Computation and Incentives in Public Projects

Dave Buchfuhrer Michael Schapira Yaron Singer

Caltech, Yale, Berkeley

June 9, 2010

- ∢ ∃ ▶

Outline

Dave Buchfuhrer (Caltech)

イロト イヨト イヨト イヨト

Public Projects

A combinatorial public project is a game in which the goal is to choose k items from a set of m to provide for shared use among n agents.

Public Projects

A combinatorial public project is a game in which the goal is to choose k items from a set of m to provide for shared use among n agents.

This differs from an auction in that allocated items are shared.

Definition (Social Welfare)

Suppose that each agent *i* gets value $v_i(S)$ for allocation *S*. Then the social welfare of *S* is

$$\sum_{i} v_i(S)$$

History

- Public projects were first studied by Papadimitriou, Schapira and Singer in a 2008 FOCS paper titled *On the Hardness of Being Truthful*
- Our results use techniques from this paper to achieve hardness results for approximating social welfare with maximal-in-range mechanisms
- These techniques were also used in a recent paper in SODA 2010, Limits on the Social Welfare of Maximal-In-Range Auction Mechanisms by Buchfuhrer, Dughmi, Fu, Kleinberg, Mossel, Papadimitriou, Schapira, Singer and Umans.

Definition (Maximal-in-Range)

Definition (Maximal-in-Range)

Definition (Maximal-in-Range)

Definition (Maximal-in-Range)

Definition (Maximal-in-Range)

Definition (Maximal-in-Range)

An allocation algorithm is maximal-in-range if there exists some range R such that the algorithm always outputs an allocation from R that maximizes the social welfare.

- An algorithm can be implemented truthfully via VCG iff it is MIR
- For sufficiently general valuations, VCG is the only truthful mechanism

< < p>< < p>

Performance of MIR mechanisms

Theorem (sketch)

A maximal in range allocation algorithm for any NP-hard combinatorial public project cannot approximate the welfare with a ratio better than \sqrt{m} unless NP \subseteq P/poly.

Proof scheme.

• A mechanism that gets better than a \sqrt{m} ratio requires an exponential range for sufficiently expressive valuation classes (PSS 08)

Performance of MIR mechanisms

Theorem (sketch)

A maximal in range allocation algorithm for any NP-hard combinatorial public project cannot approximate the welfare with a ratio better than \sqrt{m} unless NP \subseteq P/poly.

Proof scheme.

- A mechanism that gets better than a \sqrt{m} ratio requires an exponential range for sufficiently expressive valuation classes (PSS 08)
- By Sauer's lemma, an exponential range must contain a polynomial-sized subset S* of items allocated in every way

< /₽ > < E > <

Performance of MIR mechanisms

Theorem (sketch)

A maximal in range allocation algorithm for any NP-hard combinatorial public project cannot approximate the welfare with a ratio better than \sqrt{m} unless NP \subseteq P/poly.

Proof scheme.

- A mechanism that gets better than a √m ratio requires an exponential range for sufficiently expressive valuation classes (PSS 08)
- By Sauer's lemma, an exponential range must contain a polynomial-sized subset S* of items allocated in every way
- We construct instances in which it is NP-hard to determine which members of *S*^{*} should be selected. These follow fairly directly from the proofs of NP-hardness.

(日) (同) (三) (三)

Embedding NP-hard problems into S^*

Suppose we have an NP-hardness reduction to the problem

Example

Does there exist a subset $S \subseteq [m], |S| = k$ such that v(S) = v([m])?

Embedding NP-hard problems into S^*

Suppose we have an NP-hardness reduction to the problem

Example

Does there exist a subset $S \subseteq [m], |S| = k$ such that v(S) = v([m])?

We simply embed [m] into S^* and set social welfare

$$v'(S=S_1\cup S_2)=v(S_1)+\epsilon|S_2|$$

where $S_1 \subseteq S^*, S_2 \subset [m'] ackslash S^*$

Embedding NP-hard problems into S^*

Suppose we have an NP-hardness reduction to the problem

Example

Does there exist a subset $S \subseteq [m], |S| = k$ such that v(S) = v([m])?

We simply embed [m] into S^* and set social welfare

$$v'(S = S_1 \cup S_2) = v(S_1) + \epsilon |S_2|$$

where $S_1 \subseteq S^*, S_2 \subset [m'] ackslash S^*$

Lemma

The auction after this embedding has social welfare $v([m]) + \epsilon(k' - k)$ iff there is a set $S \subseteq [m], |S| = k$ such that v(S) = v([m]).

Dave Buchfuhrer (Caltech)

イロト イヨト イヨト イヨト

Definition

Definition (Unit-Demand Valuation)

An agent with a unit-demand valuation has private values w_j for each item j, and has total value

$$w_i(S) = \max_{j \in S} w_j$$

for set S.

In auctions, unit-demand agents are trivial.

Theorem

The public project problem with unit-demand agents is NP-hard.

Dave Buchfuhrer (Caltech)

Combinatorial Public Projects

June 9, 2010 10 / 19

Theorem

The public project problem with unit-demand agents is NP-hard.

Dave Buchfuhrer (Caltech)

Combinatorial Public Projects

June 9, 2010 10 / 19

Theorem

The public project problem with unit-demand agents is NP-hard.

Dave Buchfuhrer (Caltech)

Combinatorial Public Projects

June 9, 2010 10 / 19

Theorem

The public project problem with unit-demand agents is NP-hard.

2- $\{0,1\}$ Unit-Demand

Definition (2-{0,1} Unit-Demand)

An agent has a 2- $\{0, 1\}$ unit-demand valuation if for some two items i, j:

$$u(S) = \left\{ egin{array}{cc} 1 & i \in S \lor j \in S \ 0 & ext{otherwise} \end{array}
ight.$$

The previous proof showed hardness for $2-\{0,1\}$ unit-demand agents, as an agent is satisfied if one of the items chosen corresponds to one of the 2 endpoints of his edge.

Recall

NP hardness means VCG mechanisms can't beat a \sqrt{m} approximation

A E A

Recall

NP hardness means VCG mechanisms can't beat a \sqrt{m} approximation

Theorem

There exists a truthful 2-approximation 2-{0,1} unit-demand agents

Recall

NP hardness means VCG mechanisms can't beat a \sqrt{m} approximation

Theorem

There exists a truthful 2-approximation 2-{0,1} unit-demand agents

Mechanism

Choose the k items corresponding to the vertices of highest degree

Recall

NP hardness means VCG mechanisms can't beat a \sqrt{m} approximation

Theorem

There exists a truthful 2-approximation 2- $\{0,1\}$ unit-demand agents

Mechanism

Choose the k items corresponding to the vertices of highest degree

Proof.

- The number of edges covered is at least half the sum of degrees
- There's no benefit to lying

(日) (同) (三) (三)

Outline

Dave Buchfuhrer (Caltech)

- < ∃ →

Image: A math a math

Definition

Definition (Coverage Valuation)

An agent with a coverage valuation associates a set T_j with each item j, and has value

$$v_i(S) = \left| igcup_{j \in S} T_j \right|$$

for set S.

Theorem

The public projects problem with a single coverage valuation agent is NP-hard.

Definition (max-k-cover)

Input: Several sets T_1, \ldots, T_m **Goal:** Find a set $S \subseteq [m], |S| = k$ maximizing $|\bigcup_{i \in S} T_i|$

· · · · · · ·

Theorem

The public projects problem with a single coverage valuation agent is NP-hard.

Definition (max-k-cover)

Input: Several sets T_1, \ldots, T_m **Goal:** Find a set $S \subseteq [m], |S| = k$ maximizing $|\bigcup_{j \in S} T_j|$

Definition (Public Project with 1 Coverage Valuation Agent) Input: Goal:

イロト イポト イヨト イヨト 二日

Theorem

The public projects problem with a single coverage valuation agent is NP-hard.

Definition (max-k-cover)

Input: Several sets T_1, \ldots, T_m **Goal:** Find a set $S \subseteq [m], |S| = k$ maximizing $|\bigcup_{j \in S} T_j|$

Definition (Public Project with 1 Coverage Valuation Agent) Input: Several sets T_1, \ldots, T_m Goal:

Theorem

The public projects problem with a single coverage valuation agent is NP-hard.

Definition (max-k-cover)

Input: Several sets T_1, \ldots, T_m **Goal:** Find a set $S \subseteq [m], |S| = k$ maximizing $|\bigcup_{j \in S} T_j|$

Definition (Public Project with 1 Coverage Valuation Agent)

Input: Several sets T_1, \ldots, T_m **Goal:** Find a set $S \subseteq [m], |S| = k$ maximizing $|\bigcup_{i \in S} T_i|$

Wait a second...

Theorem

No truthful poly-time mechanism for public projects can achieve better than a \sqrt{m} approximation unless NP $\subseteq P/poly$.

Proof.

- Our results show hardness for VCG to do better than \sqrt{m}
- For a single agent, any mechanism must be maximal-in-range to be truthful, so VCG is all there is

Outline

Dave Buchfuhrer (Caltech)

3 June 9, 2010 17 / 19

- ∢ ≣ →

Image: A match a ma

Summary of Results

Computational Results

valuation class	no. of agents	appx. ratio r	
unit-demand	constant	r = 1	
	n	$r = 1 - \frac{1}{e}$ [New]	
multi-unit-demand	1, 2	r = 1 [New]	
	3	$2/3 \text{ [New]} \le r < 1 \text{ [New]}$	
	≥ 4	$1 - \frac{1}{e} [10] \le r < 1 [\text{New}]$	
	≥ 10	$1 - \frac{1}{\epsilon} [10] \leq r < 1 - \epsilon \text{ (no PTAS)[New]}$	
	n	$r = 1 - \frac{1}{e}$ [New]	
capped additive	1	r = 1	
	$constant \ge 2$	$r = 1 - \epsilon \text{ (FPTAS) [New]}$	
	n	$r = 1 - \frac{1}{e}$ [New]	
fractionally subadditive	constant	r = 1	
fractionally-subadditive	n	$\max\{\frac{1}{n}, \frac{1}{\sqrt{m}}\} \ [16] \le r \le 2^{-\frac{\log^{1-\gamma} n}{6}} \ [\text{New}]$	

Truthful Results

valuation class	no. of agents	Truthful appx. ratio r	VCG-based appx. ratio r
$2-\{0,1\}$ unit-demand	n	$1/2 \le r < 1$ [New]	
unit-demand	n	?	
multi-unit-demand	3	$2/3 \le r < 1$ [New]	
	n	?	$r = \frac{1}{\sqrt{m}}$ [New]
capped-additive	≥ 2	?	
coverage	1	$r = \frac{1}{\sqrt{m}}$ [New]	
fractionally-subadditive	n	?	

Conclusions and Open Problems

- Public projects are hard even for simple classes of valuations, allowing for mechanism design to be explored on simpler problems than in auctions
- Can we improve upon the VCG mechanism in simple public projects?
- The requirement of truth can be too much even for a single agent
- Can we define a satisfying substitute for truth in these situations?