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Outline

¢ Natural complete problems for PH and
PSPACE

 proof systems

* interactive proofs and their power
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Simpler version of MIN DNF

Theorem (U): MIN DNF is Z,-complete.

« we'll consider a simpler variant:

— IRREDUNDANT: given DNF @, integer k; is
there a DNF @’ consisting of at most k terms
of @ computing same function ¢ does?
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Simpler version of MIN DNF

« analogy with an NP-complete problem:

— SET COVER: given subsets S;,S,,...,.S,, O U,
integer k, is there a collection of at most k sets
that cover U.

of ¢
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SSCis Z,-complete

* “sets” in IRREDUNDANT lie in an
exponentially larger universe; they are
represented succinctly by terms of ¢

¢ helpful intermediate problem:

— SUCCINCT SET COVER (SSC): given 3-
DNFs S = {@4, ¢,, ¢3,..., §,,} on n variables,
integer k; is there a collection S’ 0 S of size at
most k for which [, =1 (S’ is a cover)?
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SSC is Z,-complete

Theorem: SSC is Z,-complete.

* Proof:
—-inZ, (why?)
‘3808 Vx [hpe(®) =1]
—reduce from QSAT,
—instance: JAVB @(A, B) =1
—assume |A|=|B|=n
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SSC is Z,-complete

JAVB (A, B)=1
¢ Proof (continued):

— 2 new sets of variables S, T
=ISI=[T|=n

— Define: wt(S, T) = # of 1sin S and T together

—“(S,T) encodes A” means Vi (si=a) O (t=-a;)
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SSC is Z,-complete

—From @(A, B) we define function (S, T, B):
0ifwt(S, T)<n
0 if wt(S, T) = n and (S,T) does not encode any A
0if wt(S, T) =n and (S,T) encodes A for which
@(A,B)=0
1if wt(S, T) =n and (S,T) encodes A for which
@A, B)=1
1ifwt(S, T)>n
— verify: poly(n) size circuit C computes f
— verify: fis monotone in Sand T
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SSC is Z,-complete

0ifwt(S, T)<n
0if wt(S, T) = n and (S,T) does not encode any A
0if wt(S, T) = nand (S,T) encodes A : (A,B) =0
1if wt(S, T)=nand (S,T) encodes A : (A,B) =1
1ifwt(S, T)>n

* Proof (continued):
— produce an instance of SSC:
e#ofsetsm=2n+1
cP=(=s) Qu=(=t)
« from C get a 3-DNF ¢, (S,T,B,W):
f(S,T,.B)=1 =« YW @,(S,T,.BW)=1
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SSC is Z,-complete

0ifwt(S, T)<n
0if wt(S, T) = n and (S,T) does not encode any A
0if wt(S, T) = nand (S,T) encodes A : (A,B) =0

if wi(S, T) = d (S, d : .B) =
i:fa&sy%;r:an (S,T) encodes A : (A,B) =1 :(“ti)
Claim: VB @(A, B) = 1 implies
S ={@|a=1} U{pi,]a =0} 0 {o}
is a cover of size n+1.

Proof: consider each fixed point (S,T,B,W)

« if there exists (S’,T’) that encodes A and we have
(S\T) = (S,T) then'g,(S.TBW) = 1

* else, Ji (y=1ands;=0)or (a;=0andt; =0)
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SSCis Z,-complete

Claim: cover S’ of size n+1 implies
3AVB @(A, B) = 1
Proof:

— S’ must contain ¢,,; otherwise it fails to cover
the all-ones point

— consider the pair (S*, T*) for which:
e =1 if ¢, 0 S’ and 0 otherwise
=1 if ¢,,, 0 S’ and 0 otherwise
— must have: VBYW @,,(S*, T*, B, W) =1
—implies: VB f(S*, T*,B) = 1
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SSC is Z,-complete

0if wt(S, T) = n and (S, T) does not encode any A
0if wt(S, T) =n and (S,T) encodes A : ¢(A,B) =0
1if wt(S, T) =nand (S,T) encodes A : ¢(A,B) =1

— defined the pair (S*, T*) as follows:
5 =1 if ; 0 S’ and 0 otherwise
=1 if @, 0 S’ and 0 otherwise
—concluded: VB f(S*, T*,B) = 1
— Note: wt(S*, T*) = n
— (S*,T*) must encode A s.t. VB ¢(A,B) =1
—Conclude: JAVB (A, B) =1
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IRR is Z,-complete

¢ Recall:

IRREDUNDANT: given DNF ¢, integer k; is
there a DNF @’ consisting of at most k terms
of @ computing same function ¢ does?

Theorem: IRR is Z,-complete.
 Proof:
—inZy 39"V X[Q'(X) = 9(X)]"
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IRR is Z,-complete

—reduce from SSC
—instance: S = {@, @;, @3,..., P}
— may assume

* @, O,,..., P, Single literals
* @, Necessary in any cover
* Sis acover

—write out terms: ¢, =t, Ot, Ot; O... Ot,
— produce an instance of IRR:
¢ :Dil...n (Zl"'zl-l Z|+1"'Znt\) g |:;:l...m-l (Zl"'zn(pl)
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IRR is Z,-complete

S={P1, &, P35, P =1, 0. Ot}
‘P:D:L..n (21424 Zi4g - 2,1) O qzl___m,l (21---2,9)

¢ Proof (continued):
Claim: if S’ 0 S is a cover of size k then

(‘pY:D:l...n (Zl"'zl-l Zisy+-Zp tl) o q<m, <pJD S’ (2122"‘Zn q’])
is equivalent to @ and has k+n-1 terms.
Proof: by cases
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IRR is Z,-complete

S={0s, ¢, P3.-.., O =1, 0. Ot} S'OS
¢ :Dil...n (Zl"'zl-l Z|+1"'Znt\) g |:;:l...m-l (Zl"'zn(pl)
=0 (2121 Z02,8) O |:l<m, oS (2125---2,9)
— more than one z variable 0: both @’, @ are 0
—2z;0, other z’s 1: ¢’, ¢ equivalent to t;

—allz's 1:

* @’ equivalent to D‘Pj ns (z125--.2,9)

* @’ equivalent to D<Pj os (Z.--2,0)

» S’is a cover implies both equivalent to 1
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IRR is Z,-complete

S={P1, &, P35, P =t 0. Ot}
@=0 @ 212002, D0 g (200-2,9)

¢ Proof (continued):

Claim: if @’ = ¢ uses k+n-1 terms of @, then
there exists a cover S’ of size k

Proof:
— each “t; term” of @ must be present
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IRR is Z,-complete

S={1, 9 @5, O =1, 0. Ot}
Q=0 (21212402, O EL:l___mfl (2y---2,9)
=L, (2121 200..2,t) 02?2 (kén-1 terms total)

— other k-1 terms all involve some ¢
—let S’ be these @, together with ¢,

(ELPJES' O)=Q, 11 1=Q, 15 1= (l:ijES 9)=1
—conclude S’ is a cover of size k
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PSPACE

¢ General phenomenon: many 2-player
games are PSPACE-complete.

— pasadena
2 players I,. I aucklandc& athens
— alternate pick- €
ing edges san davis

francisco
—lose when no oakland

unvisited choice

« GEOGRAPHY ={(G, s) : G is a directed
graph and player | can win from node s}
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PSPACE

Theorem: GEOGRAPHY is PSPACE-
complete.

Proof:

—in PSPACE

« easily expressed with alternating quantifiers
— PSPACE-hard

* reduction from QSAT

May 11, 2004 CS151 Lecture 13 20

PSPACE

I VX35 .o VX, O(Xgy Xy ey X)7?

clause choice

true false  gadget
variable
adget for x;
gadg i ¢ G, Cn
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PSPACE

X, VX TX g (7 X (X 1 Xg) O(= X3 0% ) . .. (X, [ %)

I
IE false alternately pick truth
assignment
I
I True »d
T
II
I t \ o
I e ARG \ | picka
clause
I S
— = pick a true
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Proof systems

L={(A, 1¥ : Aiis a true mathematical assertion
with a proof of length k}

* New topic:
What is a “proof”?

complexity insight: meaningless unless can be
efficiently verified
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Proof systems

« given language L, goal is to prove x 0 L

« proof system for L is a verification algorithm V
— completeness: x O L = 3 proof, V accepts (X, proof)
“true assertions have proofs”
— soundness: x 0 L = V proof*, V rejects (x, proof*)
“false assertions have no proofs”
— efficiency: V x, proof, V(x, proof) runs in polynomial
time in |x|
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Classical Proofs

¢ previous definition:

“classical” proof system
« recall:

L O NP iff expressible as
L={x|3y, lyl<Ix (xy)OR}and R O P.

¢ NP is the set of languages with classical
proof systems (R is the verifier)
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Interactive Proofs

* interactive proof system for L is an
interactive protocol (P, V)

— common input: x B

Prover ~——

Verifier
-,
R —
_ #rounds =
. poly(Ix])
., accept/
reject
May 11, 2004
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Interactive Proofs

e Two new ingredients:
—randomness: verifier tosses coins, errs with
some small probability
— interaction: rather than “reading” proof,

verifier interacts with computationally
unbounded prover

* NP proof systems lie in this framework: prover
sends proof, verifier does not use randomness
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Interactive Proofs

* interactive proof system for L is an
interactive protocol (P, V)

—completeness: x O L =
Pr[V accepts in (P, V)(x)] = 2/3
—soundness: x OL =V P*
Pr[V accepts in (P*, V)(x)] < 1/3
— efficiency: V is p.p.t. machine
* repetition: can reduce error to any €

May 11, 2004 CS151 Lecture 13

Interactive Proofs

IP ={L : L has an interactive proof
system}
¢ Observations/questions:
— philosophically interesting: captures more

broadly what it means to be convinced a
statement is true

— clearly NP O IP. Potentially larger. How much
larger?

—if larger, randomness is essential (why?)
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Graph Isomorphism

» graphs G, = (V, Ep) and G, = (V, E;) are
isomorphic (G, OG,) if exists a
permutation m:V - V for which

X, y) OBy < (m(x), m(y)) U E,

1

1
4
3
3 4 2

3
24
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Graph Isomorphism

* GI={(Gy, Gy) : G, UG, }

—in NP

—not known to be in P, or NP-complete
* GNI = complement of Gl

—not known to be in NP

Theorem (GMW): GNI O IP
— indication IP may be more powerful than NP
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GNlin IP

« interactive proof system for GNI:

L input: (6o, 6) —

Prover Verifier
Jﬂf (6. flip coin
ifHOG, cU{01);
r=0, pick
elser=1 r random Tt
T accept
iffr=c
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GNIlin IP

e completeness:
—if Gg not isomorphic to G, then H is
isomorphic to exactly one of (Gg, G,)
— prover will choose correct r
* soundness:

—if G, 0G; then prover sees same distribution
onHforc=0,c=1

—no information on ¢ = any prover P* can
succeed with probability at most 1/2
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