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Outline

• The Polynomial-Time Hierarachy (PH)

• Complete problems for classes in PH, 
PSPACE

• BPP and the PH

• non-uniformity and the PH
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The Polynomial-Time Hierarchy
�

0 = � 0 = P

�
1=PP

�
1=NP � 1=coNP

�
2=PNP

�
2=NPNP � 2=coNPNP

�
i+1=P� i

�
i+i=NP� i � i+1=coNP� i

Polynomial Hierarchy PH = ∪∪∪∪i

�
i
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The Polynomial-Time Hierarchy
�

0 = � 0 = P�
i+1=P� i

�
i+i=NP� i � i+1=coNP� i

• Example:
– MIN CIRCUIT: given Boolean circuit C, 

integer k; is there a circuit C’ of size at most k 
that computes the same function C does?

– MIN CIRCUIT ∈ � 2
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The Polynomial-Time Hierarchy
�

0 = � 0 = P�
i+1=P� i

�
i+i=NP� i � i+1=coNP� i

• Example:
– EXACT TSP: given a weighted graph G, and 

in integer k; is the k-th bit of the length of the 
shortest TSP tour in G a 1?

– EXACT TSP ∈ � 2
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The PH

PSPACE: generalized 
geography, 2-person 
games…

3rd level: V-C dimension…

2nd level: MIN CIRCUIT, 
Succinct Set Cover, BPP…

1st level: SAT, UNSAT, 
factoring, etc…
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Useful characterization

• Recall: L ∈ NP iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

where R ∈ P.

• Corollary: L ∈ coNP iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

where R ∈ P.
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Useful characterization

Theorem: L ∈
�

i iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

where R ∈ � i-1.

• Corollary: L ∈ � i iff expressible as
L = { x | � y, |y| � |x|k, (x, y) ∈ R }

where R ∈
�

i-1.
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Useful characterization

• Proof of Theorem:
– induction on i

– base case on previous slide

(⇐ ) 
– we know � i = NP� i-1 = NP

�
i-1

– guess y, ask oracle if  (x, y) ∈ R
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Useful characterization

• Proof (continued):
( �)

– given L ∈ � i = NP� i-1 decided by ONTM M 
running in time nk

– try: R = { (x, y) : y describes valid path of M’s 
computation leading to qaccept }

– but how to recognize valid computation path 
when it depends on result of oracle queries?
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Useful characterization

• Proof (continued): 
– try: R = { (x, y) : y describes valid path of M’s 

computation leading to qaccept }
– valid path = step-by-step description including correct

yes/no answer for each A-oracle query zj (A ∈
�

i-1)
– verify “no” queries in � i-1:

e.g: z1 ∉A ∧ z3 ∉A ∧ … ∧ z8 ∉A 
– for each “yes” query zj: � wj, |wj| � |zj|k with (zj, wj) ∈ R’

for some R’ ∈ � i-2 by induction.
– for each “yes” query zj put wj in description of path y
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Useful characterization

• Proof (continued):
– single language R in � i-1 :

(x, y) ∈ R 

⇔
all “no” zj ∉A and 

all “yes” zj have (zj, wj) ∈ R’ and 
y is a path leading to qaccept.

– Note: AND of � i-1 predicates is in � i-1.
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Alternating quantifiers

Nicer, more usable version:

• L∈
�

i iff expressible as
L = { x | �y1�y2�y3 …Qyi (x, y1,y2,…,yi)∈R }

where Q=�/� if i even/odd, and R∈P

• L∈� i iff expressible as
L = { x | �y1�y2�y3 …Qyi (x, y1,y2,…,yi)∈R }

where Q= �/� if i even/odd, and R∈P
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Alternating quantifiers

• Proof:
– ( �) induction on i
– base case: true for � 1=NP and � 1=coNP
– consider L∈� i:

L = {x | �y1 (x, y1) ∈ R’ }, for R’ ∈ � i-1

L = {x | �y1�y2�y3 …Qyi (x, y1,y2,…,yi)∈R}

– same argument for L ∈ � i

– (⇐ ) exercise.
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Alternating quantifiers

Pleasing viewpoint:
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const. # of 
alternations poly(n) 
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Complete problems

• Recall:

MIN CIRCUIT: given Boolean circuit C, integer k; 
is there a circuit C’ of size at most k that 
computes the same function C does?

{ (C, k) | �C’ �x (|C’| � k and C’(x) = C(x)) }
– Conclude: in � 2

– (open whether it is complete for � 2)
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Complete problems

• three variants of SAT:
– QSATi (i odd) = 

{3-CNFs �(x1, x2, …, xi) for which
�x1�x2�x3 … �xi �(x1, x2, …, xi) = 1}

– QSATi (i even) = 
{3-DNFs �(x1, x2, …, xi) for which
�x1�x2�x3 … �xi �(x1, x2, …, xi) = 1 }

– QSAT = {3-CNFs � for which
�x1�x2�x3 … Qxn �(x1, x2, …, xn) = 1} 
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QSATi is i-complete

Theorem: QSATi is 
�

i-complete.
• Proof: (clearly in 

�
i)

– assume i odd; given L ∈ � i in form
{ x | �y1�y2�y3 … �yi (x, y1,y2,…,yi) ∈ R }

��� ���� ���� ���� � ��	�
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QSATi is i-complete

– Problem set: can construct 3-CNF � from C:
�z �(x,y1,…,yi,z) = 1 ⇔ C(x,y1,…,yi) = 1

– we get: 
�y1�y2…�yi �z �(x,y1,…,yi,z) = 1 

⇔ �y1�y2…�yiC(x,y1,…,yi) = 1 ⇔ x ∈ L

��� ���� ���� ���� � ��	�
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QSATi is i-complete

• Proof (continued)
– assume i even; given L ∈ � i in form

{ x | �y1�y2�y3 … �yi (x, y1,y2,…,yi) ∈ R }

��� ���� ���� ���� � ��	�
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QSATi is i-complete

– Problem set: can construct 3-DNF � from C:
�z �(x,y1,…,yi,z) = 1 ⇔ C(x,y1,…,yi) = 1

– we get: 
�y1�y2… �yi�z �(x,y1,y2,…,yi,z) = 1

⇔ �y1�y2…�yiC(x,y1,y2,…,yi) = 1 ⇔ x ∈ L

��� ���� ���� ���� � ��	�
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QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.
• Proof:

– in PSPACE: �x1�x2�x3 … Qxn�(x1, x2, …, xn)?
– “�x1”: for each x1, recursively solve 

�x2�x3 … Qxn�(x1, x2, …, xn)?
• if encounter “yes”, return “yes”

– “�x1”: for each x1, recursively solve 
�x2�x3 … Qxn�(x1, x2, …, xn)?

• if encounter “no”, return “no”
– base case: evaluating a 3-CNF expression
– poly(n) recursion depth
– poly(n) bits of state at each level
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QSAT is PSPACE-complete

• Proof (continued):
– given TM M deciding L ∈ PSPACE; input x
– configuration graph has 2nk

nodes

– recall:
PATH(X, Y, i) ⇔ path from X to Y of length at most 2i

– goal: 3-CNF �(w1,w2,w3,…,wm)
�w1�w2…Qwm �(w1,…,wm) 

⇔ PATH(START, ACCEPT, nk)
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QSAT is PSPACE-complete

– for i = 0, 1, … nk produce quantified Boolean 
expressions �i(A, B) 
�w1�w2… �i(A, B, W) ⇔ PATH(A, B, i)

– convert �nk to 3-CNF �
• add variables V

– hardwire START, ACCEPT
�w1�w2… �V �(W, V)  ⇔ x ∈ L
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QSAT is PSPACE-complete

• Proof (continued):
– �o(A, B) = 1 iff

• A = B or 
• A yields B in one step of M

�
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Boolean expression 
of size O(nk)
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QSAT is PSPACE-complete

– recall Savitch’s algorithm: 
PATH(A, B, i+1)

⇔
�Z [PATH(A, Z, i) ∧ PATH(Z, B, i)]

– cannot define �i+1(A, B) to be

�Z [�i(A, Z) ∧ �i(Z, B)]
(why?)
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QSAT is PSPACE-complete

• Proof (continued):
– Key: reuse expressions just as Savitch reuses 

stack records…

– define �i+1(A, B) to be

�Z�X�Y [((X=A∧Y=Z)∨(X=Z∧Y=B)) � �i(X, Y)]
– �i(X, Y) is preceded by quantifiers

– move to front (they don’t involve X,Y,Z,A,B)
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QSAT is PSPACE-complete

�o(A, B) = 1 iff A = B or A yields B in 1 step 

�Z�X�Y [((X=A∧Y=Z)∨(X=Z∧Y=B)) � �i(X, Y)]

– |�0| = O(nk)

– |�i+1| = O(nk) + |�i| 

– total size of �nk is O(nk)2 = poly(n)
– logspace reduction 
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PH collapse

Theorem: if 
�

i = � i then for all j > i�
j = � j = 

�
j = 

�
i

“the polynomial hierarchy collapses to the i-th level”

• Proof: 
– sufficient to show � i = � i+1

– then  � i+1= � i = � i = � i+1; apply theorem again
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PH collapse

– recall: L ∈ � i+1 iff expressible as
L = { x | � y (x, y) ∈ R }

where R ∈ � i

– since � i = � i, R expressible as
R = { (x,y) | � z ((x, y), z) ∈ R’ }

where R’ ∈ � i-1

– together: L = { x | � (y,z)  (x, (y,z)) ∈ R’}

– conclude L ∈ � i 
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Oracles vs. Algorithms

A point to ponder:
• given poly-time algorithm for SAT

– can you solve MIN CIRCUIT efficiently?
– what other problems? Entire complexity 

classes?

• given SAT oracle
– same input/output behavior
– can you solve MIN CIRCUIT efficiently?
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Natural complete problems

• We now have versions of SAT complete 
for levels in PH, PSPACE

• Natural complete problems?
– PSPACE: games

– PH: almost all natural problems lie in the 
second level
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Natural complete problems

– MIN CIRCUIT
• good candidate, still open

– MIN DNF: given DNF �, integer k; is there a 
DNF �’ of size at most k computing same 
function � does?

– example:

x1x2x3 ∨ x1x2¬x3 ∨ x4
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Natural complete problems

– MIN CIRCUIT
• good candidate, still open

– MIN DNF: given DNF �, integer k; is there a 
DNF �’ of size at most k computing same 
function � does?

– example:

x1x2x3 ∨ x1x2¬x3 ∨ x4 ≡ x1x2 ∨ x4
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Simpler version of MIN DNF

Theorem (U): MIN DNF is 
�

2-complete.

• we’ll consider a simpler variant:

– IRREDUNDANT: given DNF �, integer k; is 
there a DNF �’ consisting of at most k terms 
of � computing same function � does?
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Simpler version of MIN DNF

• analogy with an NP-complete problem:
– SET COVER: given subsets S1,S2,...,Sm ⊂ U, 

integer k, is there a collection of at most k sets 
that cover U.
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