CS151
Complexity Theory

Lecture 12
May 6, 2004

Outline

¢ The Polynomial-Time Hierarachy (PH)

e Complete problems for classes in PH,
PSPACE

* BPP and the PH

¢ non-uniformity and the PH
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The Polynomial-Time Hierarchy

£,=M,=P
A =PP Z,=NP N,=coNP
A,=P\P Z,=NPNP ,=coNPNP
A, ,=P% z.=NP% ,,=coNP%

Polynomial Hierarchy PH = [J; Z,
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The Polynomial-Time Hierarchy

,=MN,=P
A, ,=P% Z, =NP% I, =coNP*

« Example:

— MIN CIRCUIT: given Boolean circuit C,
integer k; is there a circuit C’ of size at most k
that computes the same function C does?

—MIN CIRCUIT O Z,
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The Polynomial-Time Hierarchy

Z,=M,=P
A.,=P% X =NP% I,,=coNP*

« Example:

— EXACT TSP: given a weighted graph G, and
in integer k; is the k-th bit of the length of the
shortest TSP tour in G a 1?

—EXACT TSP OA,

May 6, 2004 CS151 Lecture 12 5

EXP
The PH ‘
PSPACE
PSPACE: generalized PH
geography, 2-person T
games... % s
\ /
3rd level: V-C dimension... A,
/ \

2nd level: MIN CIRCUIT, . .

Succinct Set Cover, BPP... \A/‘
1st level: SAT, UNSAT, T~
NP coNP

factoring, etc...
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Useful characterization

¢ Recall: L O NP iff expressible as
L={x|3y, lylsIX (x,y) OR}
where R O P.

e Corollary: L 00 coNP iff expressible as
L={x|Vy, IylsIX (x,y) OR}
where R O P.
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Useful characterization

Theorem: L O Z, iff expressible as
L={x|3y. Iyl <Ix (x,y) OR}
where R O, ;.

* Corollary: L O I, iff expressible as
L={x|Vy, lylsx (x,y) OR}

whereROZ, ;.
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Useful characterization

* Proof of Theorem:
—induction on i
— base case on previous slide

@)

—we know X, = NPZi1= NP1
—guessy, ask oracle if (x,y) OR
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Useful characterization

* Proof (continued):
(=)

—given L 0 ;= NP5t decided by ONTM M
running in time nk

—try: R ={ (X, y) : y describes valid path of M’'s
computation leading to Qaccept }

— but how to recognize valid computation path
when it depends on result of oracle queries?
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Useful characterization

« Proof (continued):

—try: R ={(x, y) : y describes valid path of M’s
computation leading to Qccep: }

— valid path = step-by-step description including correct
yes/no answer for each A-oracle queryz; (AL L)

— verify “no” queries in M, ;:

eg:z;0A0z,0AD... Ozg OA

— for each “yes” query z: 3w, |w| < |zfkwith (zj, w) U R’
for some R’ [J I,_, by induction.

— for each “yes” query z; put w; in description of path y
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Useful characterization

* Proof (continued):
—single language Rin M, :
xy)OR
all “no” z; JA and
all “yes” z; have (z;, w) O R’ and
y is a path leading t0 Q,ccept-
— Note: AND of I, ; predicates is in I, ;.
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Alternating quantifiers

Nicer, more usable version:
» LOZ, iff expressible as
L ={x]3y17y,3y5 ...QYi (X, Y1,Yo, .. ¥)UR }
where Q=Vv/3if i even/odd, and ROP

« LOM, iff expressible as
L ={x]Vyi3y,vys...QYi (X, y1,Yo, ... ¥)UR }
where Q= 3/vifi even/odd, and ROP
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Alternating quantifiers

* Proof:
— (=) induction oni
— base case: true for Z,=NP and M,;=coNP
— consider LOZ;:
L={x|3y, x,yp) OR }, forR" O M,
L= {1 3y1vy3y3...QY; (X, Y1,Y2.--- Y) UR}
— same argument for L O,
— (O ) exercise.
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Alternating quantifiers

Pleasing viewpoint:

alternations A

\IvVavVavA.." PSPACE
|

poly(n)
PH

I\Evu zz “VE” nz
~ I3 E VAL T
.
/ \ “ " w "
Iy Xy VAV'TT
g NP “v'coNP 3\/ 3
\ /
| >
May 6, 2004 CS151 Lecture 12

15

Complete problems

* Recall:

MIN CIRCUIT: given Boolean circuit C, integer k;
is there a circuit C’ of size at most k that
computes the same function C does?

{(C, k)| 3C’ ¥x (|C’| sk and C'(x) = C(x)) }
— Conclude: in Z,
— (open whether it is complete for Z,)
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Complete problems

« three variants of SAT:
— QSAT, (i odd) =
{3-CNFs @(xy, X5, ..., X;) for which
X XX . X QX Xy, ..., X) = 1)
— QSAT, (i even) =
{3-DNFs @(X4, Xy, ..., X;) for which
X XI5 . VX P(Xq, X, ooy X) = 1)
— QSAT = {3-CNFs ¢ for which
I VXX oo QX P(Xy, Ko, oevy Xp) = 1}
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QSAT, is Z,-complete

Theorem: QSAT, is Z,-complete.
* Proof: (clearly in Z))
—assume i odd; given L O Z; in form
{x 1 3y19Y23ys o Y (X Yo Yor ) OR Y

‘ wXes Y Yo Y3 Y ‘

>
) CVAL reduction
Liff (%, y1y2.-¥) OR  forR
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QSAT, is &,-complete

e

<
CVAL reduction
forR

— Problem set: can construct 3-CNF ¢ from C:
Z QY1 Yi2) =1 = Cyp,ny) = 1
—we get:
Y1 Yo Y32 O(X,Yyq,--0Yi2) = 1
< Y1, 3YCKYy-y) =1 = xOL
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QSAT, is Z-complete

‘ X Y Y2 Y3 Yo ‘
€
1iff (X, yi.Ya2,-y) OR ?VAE reduction
~— or

— Problem set: can construct 3-DNF ¢ from C:
VZ Q(XY1,-¥iZ) =1 = C(XYy,.0y) =1
—we get:
W1 Yo WVZ Q(XY1,Yz0-YiZ) = 1
< YV, WY C(X,Y1.Yo,.y) =1 = xOL
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QSAT, is Z,-complete

¢ Proof (continued)
—assume i even; given L O Z; in form
{X1 3y 9Yo3y3 . WY (X Yoo, Y) DR}

‘x [ 2T 2 Y ‘

\C/é
CVAL reduction

Liff (X, yoYa-¥) OR  forR
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QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.
* Proof:
—in PSPACE:  3x,VX,3X5 ... QX, @(Xy, Xy, ..., X))?
— “3x,”: for each x,, recursively solve
VXo3Xg ... QX @(Xq, Xp, ooy X)?
« if encounter “yes”, return “yes”
— "vx,": for each x,, recursively solve
IV e QX P(Xys Xp, wovy X)?
« if encounter “no”, return “no”
— base case: evaluating a 3-CNF expression
— poly(n) recursion depth
— poly(n) bits of state at each level
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QSAT is PSPACE-complete

¢ Proof (continued):

—given TM M deciding L 0 PSPACE; input x
— configuration graph has 2" nodes
—recall:

PATH(X, Y, i) - path from X to Y of length at most 2/

—goal: 3-CNF @(w,;,W,,Ws,...,W,)
W, YW, ... QW @(Wy, ..., W)
= PATH(START, ACCEPT, n¥)
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QSAT is PSPACE-complete

—fori=0, 1, ... nk produce quantified Boolean
expressions (A, B)

IW,YW,... YA, B, W) = PATH(A, B, i)

—convert g, to 3-CNF ¢
+ add variables V

—hardwire START, ACCEPT
w,Vw,... IV oW, V) < xOL
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QSAT is PSPACE-complete

¢ Proof (continued):

~Wo(A, B) = 1 iff }Boolean expression

*A=Bor of size O(n¥)
« Avyields B in one step of M

‘mu\‘\um‘um"“ ‘\H\\\Kff“ﬁ@

\SHT\E\P\ \S\\T\E\P\ \SHT\E\P \S\\T\E\P\ config.
B
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QSAT is PSPACE-complete

—recall Savitch'’s algorithm:
PATH(A, B, i+1)

-

37 [PATH(A, Z, i) OPATH(Z, B, i)]

— cannot define y;,,(A, B) to be
32 [y(A 2) Dy (2. B)]
(why?)
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QSAT is PSPACE-complete

¢ Proof (continued):

— Key: reuse expressions just as Savitch reuses
stack records...

— define y;,1(A, B) to be
3Z9XVY [(X=A0Y=Z)[(X=20Y=B)) = y(X, Y)]

— (X, Y) is preceded by quantifiers
—move to front (they don't involve X,Y,Z,A,B)
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QSAT is PSPACE-complete

Wo(A, B)=1iff A=BorAyields Bin 1 step
3ZvXVY [(X=A0Y=2)[(X=20Y=B)) = (X, Y)]

—|wol = O(n¥)
= [Wierl = O(N%) + |y

— total size of ykis O(n¥)2 = poly(n)
— logspace reduction
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PH collapse

Theorem: if ;= I, then for all j > i
I=N=A=%

“the polynomial hierarchy collapses to the i-th level”
* Proof:
— sufficient to show ;= Z;,;

—then ;= Z,=M,;=N,,,; apply theorem again
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PH collapse

—recall: L O Z,,, iff expressible as
L={x]|3y(xy) DR}

where R O I;

—since ;= Z;, R expressible as

R={(xy)3z(xy),2) OR}

where R’ 0O M,

—together: L ={ x| 3(y,2) (x (v,2)) OR%}

—conclude L O Z;
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Oracles vs. Algorithms

A point to ponder:

¢ given poly-time algorithm for SAT
— can you solve MIN CIRCUIT efficiently?

— what other problems? Entire complexity
classes?

¢ given SAT oracle

— same input/output behavior
— can you solve MIN CIRCUIT efficiently?
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Natural complete problems

« We now have versions of SAT complete
for levels in PH, PSPACE

¢ Natural complete problems?
— PSPACE: games

— PH: almost all natural problems lie in the
second level
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Natural complete problems

—MIN CIRCUIT
« good candidate, still open

— MIN DNF: given DNF o, integer k; is there a
DNF ¢’ of size at most k computing same
function ¢ does?

— example:
X1 XoXg O XX, X5 OXy
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Natural complete problems

—MIN CIRCUIT
« good candidate, still open

— MIN DNF: given DNF o, integer k; is there a
DNF ¢’ of size at most k computing same
function ¢ does?

— example:
XX X5 OX X X X, = XX, UX,
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Simpler version of MIN DNF
Theorem (U): MIN DNF is Z,-complete.
« we'll consider a simpler variant:

— IRREDUNDANT: given DNF @, integer k; is
there a DNF ¢’ consisting of at most k terms
of @ computing same function ¢ does?
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Simpler version of MIN DNF

« analogy with an NP-complete problem:

— SET COVER: given subsets S,;,S,,...,.S,, O U,

integer k, is there a collection of at most k sets
that cover U.
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