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Outline

• Natural complete problems for PH and 
PSPACE

• proof systems

• interactive proofs and their power
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Simpler version of MIN DNF

Theorem (U): MIN DNF is 
�

2-complete.

• we’ll consider a simpler variant:

– IRREDUNDANT: given DNF � , integer k; is 
there a DNF � ’ consisting of at most k terms 
of � computing same function � does?
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Simpler version of MIN DNF

• analogy with an NP-complete problem:
– SET COVER: given subsets S1,S2,...,Sm ⊂ U, 

integer k, is there a collection of at most k sets 
that cover U.
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SSC is 2-complete

• “sets” in IRREDUNDANT lie in an 
exponentially larger universe; they are 
represented succinctly by terms of �

• helpful intermediate problem:
– SUCCINCT SET COVER (SSC): given 3-

DNFs S = { � 1, � 2, � 3,..., � m} on n variables, 
integer k; is there a collection S’ ⊂ S of size at 
most k for which ∨ � ∈S’ ≡ 1 (S’ is a cover)?
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SSC is 2-complete

Theorem: SSC is 
�

2-complete.

• Proof:
– in � 2 (why?)

“� S’ ⊂ S    � x    [∨ � ∈S’(x) = 1]”

– reduce from QSAT2

– instance: �A�B � (A, B) = 1

– assume |A| = |B| = n
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SSC is 2-complete

�A�B � (A, B) = 1

• Proof (continued):
– 2 new sets of variables S, T 
– |S| = |T| = n

– Define: wt(S, T) = # of 1s in S and T together

– “(S,T) encodes A” means  �i (si=ai) ∧ (ti=¬ai)
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SSC is 2-complete

– From � (A, B) we define function f(S, T, B):
0 if wt(S, T) < n
0 if wt(S, T) = n and (S,T) does not encode any A
0 if wt(S, T) = n and (S,T) encodes A for which � (A, B) = 0
1 if wt(S, T) = n and (S,T) encodes A for which � (A, B) = 1
1 if wt(S, T) > n

– verify: poly(n) size circuit C computes f

– verify: f is monotone in S and T
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SSC is 2-complete

• Proof (continued):
– produce an instance of SSC:

• # of sets m = 2n + 1
• � i = (¬si) � i+n = (¬ti)
• from C get a 3-DNF � m(S,T,B,W):

f(S,T,B) = 1  ⇔ �W � m(S,T,B,W) = 1

0 if wt(S, T) < n
0 if wt(S, T) = n and (S,T) does not encode any A
0 if wt(S, T) = n and (S,T) encodes A : � (A,B) = 0
1 if wt(S, T) = n and (S,T) encodes A : � (A,B) = 1
1 if wt(S, T) > n
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SSC is 2-complete

Claim:  �A�B � (A, B) = 1 implies

S’ = { � i | ai = 1} ∪ { � i+n | ai = 0} ∪ { � m}
is a cover of size n+1.

Proof: consider each fixed point (S,T,B,W) 
• if there exists (S’,T’) that encodes A and we have 

(S’,T’) � (S,T) then � m(S,T,B,W) = 1
• else, �i  (ai = 1 and si = 0) or (ai = 0 and ti = 0) 

0 if wt(S, T) < n
0 if wt(S, T) = n and (S,T) does not encode any A
0 if wt(S, T) = n and (S,T) encodes A : � (A,B) = 0
1 if wt(S, T) = n and (S,T) encodes A : � (A,B) = 1
1 if wt(S, T) > n=(¬si) =(¬ti)
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SSC is 2-complete
Claim: cover S’ of size n+1 implies 

�A�B � (A, B) = 1
Proof: 
– S’ must contain � m; otherwise it fails to cover 

the all-ones point
– consider the pair (S*, T*) for which:

• si = 1 if � i ∈ S’ and 0 otherwise
• ti = 1 if � i+n ∈ S’ and 0 otherwise

– must have: �B�W � m(S*, T*, B, W) = 1
– implies: �B f(S*, T*, B) = 1 
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SSC is 2-complete

– defined the pair (S*, T*) as follows:
• si = 1 if � i ∈ S’ and 0 otherwise
• ti = 1 if � i+n ∈ S’ and 0 otherwise

– concluded: �B f(S*, T*, B) = 1 
– Note: wt(S*, T*) = n
– (S*,T*) must encode A s.t. �B � (A, B) = 1
– Conclude:  �A�B � (A, B) = 1

0 if wt(S, T) = n and (S,T) does not encode any A
0 if wt(S, T) = n and (S,T) encodes A : � (A,B) = 0
1 if wt(S, T) = n and (S,T) encodes A : � (A,B) = 1
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IRR is 2-complete

• Recall:
IRREDUNDANT: given DNF � , integer k; is 
there a DNF � ’ consisting of at most k terms 
of � computing same function � does?

Theorem: IRR is 
�

2-complete.

• Proof:
– in � 2: “� � ’ � x [ � ’(x) = � (x)]”
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IRR is 2-complete

– reduce from SSC

– instance: S = { � 1, � 2, � 3,..., � m}
– may assume 

• � 1, � 2,..., � m-1 single literals
• � m necessary in any cover
• S is a cover

– write out terms: � m = t1 ∨ t2 ∨ t3 ∨ … ∨ tn
– produce an instance of IRR:

� =∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ∨j=1…m-1 (z1…zn � j)
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IRR is 2-complete

S = { � 1, � 2, � 3,..., � m = t1 ∨ … ∨ tn }

� =∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ∨j=1…m-1 (z1…zn � j)

• Proof (continued):
Claim: if S’ ⊂ S is a cover of size k then

� ’=∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ∨j<m, �
j∈ S’ (z1z2…zn � j) 

is equivalent to � and has k+n-1 terms.

Proof: by cases
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IRR is 2-complete

S = { � 1, � 2, � 3,..., � m = t1 ∨ … ∨ tn };  S’ ⊂ S 

� =∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ∨j=1…m-1 (z1…zn � j)

� ’=∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ∨j<m, �
j∈ S’ (z1z2…zn � j)

– more than one z variable 0: both � ’, � are 0
– zi 0, other z’s 1: � ’, � equivalent to ti
– all z’s 1:

• � ’ equivalent to ∨ �
j ∈ S’ (z1z2…zn � j)

• � ’ equivalent to ∨ �
j ∈ S (z1…zn � j)

• S’ is a cover implies both equivalent to 1
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IRR is 2-complete

S = { � 1, � 2, � 3,..., � m = t1 ∨ … ∨ tn }

� =∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ∨j=1…m-1 (z1…zn � j)

• Proof (continued):
Claim: if � ’ ≡ � uses k+n-1 terms of  � , then 

there exists a cover S’ of size k

Proof: 
– each “ti term” of � must be present
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IRR is 2-complete

S = { � 1, � 2, � 3,..., � m = t1 ∨ … ∨ tn }

� =∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ∨j=1…m-1 (z1…zn � j)

� ’=∨i=1…n (z1…zi-1 zi+1…zn ti) ∨ ???  (k+n-1 terms total)

– other k-1 terms all involve some � j

– let S’ be these � j together with � m

(∨ �
j∈S’ � j) ≡ � ’z←11…1 ≡ � z←11…1 ≡ (∨ �

j∈S � j) ≡ 1

– conclude S’ is a cover of size k
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PSPACE

• General phenomenon: many 2-player 
games are PSPACE-complete.

– 2 players I, II
– alternate pick-

ing edges

– lose when no 
unvisited choice

pasadena

athens
auckland

san 
francisco

oakland

davis

• GEOGRAPHY = {(G, s) : G is a directed 
graph and player I can win from node s}
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PSPACE

Theorem: GEOGRAPHY is PSPACE-
complete.

Proof:
– in PSPACE

• easily expressed with alternating quantifiers

– PSPACE-hard
• reduction from QSAT
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PSPACE

�x1�x2�x3 … �xn � (x1, x2, …, xn)?
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PSPACE
�x1�x2�x3…(¬x1∨x2∨¬x3)∧(¬x3∨x1)∧…∧(x1∨¬x2)
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Proof systems

L = { (A, 1k) : A is a true mathematical assertion 
with a proof of length k}

• New topic:

What is a “proof”?

complexity insight: meaningless unless can be 
efficiently verified
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Proof systems

• given language L, goal is to prove x ∈ L

• proof system for L is a verification algorithm V 
– completeness: x ∈ L � � proof, V accepts (x, proof)

“true assertions have proofs”
– soundness: x ∉ L � � proof*, V rejects (x, proof*)

“false assertions have no proofs”
– efficiency: � x, proof, V(x, proof) runs in polynomial 

time in |x|
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Classical Proofs

• previous definition:
“classical” proof system

• recall:

L ∈ NP iff expressible as
L = { x | � y, |y| < |x|k, (x, y) ∈ R } and R ∈ P.

• NP is the set of languages with classical 
proof systems (R is the verifier)
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Interactive Proofs

• Two new ingredients:
– randomness: verifier tosses coins, errs with 

some small probability 

– interaction: rather than “reading” proof, 
verifier interacts with computationally 
unbounded prover

• NP proof systems lie in this framework: prover
sends proof, verifier does not use randomness
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Interactive Proofs

• interactive proof system for L is an 
interactive protocol (P, V)
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Interactive Proofs

• interactive proof system for L is an 
interactive protocol (P, V)
– completeness: x ∈ L �

Pr[V accepts in (P, V)(x)] ≥ 2/3
– soundness: x ∉ L � � P*

Pr[V accepts in (P*, V)(x)] ≤ 1/3 
– efficiency: V is p.p.t. machine

• repetition: can reduce error to any �

May 11, 2004 CS151 Lecture 13 29

Interactive Proofs

IP = {L : L has an interactive proof 
system}

• Observations/questions:
– philosophically interesting: captures more 

broadly what it means to be convinced a 
statement is true

– clearly NP ⊂ IP. Potentially larger. How much 
larger?

– if larger, randomness is essential (why?)
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Graph Isomorphism

• graphs G0 = (V, E0) and G1 = (V, E1)  are 
isomorphic (G0 ≅ G1) if exists a 
permutation � :V → V for which

(x, y) ∈ E0 ⇔ (� (x), � (y)) ∈ E1

1

2

3 4

1

2

4
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1

4

3

2
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Graph Isomorphism

• GI = {(G0, G1) : G0 ≅ G1 }
– in NP
– not known to be in P, or NP-complete

• GNI = complement of GI
– not known to be in NP

Theorem (GMW): GNI ∈ IP
– indication IP may be more powerful than NP
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GNI in IP

• interactive proof system for GNI:
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GNI in IP

• completeness:
– if G0 not isomorphic to G1 then H is 

isomorphic to exactly one of (G0, G1) 

– prover will choose correct r

• soundness:
– if G0 ≅ G1 then prover sees same distribution 

on H for c = 0, c = 1

– no information on c � any prover P* can 
succeed with probability at most 1/2


