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What is an auction?

An auction is a mechanism by which to divvy up a collection of items
among 2 or more bidders. An auction problem can be parameterized by:

Auction Parameters

The number of bidders n

The number of items m

The valuations v1, . . . , vn of the bidders for subsets of items

The type of payments allowed.

The goal of the mechanism

The solution concept

Dave Buchfuhrer (Caltech) Truth and Complexity in Allocation Games April 20, 2010 5 / 63



Truth

Auction Parameters

The number of bidders n

The number of items m

The valuations v1, . . . , vn of the bidders for subsets of items

The type of payments allowed.

The goal of the mechanism

The solution concept

Dave Buchfuhrer (Caltech) Truth and Complexity in Allocation Games April 20, 2010 6 / 63



Truth

The solution concept we use is called truthfulness.

Definition (Direct Revelation)

A mechanism M is a direct revelation mechanism if it has the following
form:

1 Bidders supply a description of their valuation functions vi

2 The mechanism determines an allocation and payments

Definition (Truthful)

A direct revelation mechanism M is truthful if each bidder’s utility (value
minus payments) is maximized by reporting vi truthfully for any fixed
reporting of the other bidders’ valuations.
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Goals

We are interested in two goals.

Definition (Social Welfare)

The social welfare of an allocation S1, . . . , Sn is∑
i∈[n]

vi (Si )

Definition (Revenue)

The revenue of an allocation with prices p1, . . . , pn is∑
i∈[n]

pi
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Payments

Auction Parameters

The number of bidders n

The number of items m

The valuations v1, . . . , vn of the bidders for subsets of items

The type of payments allowed.

The goal of the mechanism

The solution concept

We allow any positive payments for this part of the talk.
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Number of items

Auction Parameters

The number of bidders n

The number of items m

The valuations v1, . . . , vn of the bidders for subsets of items

The type of payments allowed.

The goal of the mechanism

The solution concept
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Number of items

For a single item, the standard Vickrey auction is truthful:

Example (Vickrey Auction)

Allocation: The item goes to the highest bidder
Payments: The highest bidder pays the second-highest price

The VCG mechanism is a more general way to get truthful auctions. For
the auctions in this talk, all VCG-based mechanisms are maximal-in-range
(S. Dobzinski and N. Nisan. Limitations of VCG-based Mechanisms.
STOC. 2007).

Definition (Maximal-in-Range)

Any mechanism M has a range of possible outcomes R. M is
maximal-in-range if it maximizes the social welfare over R.
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Valuation Functions

Auction Parameters

The number of bidders n

The number of items m

The valuations v1, . . . , vn of the bidders for subsets of items

The type of payments allowed.

The goal of the mechanism

The solution concept
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Valuation Functions

For general v1 . . . , vn, the problem is NP-hard to approximate to within a
constant factor and requires exponential communication in the worst case.

We consider functions which

are submodular (easy to approximate to within 1− 1/e)

can be described succinctly (no communication issues)
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Number of Bidders

If the number of bidders is very high, say n = mm, then we can solve the
auction by brute force:

Enumerate all partitions of items into several bundles

For each set of bundles, assign them optimally via bipartite matching

So we require that n ∈ O(poly(m)).
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Auction Setting

We considered auctions with the following parameters:

Our Parameters

There are n = n(m) ∈ O(poly(m)) bidders

Any number m of items

v1, . . . , vn restricted to a subset of submodular valuations

Any positive payments are allowed

The goal is to maximize social welfare (
∑

i vi (Si ))

The mechanism must be truthful

In order to achieve positive payments with a truthful mechanism, we
restrict our attention to maximal-in-range mechanisms.
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Result

Theorem (BDFKMPSSU 10)

An n bidder, m item maximal-in-range auction mechanism can’t beat the
approximation ratio min(n,

√
m) unless NP ⊆ P/poly .

We based our work on (C. Papadimitriou, M. Schapira and Y. Singer. On
the Hardness of Being Truthful. FOCS. 2008):

Show that a better than
√

m approximation implies a large range

Sauer’s lemma implies a large VC dimension

A large VC dimension implies a subset of items allocated in every
possible way

An MIR mechanism solves exactly on these items

Sauer’s lemma is useful when the allocation are in {0, 1}m, but if items
can be unallocated, the allocations could be anything in {0, 1, 2}m.
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Sketch of our proof

Theorem

An n bidder, m item maximal-in-range auction mechanism can’t beat the
approximation ratio min(n,

√
m) unless NP ⊆ P/poly .

Sketch of Proof.

Assume an approximation better than min(n,
√

m)

Restrict the auction to a subset of items that are always allocated
with a large range

Combine all but one bidder into a single meta-bidder

Make use of existing Sauer’s lemma machinery

D. Buchfuhrer, S. Dughmi, H. Fu, R. Kleinberg, E. Mossel, C.
Papadimitriou, M. Schapira, Y. Singer and C. Umans. Inapproximability
for VCG-Based Combinatorial Auctions. SODA. 2010
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NP-Hard 2-Bidder Auction

We noted that a 2-bidder auction with 1 additive bidder and 1
budget-additive bidder is NP-hard.

Definition (Budget-additive)

A budget-additive bidder has value vi for item i and a budget B. His
valuation function is

v(S) = min

(∑
i∈S

vi , B

)
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Additive and Budget Additive

We simulate these 2 bidders in an n-bidder budget-additive auction

One bidder i∗ is chosen to represent the budget-additive bidder

All other bidders have valuation equal to the additive bidder

We showed that we can restrict to a large subset of the items for which
the mechanism range includes every full assignment.
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Public Projects?

A public project is similar to an auction, but all items are shared, and we
can only choose k items.

Definition (Social Welfare for Public Projects)

In a public project where players have valuations v1, . . . , vn, a set S has
social welfare ∑

i∈[n]

vi (S)

Example

Imagine a city block with k empty storefronts. m businesses would like to
open shop on this block. You wish to make the n people living near this
block as happy as possible with your choices.
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History

Public projects were first introduced in this form 2 years ago [PSS 08].
This paper had 2 interesting results:

Approximation ratios better than
√

m require exponential
communication

Truthful submodular auctions are NP-hard to approximate to better
than

√
m. The techniques in this proof were a precursor to our

auction result.

A matching truthful
√

m mechanism for arbitrary subadditive public
projects was shown later that year (M. Schapira and Y. Singer.
Inapproximability of Combinatorial Public Projects. WINE. 2008).
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Our Work

As with auctions, we focus on succinctly describable subsets of submodular
valuation functions. We begin with one of the simplest valuation functions.

Definition (Unit-Demand)

A valuation v is unit-demand if

v(S) = max
i∈S

v({i})
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Sharing is hard

Definition (Unit-Demand)

A valuation v is unit-demand if

v(S) = max
i∈S

v({i})

In auctions, unit-demand is easy. Not so in public projects:

Restrict all valuations to be 0 or 1

For each item i , let C (i) be the set of players with value 1 for i

A player gets value 1 for set S if he is in
⋃

i∈S C (i)

So this is essentially max-k-cover

max-k-cover is hard to approximate better than 1− 1/e

Dave Buchfuhrer (Caltech) Truth and Complexity in Allocation Games April 20, 2010 26 / 63



Negative Results

We were able to show NP-hardness for all classes we considered:

unit-demand with n agents

OXS with ≥ 3 agents

budget-additive with ≥ 2 agents

XOS with ≥ 2 agents

coverage with ≥ 1 agent

For each class, we showed that no poly-time MIR mechanism can beat a√
m ratio unless NP ⊆ P/poly . This matches the known

√
m MIR

approximation.
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Positive Results

If we have n unit-demand players where

All values are either 0 or 1

At most 2 items have value 1

The problem is still NP-hard, and no MIR mechanism can beat
√

m

Theorem

The below mechanism is a truthful 2-approximation.

Mechanism

Rank each item by how many players have value 1 for it

Choose the top k items, breaking ties by numerical order
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So what?

In public projects, truthfulness becomes an issue for much simpler
valuations, where it is clear that MIR mechanisms are not the end of the
story.
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So what?

So far, we’ve seen that

MIR subadditive auctions can’t beat min(n,
√

m)

The same is true for many subadditive public projects

Some public projects have better truthful mechanisms

Can the MIR auction bounds be overcome? We don’t think so.
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How could we prove it?

One way to show bounds on optimal truthful mechanisms:

1 Show that the best truthful mechanisms are MIR.

2 Show bounds on efficient MIR mechanisms.

So we need only show that truthful mechanisms achieving a better ratio
than min(n,

√
m) are MIR.
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Proving a Roberts Theorem

Theorem (Roberts 1979)

Any truthful auction mechanism for general valuations is MIR.

Multi-unit auctions with 2 bidders can’t be truthfully approximated
better than 2 if all items must be allocated (R. Lavi, A. Mu’alem and
N. Nisan. Towards a characterization of truthful combinatorial
auctions. FOCS. 2003)

A recent paper simplified the proof of Roberts’ theorem to make it
easier to adapt (R. Lavi, A. Mu’alem and N. Nisan. Two simplified
proofs for Roberts’ theorem. Social Choice and Welfare. 2009).

Our auctions work was able to transform a 2-bidder result into a
stronger n-bidder result.

Perhaps with techniques like ours and simpler proofs of Roberts’
theorem, we can characterize combinatorial auctions.
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What’s wrong with Truth?

In the public projects we studied, NP-hardness implies that MIR
mechanisms have bad approximation ratios

Surprisingly, this holds for a single coverage valuation agent.

More surprisingly, truth implies MIR for a single agent.

I Agent’s goal: to maximize his utility
I Mechanism’s goal: to maximize the agent’s welfare
I Best poly-time approximation: 1− 1/e
I Best truthful poly-time approximation: 1/

√
m (D. Buchfuhrer, M.

Schapira and Y. Singer. Computation and Incentives in Combinatorial
Public Projects. EC. 2010)
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Solutions

In our example, the incentivized lies will increase social welfare

So should we ditch truth in favor of some equilibrium notion?

Truth has the following nice properties we’d like to keep:
I Simplified design space
I The mechanism has access to the actual valuations
I Easy to demonstrate

These properties are nice for more complicated settings.
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Why rationality leads to strange results

Consider the single-player public project where the greedy algorithm is
optimal.

A rational player would choose the best outcome in the range.

But this is NP-hard because the range is every allocation.

The problem is that we are constraining the computation of the
mechanism, but not the players
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First attempt

What if we limit the player to polynomial computation?

There are 2 problems with this:

A player can have a specialized algorithm that computes the best
allocation for his valuation

A player could use heuristics to improve some allocations
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Assuming the problem away

In order to get something like rationality, we need per instance optimality.

What if we assume that the player can’t find a better allocation regarding
the social welfare?
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Universal VCG Mechanisms

If we assume that the players can’t find an assignment with better social
welfare, VCG payments make any algorithm truthful.

Possible conclusions:

This idea is stupid because it assumes away the real problems of
mechanism design

This idea is stupid because it pays out n − 1 times the social welfare.
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Pivot Rule

Clarke Pivot

Player i is charged v−i (A(v−i , 0))− v−i (A(v−i , vi ))

The idea is to offset the large payment to the players by an amount that
does not depend on the player’s bid.

Individual rationality (non-negative utility for each player)

No payments (or only small payments) made to the players

We can get both using the above Clarke pivot if

minvi v(A(v−i , vi )) = v(A(v−i , 0))

maxvi v−i (A(v−i , vi )) = v−i (A(v−i , 0))
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Previous Work

This payment scheme was studied previously (N. Nisan and A. Ronen.
Computationally Feasible VCG Mechanisms. Journal of Artificial
Intelligence Research. 2007), but they only focus on individual rationality
and a “second-chance” idea:

Mechanism (Second-Chance)

1 Take bids in the form of each players’ valuation function

2 Compute an allocation

3 Take bids describing other possible allocations

4 Use the allocation maximizing social welfare

5 Charge VCG payments
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What will we add?

We intend to improve on the Nisan/Ronen work by

Looking more at constraining the payments made by the mechanism

Showing auctions in which these mechanisms help

Example

Any allocation algorithm for two players can be made truthful in this
model. Simply output the best allocation from the one output by the
algorithm, and the 2 in which one player gets all the items.
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So what?

This mechanism is great for 2-player budget-additive auctions. The best
known truthful mechanism gets a ratio of min(n,

√
m), but now we can

use a known FPTAS.
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Auctions
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Another Solution

Rather than assume limited players, what if we assume players have special
information?

Problems occur when it’s hard to determine what the player wants

If we assume the player knows better, we should take advantage

Idea from communication complexity: demand queries
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Demand Queries

Demand Query

Input: A price pi for each item i
Output: A set S maximizing v(S)−

∑
i pi

Demand queries can be used to solve auctions via linear programming in
some situations (S. Bikhchandani and J.W. Mamer. Competitive
equilibrium in an exchange economy with indivisibilities. Journal of
Economic Theory. 1997)

k-Demand Queries

Input: A price pi for each item i and a positive integer k ≤ m.
Output: A set S , |S | ≤ k maximizing v(S)−

∑
i∈S pi
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Questions

While demand queries have been studied extensively from a communication
complexity viewpoint, succinctly described valuations can just be directly
revealed, so demand queries have not received much attention.

Can demand queries solve our single-player public project?

Can k-demand queries solve more complicated public projects?

Can demand queries solve hard auctions?
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Demand queries and single player public projects

Theorem

There exists a class of public projects with description length O(m) which
requires exponentially many demand queries to solve.

Proof.

Let |S∗| = k . Define

vS∗(S) =


0 |S | ≤ k , S 6= S∗

1 S = S∗

3 |S | > k

If the demand query with prices p1, . . . , pm returns S∗, pi ≥ 2 for i /∈ S∗

and pi ≤ 1 for i ∈ S∗.
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Solving auctions with demand queries

Consider a 2-player auction with 1 additive player and 1 budget-additive
player.

Additive Player

Values u1, . . . , um and valuation function U(S) =
∑

i∈S ui

Budget-Additive Player

Values v1, . . . , vm, B and valuation V (S) = min(
∑

i∈S vi , B)

Query the budget-additive player with pi = ui

He returns a set S maximizing V (S)−
∑

i∈S ui

This also maximizes V (S) + U(SC )

We can similarly solve the same public project using negative prices
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Going further

Can demand queries be used to solve

auctions and public projects with 2 budget-additive players?

the single player coverage valuation public project?

other hard auctions and public projects?
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Revenue Maximization

So far, we’ve worried about maximizing the social welfare.
Less altruistic auctioneers are more concerned about revenue.

Consider a 1 item, 2-bidder auction

Bidder 1 values the item at $1, bidder 2 at $1,000

The standard Vickrey auction will sell the item for $1

A smart auctioneer would put a reserve price close to $1,000

The auctioneer loses if the actual value is $900 or $10,000

Revenue maximization depends on prior knowledge
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Bayesian Auctions

We add prior distributions on the players’ valuations to the auction.

vi ∼ Di

and the goal is to design a truthful mechanism maximizing E [
∑

i pi ]
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Single Item Example

Example (Algorithmic Game Theory, Chapter 13)

Consider the 2-bidder 1-item auction in which vi ∼ uniform([0, 1]).
Let the max and min prices be vmax and vmin.

If vmax < 1/2, don’t allocate

Otherwise, allocate to the higher bidder for max(1/2, vmin)

This is truthful because it is a Vickrey auction

The expected revenue is 5/12

The standard Vickrey auction has expected revenue 4/12

For more complicated distributions, the expected revenue is
maximized via a virtual auction (R. Myerson. Optimal Auction
Design. Mathematics of Operations Research, 1981)
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The Problem

While mechanism design is solved for a single item, it remains largely open
for multiple items

Example (Unsolved Revenue Maximization Problem)

2 bidders

2 items

Each bidder wants at most 1 item

Item values are drawn from a known distribution

Maybe revenue maximization is computationally hard?
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Price menus

The Problem

2 bidders, 2 items, allocate at most 1 item to each bidder to maximize
revenue with known priors

All truthful mechanisms have the following form:

1 Players reveal their values

2 Based on each player’s value, the mechanism determines item prices
for the other player

3 Each player is given at most 1 item in order to maximize his utility
under the price regime

4 Players are charged according to the prices from step 2
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Price menu functions

So we want two price menu functions P1, P2 such that:

For every pair of values (v11, v12), (v21, v22) there is an allocation such
that:

I Each player’s utility is maximized
I Both players don’t get the same item

Revenue is maximized

Note

Given P1, we can find the function P2 maximizing the revenue for any
discrete distribution. For each pair (v21, v22), try all relevant prices and
calculate the expected revenue, then choose the max.
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Nash?

Note

Given P1, we can find a best P2.

So we have a table of numbers, and want to find a pair of strategies
P1, P2 based on these numbers that are best responses to each other.

Conjecture

Finding a pair P1, P2 in equilibrium is PPAD-hard.
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No PPAD Hardness

Lemma

A pair of price menu functions P1, P2 which are best responses to each
other can be found in polynomial time.

Proof.

Let P∗(u, v) = (∞,∞)

Let P2 be a best response to P∗

Let P1 be a best response to P2

P2 gets maximum possible revenue from player 1, so it is a best
response to anything, including P1

So we’ll have to try for NP-hardness
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Outline

1 Completed Work
Auctions
Public Projects

2 A Subadditive Roberts Theorem

3 The problem with Truth
Bounded Rationality
Powerful Players

4 Revenue Maximization

5 Summary
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Summary

Results so far

A min(n,
√

m) bound on maximal-in-range submodular auctions

Several results relating to public projects, including a troubling bound
of
√

m for a truthful 1-player public project

Hopeful future results

A min(n,
√

m) bound on truthful submodular public projects

Player knowledge and/or bounded rationality can be used to
circumvent issues with truthfulness

Revenue maximization is NP-hard even for a constant number of
bidders and items and simple valuations
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