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Outline

• approximation algorithms

• Probabilistically Checkable Proofs

• elements of the proof of the PCP Theorem
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Optimization Problems

• many hard problems (especially NP-hard) 
are optimization problems
– e.g. find shortest TSP tour

– e.g. find smallest vertex cover
– e.g. find largest clique

– may be minimization or maximization problem
– “opt” = value of optimal solution
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Approximation Algorithms

• often happy with approximately optimal
solution
– warning: lots of heuristics

– we want approximation algorithm with 
guaranteed approximation ratio of r

– meaning: on every input x, output is 
guaranteed to have value 

at most r*opt for minimization

at least opt/r for maximization
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Approximation Algorithms

• “gap-producing” reduction from NP-
complete problem L1 to L2
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Gap producing reductions

• r-gap-producing reduction:
– f computable in poly time

– x ∈ L1 � opt(f(x)) ≤ k

– x ∉ L1 � opt(f(x)) > rk
– for max. problems use “≥ k” and “< k/r”

• Note: target problem is not a language
– promise problem (yes ∪ no not all strings)

– “promise”: instances always from (yes ∪ no) 
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Gap producing reductions

• Main purpose:
– r-approximation algorithm for L2 distinguishes 

between f(yes) and f(no); can use to decide L1 

– “NP-hard to approximate to within r”
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Gap preserving reductions

• gap-producing reduction difficult (more later)

• but gap-preserving reductions easier
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Gap preserving reductions

• Example gap-preserving reduction:
– reduce MAX-k-SAT with gap �

– to MAX-3-SAT with gap � ’

– “MAX-k-SAT is NP-hard to approx. within �
�

MAX-3-SAT is NP-hard to approx. within � ’ ”

• MAXSNP (PY) – a class of problems 
reducible to each other in this way

– PTAS for MAXSNP-complete problem iff
PTAS for all problems in MAXSNP

constants
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MAX-k-SAT

• Missing link: first gap-producing reduction
– history’s guide

it should have something to do with SAT

• Definition: MAX-k-SAT with gap �
– instance: k-CNF �
– YES: some assignment satisfies all clauses

– NO: no assignment satisfies more than (1 – � ) 
fraction of clauses
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Proof systems viewpoint

• k-SAT NP-hard � for any language L ∈
NP proof system of form:
– given x, compute reduction to k-SAT: ϕx

– expected proof is satisfying assignment for ϕx

– verifier picks random clause (“local test”) and 
checks that it is satisfied by the assignment 

x ∈ L � Pr[verifier accepts] = 1

x ∉ L � Pr[verifier accepts] < 1
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Proof systems viewpoint

• MAX-k-SAT with gap � NP-hard � for any 
language L ∈ NP proof system of form:
– given x, compute reduction to MAX-k-SAT: ϕx

– expected proof is satisfying assignment for ϕx

– verifier picks random clause (“local test”) and 
checks that it is satisfied by the assignment 

x ∈ L � Pr[verifier accepts] = 1
x ∉ L � Pr[verifier accepts] � (1 – � )

– can repeat O(1/ � ) times for error < ½
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Proof systems viewpoint

• can think of reduction showing k-SAT NP-hard 
as designing a proof system for NP in which:
– verifier only performs local tests

• can think of reduction showing MAX-k-SAT with 
gap � NP-hard as designing a proof system for 
NP in which:
– verifier only performs local tests
– invalidity of proof* evident all over: “holographic proof”

and an ε fraction of tests notice such invalidity
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PCP 

• Probabilistically Checkable Proof (PCP) 
permits novel way of verifying proof:
– pick random local test 

– query proof in specified k locations
– accept iff passes test

• fancy name for a NP-hardness reduction

May 25, 2004 CS151 Lecture 16 15

PCP

• PCP[r(n),q(n)]: set of languages L with 
p.p.t. verifier V that has (r, q)-restricted 
access to a string “proof”
– V tosses O(r(n)) coins 
– V accesses proof in O(q(n)) locations 
– (completeness) x ∈ L � ∃ proof such that

Pr[V(x, proof) accepts] = 1
– (soundness) x ∉ L � ∀ proof* 

Pr[V(x, proof*) accepts] ≤ ½
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PCP

• Two observations:
– PCP[1, poly n] = NP

proof?

– PCP[log n, 1] ⊂ NP
proof?

The PCP Theorem (AS, ALMSS): 

PCP[log n, 1] = NP.

May 25, 2004 CS151 Lecture 16 17

PCP

Corollary: MAX-k-SAT is NP-hard to 
approximate to within some constant ε.
– using PCP[log n, 1] protocol for, say, VC 
– enumerate all 2O(log n) = poly(n) sets of queries
– construct a k-CNF � i for verifier’s test on each 

• note: k-CNF since function on only k bits

– “YES” VC instance � all clauses satisfiable
– “NO” VC instance  � every assignment fails 

to satisfy at least ½ of the � i� fails to satisfy 
an ε = (½)2-k fraction of clauses.
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The PCP Theorem

• Elements of proof:
– arithmetization of 3-SAT

• we will do this

– low-degree test
• we will state but not prove this

– self-correction of low-degree polynomials
• we will state but not prove this

– proof composition
• we will describe the idea
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The PCP Theorem

• Two major components:

– NP ⊂ PCP[log n, polylog n] (“outer verifier”)
• we will prove this from scratch, assuming low-

degree test, and self-correction of low-degree 
polynomials

– NP ⊂ PCP[n3, 1] (“inner verifier”)
• we will not prove
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Proof Composition (idea)
NP ⊂ PCP[log n, polylog n] (“outer verifier”)

NP ⊂ PCP[n3, 1] (“inner verifier”)

• composition of verifiers:
– reformulate “outer” so that it uses O(log n) 

random bits to make 1 query to each of 3
provers

– replies r1, r2, r3 have length polylog n

– Key: accept/reject decision computable from 
r1, r2, r3 by small circuit C
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Proof Composition (idea)

NP ⊂ PCP[log n, polylog n] (“outer verifier”)
NP ⊂ PCP[n3, 1] (“inner verifier”)

• composition of verifiers (continued):
– final proof contains proof that C(r1, r2, r3) = 1

for inner verifier’s use
– use inner verifier to verify that C(r1,r2,r3) = 1
– O(log n)+polylog n randomness 
– O(1) queries
– tricky issue: consistency  

May 25, 2004 CS151 Lecture 16 22

Proof Composition (idea)

• NP ⊂ PCP[log n, 1] comes from 
– repeated composition

– PCP[log n, polylog n] with PCP[log n, polylog n] yields
PCP[log n, polyloglog n]

– PCP[log n, polyloglog n] with PCP[n3, 1] yields
PCP[log n, 1]

• many details omitted…
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The outer verifier

Theorem: NP ⊂ PCP[log n, polylog n]

Proof (first steps):
– define: Polynomial Constraint Satisfaction

(PCS) problem

– prove: PCS gap problem is NP-hard
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NP ⊂ PCP[log n, polylog n]

• MAX-k-SAT
– given: k-CNF ϕ
– output: max. # of simultaneously satisfiable clauses

• generalization: MAX-k-CSP
– given:

• variables x1, x2, …, xn taking values from set S
• k-ary constraints C1, C2, …, Ct

– output: max. # of simultaneously satisfiable
constraints
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NP ⊂ PCP[log n, polylog n]

• algebraic version: MAX-k-PCS 
– given:

• variables x1, x2, …, xn taking values from field Fq

• n = qm for some integer m 
• k-ary constraints C1, C2, …, Ct

– assignment viewed as f:(Fq)m → Fq

– output: max. # of constraints simultaneously 
satisfiable by an assignment that has deg. � d
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NP ⊂ PCP[log n, polylog n]

• MAX-k-PCS gap problem: 
– given:

• variables x1, x2, …, xn taking values from field Fq

• n = qm for some integer m 
• k-ary constraints C1, C2, …, Ct

– assignment viewed as f:(Fq)m → Fq

– YES: some degree d assignment satisfies all
constraints

– NO: no degree d assignment satisfies more 
than (1-ε) fraction of constraints
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NP ⊂ PCP[log n, polylog n]

Lemma: for every constant 1 > � > 0, the 
MAX-k-PCS gap problem with 

t k-ary constraints with k = polylog(n)

field size q = polylog(n)
n = qm variables with m = O(log n / loglog n)

degree of assignments d = polylog(n)

gap ε
is NP-hard.
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NP ⊂ PCP[log n, polylog n]

t k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = qm variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)

• check: headed in right direction
– log n random bits to pick a constraint
– query assignment in polylog(n) locations to determine 

if it is satisfied
– completeness 1; soundness 1-ε
(if prover keeps promise to supply degree d polynomial)
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NP ⊂ PCP[log n, polylog n]

• Proof of Lemma:
– reduce from 3-SAT

– 3-CNF � (x1, x2,…, xn)

– can encode as ψ:[n] x [n] x [n] x {0,1}3→{0,1}
– ψ(i1, i2, i3, b1, b2, b3) = 1 iff � contains clause 

(xi1
b1 ∨ xi2

b2 ∨ xi3
b3)

– e.g. (x3∨¬x5∨x2) � ψ(3,5,2,1,0,1) = 1
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NP ⊂ PCP[log n, polylog n]

– pick H ⊂ Fq with {0,1} ⊂ H, |H| = polylog n
– pick m = O(log n/loglog n) so |H|m = n
– identify [n] with Hm

– ψ:Hm x Hm x Hm x H3 → {0,1} encodes �
– assignment a:Hm → {0,1}
– Key: a satisfies � iff ∀i1,i2,i3,b1,b2,b3 

ψ(i1,i2,i3,b1,b2,b3) = 0 or 
a(i1)=b1 or a(i2)=b2 or a(i3)=b3
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NP ⊂ PCP[log n, polylog n]

ψ:Hm x Hm x Hm x H3 → {0,1} encodes �
a satisfies � iff ∀i1,i2,i3,b1,b2,b3

ψ(i1,i2,i3,b1,b2,b3) = 0 or a(i1)=b1 or a(i2)=b2 or a(i3)=b3

– extend ψ to a function ψ’:(Fq)3m+3 → Fq with 
degree at most |H| in each variable

– can extend any assignment a:Hm→{0,1} to 
a’:(Fq)m → Fq with degree |H| in each variable
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NP ⊂ PCP[log n, polylog n]

ψ’:(Fq)3m+3 → Fq encodes �
a’:(Fq)m→Fq s.a. iff ∀(i1,i2,i3,b1,b2,b3) ∈ H3m+3

ψ(i1,i2,i3,b1,b2,b3) = 0 or a(i1)=b1 or a(i2)=b2 or a(i3)=b3

– define: pa’:(Fq)3m+3→Fq from a’ as follows 
pa’(i1,i2,i3,b1,b2,b3) = 

ψ’(i1,i2,i3,b1,b2,b3)(a’(i1) - b1 )(a’(i2) - b2 )(a’(i3) - b3) 

– a’ s.a. iff ∀ (i1,i2,i3,b1,b2,b3) ∈ H3m+3

pa’(i1,i2,i3,b1,b2,b3) = 0
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NP ⊂ PCP[log n, polylog n]

ψ’:(Fq)3m+3 → Fq encodes �
a’:(Fq)m→Fq s.a. iff ∀(i1,i2,i3,b1,b2,b3) ∈ H3m+3

pa’(i1,i2,i3,b1,b2,b3) = 0

– note: deg(pa’) � 2(3m+3)|H|
– start using Z as shorthand for (i1,i2,i3,b1,b2,b3) 

– another way to write “a’ s.a.” is: 
• exists p0:(Fq)3m+3 → Fq of degree � 2(3m+3)|H|
• p0(Z) = pa’(Z) ∀Z ∈ (Fq)3m+3

• p0(Z) = 0 ∀Z ∈ H3m+3
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NP ⊂ PCP[log n, polylog n]

– Focus on “p0(Z) = 0 ∀Z ∈ H3m+3”

– given: p0:(Fq)3m+3 → Fq

– define: p1(x1, x2, x3, …, x3m+3) =�
hj∈Hp0(hj, x2, x3, …, x3m+3)x1

j

– Claim: 

p0(Z)=0 ∀Z∈H3m+3 ⇔ p1(Z)=0 ∀Z∈ FqxH3m+3-1

– Proof (�) for each x2, x3, …, x3m+3 ∈ H3m+3-1, 
resulting univariate poly in x1 has all 0 coeffs.
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NP ⊂ PCP[log n, polylog n]

– Focus on “p0(Z) = 0 ∀Z ∈ H3m+3”

– given: p0:(Fq)3m+3 → Fq

– define: p1(x1, x2, x3, …, x3m+3) =�
hj∈Hp0(hj, x2, x3, …, x3m+3)x1

j

– Claim: 

p0(Z)=0 ∀Z∈H3m+3 ⇔ p1(Z)=0 ∀Z∈ FqxH3m+3-1

– Proof (⇐) for each x2, x3, …, x3m+3 ∈ H3m+3-1, 
univariate poly in x1 is ≡ 0 � has all 0 coeffs.

deg(p1) �
deg(p0) + |H|
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NP ⊂ PCP[log n, polylog n]

– given: p1:(Fq)3m+3 → Fq

– define: p2(x1, x2, x3, …, x3m+3) =�
hj∈Hp2(x1, hj, x3, x4, …, x3m+3)x2

j

– Claim: 

p1(Z)=0 ∀Z ∈ Fq x H3m+3-1

⇔
p2(Z)=0 ∀Z∈ (Fq)2 x H3m+3-2

– Proof: same.

deg(p2) �
deg(p1) + |H|
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NP ⊂ PCP[log n, polylog n]

– given: pi-1:(Fq)3m+3 → Fq

– define: pi(x1, x2, x3, …, x3m+3) =�
hj∈Hp2(x1, x2, …, xi-1, hj, xi+1, xi+2, …, x3m+3)xi

j

– Claim: 

pi-1(Z)=0 ∀Z ∈ (Fq)i-1 x H3m+3-(i-1)

⇔
pi(Z)=0 ∀Z∈ (Fq)i x H3m+3-i

– Proof: same.

deg(pi) �
deg(pi-1) + |H|
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NP ⊂ PCP[log n, polylog n]

– define degree 3m+3+2 poly. � i:Fq →Fq so that 
• � i(v) = 1 if v = i
• � i(v) = 0 if 0 � v � 3m+3+1 and v � i

– define Q:Fq x (Fq)3m+3 → Fq by:
Q(v, Z) = 

�
i=0…3m+3 � i(v)pi(Z) +  � 3m+3+1(v)a’(Z)

– note: degree of Q is at most 
3(3m+3)|H| + 3m + 3 + 2 < 10m|H|
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NP ⊂ PCP[log n, polylog n]

• Recall: MAX-k-PCS gap problem: 
– given:

• variables x1, x2, …, xn taking values from field Fq

• n = qm for some integer m 
• k-ary constraints C1, C2, …, Ct

– assignment viewed as f:(Fq)m → Fq

– YES: some degree d assignment satisfies all
constraints

– NO: no degree d assignment satisfies more 
than (1-ε) fraction of constraints
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NP ⊂ PCP[log n, polylog n]

– Instance of MAX-k-PCS gap problem:
• set d = 10m|H|
• given assignment Q:Fq x (Fq)3m+3 → Fq

• expect it to be formed in the way we have 
described from an assignment a:Hm → {0,1} to �

• note 
to access a’(Z), evaluate Q(3m+3+1, Z) 
pa’(Z) formed from a’ and ψ’ (formed from � )
to access pi(Z), evaluate Q(i, Z)
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NP ⊂ PCP[log n, polylog n]

– Instance of MAX-k-PCS gap problem:
• set d = 10m|H|
• given assignment Q:Fq x (Fq)3m+3 → Fq

• expect it to be formed in the way we have 
described from an assignment a:Hm → {0,1} to �

• constraints: ∀Z∈ (Fq)3m+3

(C0,Z): p0(Z) = pa’(Z)
0<i� 3m+2 (Ci,Z): pi(z1, z2, …, zi, zi+1, …, z3m+3) = �

hj∈H pi-1(z1, z2, …, zi-1, hj, zi+1, …, zk)zi
j

(C3m+3,Z): p3m+3(Z) = 0 
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NP ⊂ PCP[log n, polylog n]

• given Q:Fq x (Fq)3m+3 → Fq of degree d = 10m|H| 
• constraints: ∀Z∈ (Fq)3m+3

(C0,Z): p0(Z) = pa’(Z)

(Ci,Z): pi(z1, z2, …, zi, zi+1, …, z3m+3) = �
hj∈H pi-1(z1, z2, …, zi-1, hj, zi+1, …, zk)zi

j

(C3m+3,Z): p3m+3(Z) = 0

– Schwartz-Zippel: if any one of these sets of 
constraints is violated at all then at least a              
(1 – 12m|H|/q) fraction in the set are violated

Key: all low-
degree polys
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NP ⊂ PCP[log n, polylog n]

• Proof of Lemma (summary):
– reducing 3-SAT to MAX-k-PCS gap problem
– � (x1, x2,…, xn) instance of 3-SAT
– set m = O(log n/loglog n)
– H ⊂ Fq such that |H|m = n (|H| = polylog n, q ≈ |H|3)
– generate |Fq|3m+3 = poly(n) constraints: 

CZ = ∧i=0…3m+3+1 Ci, Z

– each refers to assignment poly. Q and � (via pa’)
– all polys degree d = O(m|H|) = polylog n
– either all are satisfied or at most d/q = o(1) << �
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NP ⊂ PCP[log n, polylog n]

• log n random bits to pick a constraint
• query assignment in polylog(n) locations to 

determine if constraint is satisfied
– completeness 1

– soundness (1-ε) if prover keeps promise to 
supply degree d polynomial

• prover can cheat by not supplying proof in 
expected form 


