H™ x H3 - {0,1} encodes ¢
—assignment a:H™ - {0,1}
— Key: a satisfies @ iff Oiy,i,,i3,b,,0,,b5
W(iy,ipizby,byb5) =0 or
a(i;)=b, or a(i,)=b, or a(i;)=b,

May 25, 2004 CS151 Lecture 16 30




NP 0O PCPJ[log n, polylog n]

W:H™ x HM x H™ x H3 -, {0,1} encodes @
a satisfies @ iff Oiy,i,,i5,0,,0,,b5
W(iy,ipig,by,b,,b3) = 0 or a(i;)=b, or a(i,)=b, or a(i;)=b,

—extend Y to a function i (F,)3™3 — F; with
degree at most |H| in each variable

— can extend any assignment a:H™ - {0,1} to
a(Fy)™ - F, with degree |H| in each variable
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NP 0O PCPJ[log n, polylog n]

W:(Fg)3™3 - F, encodes ¢
a’:(Fq)m_. Fqs.a. iff O(iy,ip,i5,bq,0,,05) O H3M*S
W(iy,inis,by,b,,b5) = 0 or a(i;)=b, or a(i,)=b, or a(i;)=b,

— define: p,:(F,)*™3 - F, from a’ as follows
Paliziziig,b1,05,b5) =
W' (ig,ipiz,by, 05, 05)(@ (1) - by )(@'(1,) - by )(@(is) - bs)
—a’ s.a. iff O (iy,ip,ig,by,by,bg) O HIMHS
Pa(iniziisy,05,05) = 0
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NP [0 PCPJ[log n, polylog n]

W (Fg)*™3 - F, encodes @
a(F)m - Fy s.a. iff O(iy,ip,iz,by,0,,b5) O H3M*S
Pa(iyizizby,bybg) = 0
— note: deg(p,) < 2(3m+3)|H]|
— start using Z as shorthand for (i,i,,i,b;,b,,b3)
— another way to write “a’ s.a.” is:
* exists pg:(Fy)*™ — F, of degree < 2(3m+3)[H|
* Po(2) = pa(2) 0z 0 (33
*p(@2=0 0z [0 H3m+3
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NP O PCPJlog n, polylog n]

— Focus on “py(Z) = 0 OZ 0O H3m#s”
—given: py:(Fy)*m3 - F,
—define: py(Xq, Xo, X3, +-vs Xgmaa) =
thEHpO(hJ' Xo, Xg, -1 Xamsz)Xy!
—Claim:
Po(2)=0 OZOH3™3 = p,(Z)=0 0Z0 FxH3™31

— Proof (=) for each x,, X, ..., X35 O H3M3,
resulting univariate poly in x, has all 0 coeffs.
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NP [0 PCPJlog n, polylog n]

B . _ 3m+gn
Focus on “py(Z) = 0 0Z O H3* deg(p,) <

deg(p,) + H|

—given: py:(Fy)*™3 - F,

— define: py(Xy, Xo, X3, -, X5mea) =
ZhJDHpO(hjv Xo, Xay vy Xgmsg)Xy!

— Claim:
Po(2)=0 OZOH3™3 = p,(2)=0 OZ0 FxH3™3-1

— Proof (O) for each x,, X, ..., Xgmeg O H3MSL,
univariate poly in x, is =0 = has all 0 coeffs.
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NP [0 PCPJ[log n, polylog n]

—given: p,:(F)*™2 - F, dgg(%(l';zifm
—define: py(Xq, Xo, X3, vy Xgeeg) =

zthHpZ(Xl' iy X3, X4y <o X3m+3)Xo)
— Claim:

P.(2)=0 OZ [ F, x H3m*31

P=Y

P,(2)=0 0z (Fy)2x H3m+32

— Proof: same.
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NP 0O PCPJ[log n, polylog n]

— ai “n 3m+3 deg(p) <
gven: pr(F™ ~ Fo deg(p.y) + H]
— define: pi(Xy, X, Xg, ..y Xguria) =
th[sz(le Xy weey Xiy My Xipgs Xisgs +ooy Xamea) X

— Claim:
Pi.1(2)=0 0Z O (Fy)"t x H3m+3-(-1)

<

pi(z):0 0zOo (Fq)‘ X H3m+3-i

— Proof: same.
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NP 0O PCPJ[log n, polylog n]

— define degree 3m+3+2 poly. §;:F, - F, so that
e J(v)=1lifv=i
e J(v)=0if0O<v=3m+3+landv #i
- define Q:F, x (F,)*™*3 — F by:
Q(Vr Z) = z|:0...3m+36\(v)p|(z) + 63m+3+1(\/)ay(z)

—note: degree of Q is at most
3(3m+3)|H| + 3m + 3 + 2 < 10m[H|
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NP [0 PCPJ[log n, polylog n]

¢ Recall: MAX-k-PCS gap problem:
—given:
* variables xy, X,, ..., X, taking values from field F,
* n=q" for some integer m
« k-ary constraints Cy, C,, ..., C,
—assignment viewed as f:(F)™ - F,
— YES: some degree d assignment satisfies all
constraints
—NO: no degree d assignment satisfies more
than (1-¢) fraction of constraints
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NP O PCPJlog n, polylog n]

— Instance of MAX-k-PCS gap problem:
e setd =10m|H|
* given assignment Q:F x (F )™ — F,
* expect it to be formed in the way we have
described from an assignment a:H™ - {0,1} to @

* note
to access a'(2), evaluate Q(3m+3+1, Z)
p.(Z) formed from a’ and ' (formed from @)
to access p;(Z), evaluate Q(i, Z)
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NP [0 PCPJlog n, polylog n]

— Instance of MAX-k-PCS gap problem:
e setd =10m|H|
* given assignment Q:F, x (F )™ - F,
« expect it to be formed in the way we have
described from an assignment a:H™ - {0,1} to @
* constraints: UZ[ (Fj)*m*3
(Co2): Po(2) = pa(2)
0<is3m+2 (C;,»): Pi(Z1s Zpy s Zy Ziggs ooes Zames) =
ZthH Pia(Zes 2oy s Zigs Ny Zisas -, 292)
(Camizd): Pamsa(Z) =0
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NP [0 PCPJ[log n, polylog n]

* given Q:F, x (Fy)*™* - F,of degree d = 10m|H]|

« constraints: [JZ[] (F,)>™3 / Key: all low-
(Con) Po(2) = py(2)/ [ degree polys

(CI’Z): p|(Z1’ ZZ' i ZU Z\+1' i 23m+3) =
ZhJDH Pia(Zy, Zgs s Zigy by Zisas s 207
(Cameaiz): Pam+3(Z) =0
— Schwartz-Zippel: if any one of these sets of
constraints is violated at all then at least a
(1 — 12m|H|/q) fraction in the set are violated
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NP 0O PCPJ[log n, polylog n]

« Proof of Lemma (summary):
— reducing 3-SAT to MAX-k-PCS gap problem
— @(Xq, Xy,..., X,) instance of 3-SAT
— set m = O(log n/loglog n)
- HOFgsuchthat [H™=n  (|H| = polylog n, q = [H[®)
— generate |F [*™*3= poly(n) constraints:
C;= |:Lo am3+1Ciz
— each refers to assignment poly. Q and @ (via p,)
— all polys degree d = O(m|H|) = polylog n
— either all are satisfied or at most d/q = o(1) << ¢
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NP 0O PCPJ[log n, polylog n]

* log n random bits to pick a constraint

 query assignment in polylog(n) locations to
determine if constraint is satisfied
—completeness 1
—soundness (1-¢) if prover keeps promise to

supply degree d polynomial

« prover can cheat by not supplying proof in

expected form
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