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Public Projects

A combinatorial public project is a game in which the goal is to choose k
items from a set of m to provide for shared use among n agents.

This differs from an auction in that allocated items are shared.

Definition (Social Welfare)

Suppose that each agent i gets value vi (S) for allocation S . Then the
social welfare of S is ∑

i

vi (S)
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History

Public projects were first studied by Papadimitriou, Schapira and
Singer in a 2008 FOCS paper titled On the Hardness of Being Truthful

Our results use techniques from this paper to achieve hardness results
for approximating social welfare with maximal-in-range mechanisms

These techniques were also used in a recent paper in SODA 2010,
Limits on the Social Welfare of Maximal-In-Range Auction
Mechanisms by Buchfuhrer, Dughmi, Fu, Kleinberg, Mossel,
Papadimitriou, Schapira, Singer and Umans.
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Maximal-in-Range (MIR)

Definition (Maximal-in-Range)

An allocation algorithm is maximal-in-range if there exists some range R
such that the algorithm always outputs an allocation from R that
maximizes the social welfare.

Feasible Allocations

An algorithm can be implemented truthfully via VCG iff it is MIR

For sufficiently general valuations, VCG is the only truthful mechanism
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Performance of MIR mechanisms

Theorem (sketch)

A maximal in range allocation algorithm for any NP-hard combinatorial
public project cannot approximate the welfare with a ratio better than

√
m

unless NP ⊆ P/poly .

Proof scheme.

A mechanism that gets better than a
√

m ratio requires an
exponential range for sufficiently expressive valuation classes (PSS 08)

By Sauer’s lemma, an exponential range must contain a
polynomial-sized subset S∗ of items allocated in every way

We construct instances in which it is NP-hard to determine which
members of S∗ should be selected. These follow fairly directly from
the proofs of NP-hardness.
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Embedding NP-hard problems into S∗

Suppose we have an NP-hardness reduction to the problem

Example

Does there exist a subset S ⊆ [m], |S | = k such that v(S) = v([m])?

We simply embed [m] into S∗ and set social welfare

v ′(S = S1 ∪ S2) = v(S1) + ε|S2|

where S1 ⊆ S∗, S2 ⊂ [m′]\S∗

Lemma

The auction after this embedding has social welfare v([m]) + ε(k ′ − k) iff
there is a set S ⊆ [m], |S | = k such that v(S) = v([m]).
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Definition

Definition (Unit-Demand Valuation)

An agent with a unit-demand valuation has private values wj for each item
j , and has total value

vi (S) = max
j∈S

wj

for set S .

In auctions, unit-demand agents are trivial.
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NP hardness

Theorem

The public project problem with unit-demand agents is NP-hard.

Proof by picture

Reduction from vertex cover:
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2-{0, 1} Unit-Demand

Definition (2-{0, 1} Unit-Demand)

An agent has a 2-{0, 1} unit-demand valuation if for some two items i , j :

v(S) =

{
1 i ∈ S ∨ j ∈ S
0 otherwise

The previous proof showed hardness for 2-{0, 1} unit-demand agents, as
an agent is satisfied if one of the items chosen corresponds to one of the 2
endpoints of his edge.
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Truthful Approximation

Recall

NP hardness means VCG mechanisms can’t beat a
√

m approximation

Theorem

There exists a truthful 2-approximation 2-{0, 1} unit-demand agents

Mechanism

Choose the k items corresponding to the vertices of highest degree

Proof.

The number of edges covered is at least half the sum of degrees

There’s no benefit to lying
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Definition

Definition (Coverage Valuation)

An agent with a coverage valuation associates a set Tj with each item j ,
and has value

vi (S) =

∣∣∣∣∣∣
⋃
j∈S

Tj

∣∣∣∣∣∣
for set S .
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NP hardness

Theorem

The public projects problem with a single coverage valuation agent is
NP-hard.

Definition (max-k-cover)

Input: Several sets T1, . . . ,Tm

Goal: Find a set S ⊆ [m], |S | = k maximizing |
⋃

j∈S Tj |

Definition (Public Project with 1 Coverage Valuation Agent)

Input:

Several sets T1, . . . ,Tm

Goal:

Find a set S ⊆ [m], |S | = k maximizing |
⋃

j∈S Tj |
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Wait a second...

Theorem

No truthful poly-time mechanism for public projects can achieve better
than a

√
m approximation unless NP ⊆ P/poly .

Proof.

Our results show hardness for VCG to do better than
√

m

For a single agent, any mechanism must be maximal-in-range to be
truthful, so VCG is all there is
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Summary of Results

Computational Results
valuation class no. of agents appx. ratio r

unit-demand
constant r = 1

n r = 1− 1
e

[New]

multi-unit-demand

1, 2 r = 1 [New]
3 2/3 [New] ≤ r < 1 [New]
≥ 4 1− 1

e
[10] ≤ r < 1 [New]

≥ 10 1− 1
e

[10] ≤ r < 1− ε (no PTAS)[New]
n r = 1− 1

e
[New]

capped additive
1 r = 1

constant ≥ 2 r = 1− ε (FPTAS) [New]
n r = 1− 1

e
[New]

fractionally-subadditive
constant r = 1

n max{ 1
n
, 1√

m
} [16] ≤ r ≤ 2−

log1−γ n
6 [New]

Figure 1.2: Computational Results

valuation class no. of agents Truthful appx. ratio r VCG-based appx. ratio r
2-{0,1} unit-demand n 1/2 ≤ r < 1 [New]

r = 1√
m

[New]

unit-demand n ?

multi-unit-demand
3 2/3 ≤ r < 1 [New]
n ?

capped-additive ≥ 2 ?
coverage 1 r = 1√

m
[New]

fractionally-subadditive n ?

Figure 1.3: Truthful Mechanism Results. Question marks indicate that the only bounds known are a 1√
m

lower bound based on the VCG-based mechanism shown in [16] and a purely computational upper-bound.

takes as input a collection of subsets F of a set A and an
integer t. The goal is to find t sets in F which have a union
of maximum cardinality. It was shown in [4] that MAX-t-
COVER cannot be approximated to within 1− 1/e + ε for
any constant ε > 0 unless P = NP .

Consider a MAX-t-COVER instance over set A with F =
{S1, . . . , S!} and number of sets to be chosen t. We create a
CPPP instance with resource set F and |A| agents, one cor-
responding to each element of A. The agent corresponding
to element a values each resource Si ∈ F as

va(Si) =


1, a ∈ Si

0, otherwise
.

So the value for agent a is 1 if a is covered by the chosen
set and 0 otherwise. Thus, the social welfare is number
of covered resources, or the cardinality of the union of the
chosen sets. By setting the number of resources allowed to be
chosen to k = t, we see that if we can approximate the social
welfare to within any factor α, we get an α-approximation
of MAX-t-COVER as well. So by [4], an approximation of
1− 1/e + ε is not achievable.

Observe that the above hardness of approximation result is
tight (a simple greedy algorithm obtains an approximation
ratio of exactly 1− 1

e
). Note that the above proof required

|F| agents, each with very simple 0/1 valuation functions.
Observe that if there is only a constant number c of agents,
one need only consider

`
m

min(c,k)

´
∈ poly(m) sets of resources

in order to find one which maximizes the social welfare, and
hence CPPP with a constant number of unit-demand agents
can be solved in polynomial time.

VCG-based mechanisms. We next consider the class of
VCG-based, or maximal-in-range (MIR), mechanisms. For a
thorough explanation about MIR/VCG-based mechanisms,
see [13]. Informally, MIR mechanisms output, for each pos-
sible input, the optimal outcome within a fixed set of out-
comes. That is, a MIR mechanism M has a fixed set R
of possible outcomes (subsets of resources of size k) and,
for each n-tuple of agents’ valuations (v1, . . . , vn), chooses a
subset r ∈ R that maximizes the social welfare Σivi over R.
The collection R is called M ’s range.

[16] shows a computationally-efficient MIR mechanism for
CPPP with subadditive valuations that has an approxima-
tion ratio of 1√

m
. This approximation ratio is tight for MIR

mechanisms even when restricted to 2-{0,1}-unit-demand
valuations.

Theorem 2.2. No computationally-efficient MIR mech-
anism can approximate CPPP with n 2-{0,1}-unit-demand

valuations within m−( 1
2−ε) (for any constant ε > 0) unless

NP ⊆ P/poly.

Proof. Our proof is based on the proof technique in [13],
where the use of VC dimension to set bounds on the approx-
imability of MIR mechanisms is introduced. The reader is
referred to [13] for a comprehensive explanation. We be-
gin by noting that in [13] it was shown that any algorithm
for CPPP which achieves an approximation ratio of at least
m1/2−ε has a range of size Ω(emε

). This proof required that
for any V ⊆ [m], it is possible to create a set of agents
such that the social welfare is v(S) = |V ∩ S|. This is easy
to do with n 2-{0,1}-unit-demand agents, resulting in the
following useful lemma:
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Conclusions and Open Problems

Public projects are hard even for simple classes of valuations, allowing
for mechanism design to be explored on simpler problems than in
auctions

Can we improve upon the VCG mechanism in simple public projects?

The requirement of truth can be too much even for a single agent

Can we define a satisfying substitute for truth in these situations?
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