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Combinatorial Auctions

A combinatorial auction consists of

n players 1, . . . , n

m items 1, . . . ,m

n valuation functions v1, . . . , vn where vi : 2[m] → R0
+

An allocation is a partition of the items S1, . . . ,Sn where

Si ∩ Sj = ∅ for i 6= j⋃
i Si ⊆ [m]

We wish to maximize the social welfare,
∑

i vi (Si ).



Combinatorial Public Projects

A combinatorial public project consists of

n players 1, . . . , n

m items 1, . . . ,m

n valuation functions v1, . . . , vn where vi : 2[m] → R0
+

An integer k , 0 ≤ k ≤ m.

An allocation is a subset S ⊆ [m] of size k .
We wish to maximize the social welfare,

∑
i vi (S).



Truthful Mechanism

Definition (Truthful Mechanism)

A mechanism M consists of an allocation algorithm A and an
algorithm to determine the prices p1, . . . , pn to charge the players.
M is truthful if for any v1, . . . , vn,

vi (A(v1, . . . , vn))− pi ≥ vi (A(v1, . . . , v
′
i , . . . , vn))− p′i

In other words, no player can possibly benefit by falsely reporting
its valuation function.

Question

Are efficient truthful mechanisms capable of approximating the
social welfare as well as other polynomial-time algorithms?



VCG Mechanism

Both problems can be solved truthfully by the VCG mechanism if a
maximal-in-range algorithm is used.

Definition (Maximal-in-Range (MIR))

An allocation algorithm A takes in valuation functions and outputs
an allocation. If R is the set of possible allocations output by A, A
is maximal-in-range if it always outputs an allocation from R
maximizing the social welfare.

We examine the capabilities of maximal-in-range mechanisms.
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How to Show Hardness for MIR Algorithms

We use the following general framework to show that MIR
algorithms are bad approximations.

1 Show that a good approximation ratio implies a large range

2 Show that a large range implies a large VC-dimension

3 Embed a reduction into the VC-dimension

4 A can’t be MIR and poly-time unless NP ⊆ P/poly



MIR Results - Combinatorial Public Projects

We showed that all public projects in the hierarchy (except
additive) don’t have better MIR approximations than

√
m [BSS10],

matching a
√

m approximation in [SS08].
Subadditive

(Complement-Free)

Fractionally-
Subadditive (XOS) Submodular

Gross Substitute Capped-Additive
(Budget-Additive)

Weighted 
Coverage

Multi-Unit-Demand 
(OXS)

Unit-Demand (XS) Additive (OS)

Scaled Coverage

Coverage

2-{0,1}-Unit-
Demand

Hard with one player
Hard with two players
Hard with three players
Hard with an unbounded
number of players
Easy

Auctions are less amenable to study than public projects
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Coverage Valuations

Definition (Coverage Valuation)

A coverage valuation vi consists of sets V 1
i , . . . ,V

m
i and the value

of a set S is vi (S) =
∣∣∣⋃j∈S V j

i

∣∣∣ .

Example (Exercise Machines)

�

X

Arms

� Legs

�

X

Chest

� Core

�

X

Cardio
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Cheating at Solitaire

Definition (Scaled Coverage)

A scaled coverage valuation vi consists of sets V 1
i , . . . ,V

n
i and a

scaling factor α. The value of a set S is

vi (S) = α

∣∣∣∣∣∣
⋃
j∈S

V j
i

∣∣∣∣∣∣ .

Theorem

Public projects with a single scaled coverage valuation player can’t
be approximated better than

√
m by polynomial-time truthful

mechanisms unless NP ⊆ P/poly.



The Weird Scenario

Well, I want the best k I can get, so this 
should work out great.

Hi! I can only give you k items, but I want 
to give you the best k I can.



The Weird Scenario

What will you do with it?

I'll just need your valuation function.



The Weird Scenario

I'm computationally limited, so I'll just do 
a greedy approximation.

Umm... it's v'.

If I say it's v, I'll only get a 
fraction of my maximum value.



Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the
item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

v(S) =
∣∣∣⋃j∈S V j

∣∣∣
V 1 = {1, 2},V 2 = {3, 4},V 3 = {5, 6},V 4 = {1, 3, 5}

If k = 3, |V 1 ∪ V 2 ∪ V 3| = 6, but greed gets value 5
Round Item 1 Item 2 Item 3 Item 4 Covered Set

1 2 2 2 3

{1,3,5}
2 1 1 1 - {1,2,3,5}
3 - 1 1 - {1,2,3,4,5}
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Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the
item of maximum marginal value.

Example (Lies Improve Welfare)

v(S) =
∣∣∣⋃j∈S V j

∣∣∣
V 1 = {1, 2},V 2 = {3, 4},V 3 = {5, 6},V 4 = {1, 3, 5}
Define v ′ by V 1′ = {1},V 2′ = {2},V 3′ = {3},V 4′ = {}

The greedy algorithm on v ′ chooses 1, 2, 3

If a player has value function v and declares v , he gets value 5

If a player has value function v and declares v ′, he gets value 6
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The Problem

The mechanism does the best it can to help the player out, but the
player will still lie to it. Why does this happen?

For efficiency, the mechanism must run in polynomial time

For truthfulness, the players are not computationally limited

Asymmetry between efficiency and truthfulness is the problem
here. We want to resolve this such that:

Problems that should be easy are easy

Problems that should be hard are hard
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Second-Chance Mechanism

[NR07] suggested a "second-chance" mechanism.

Tell me your valuation function.

It's v, but you should also try running 
your algorithm on v'.



Second-Chance Mechanism

The second-chance mechanism cannot be implemented efficiently with multiple players.

Tell me your valuation function.

It's v, but if player 2 says w, try 
running on (v',w'). If he says y, try 

running on (v'',y'). If he says...



Second-Chance Mechanism

The second-chance mechanism cannot be efficiently implemented with multiple players.

How about if you just give me the 
program you use to compute alternate 

valuations?

Alright, but you won't be able to run 
it without my supercomputer.



Communication Complexity

Others suggest replacing limits on computation with limits on communication.

Tell me your valuation function, but 
please be brief.



Communication Complexity

Communication complexity makes anything with succinct representations easy.

Not a problem.

I only like sets that correspond to true quantified 
Boolean formulas.



Is It Even a Game?

You could argue that a single-player game isn't really even a game.

Why the game-theoretic analysis? Just give me the 
set I want.



Is It Even a Game?

The one player case will come up eventually though.

Because one player is a 
special case, and it's hard.

Why can't you implement a good truthful 
approximation for 2 players?



Maybe Truthfulness is Wrong

Perhaps truthfulness is the wrong equilibrium notion for these games.

But truthful mechanisms have 
such nice properties and are 

easier to analyze...

Why do you even care if I lie? You can still end up 
with a good approximation.



Summary of Issues

Mechanisms are computationally limited, but players are not

This asymmetry leads to hardness results that should not be

Existing methods for resolving this asymmetry do not work
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Instance Oracle Definition

We developed a model in which the mechanism can query
information about valuation functions to solve an instance.

Definition (Instance Oracle)

An instance oracle answers queries related to specific problem
instances. Let a ∈ A be an instance of a problem A. We define an
oracle O such that

Queries to O are made in the form of a string x

O returns some function O(a, x)

We denote the pairing of A with O by AO .



Instance Oracles

Example (Demand Oracle)

A demand oracle takes in a set of per-item prices p1, . . . , pm and
returns a set S maximizing

v(S)−
∑
j∈S

pj

We empower mechanisms with access to oracles.



Benefits of Our Model

Efficient mechanisms in this model work well in practice if
worst-case hardness is unnatural

Hardness results do not depend on unnatural worst cases

All single-player games are easy
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Reductions

Suppose we have two allocation problems A and B and we want to
show that B is at least as hard as A.

Usual answer: reduce A to B
Trickier: what if A and B are paired with oracles?

If AO reduces to BQ , we want

A poly-time solution to BQ implies one for AO

No poly-time solution to AO implies none for BQ

If BQ reduces to CU , so does AO
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Reductions Definition

Reducing AO to BQ

1 Find a polynomial-time reduction R from A to B
2 Show that if R(a) = b, queries to Q on b can be answered in

polynomial time with access to O on a

A B
R

(b, x) f

(a, y)O(a, y)
O

Q(b, x)
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Making Reductions Work

If AO reduces to BQ , we want

A poly-time solution to BQ implies one for AO

If BQ reduces to CU , so does AO

A B
R R′ C

(b, x)
f

(a, y)O(a, y)
O

Q(b, x)
f ′(c, z) U(c, z)



Completeness

Reducing AO to BQ

1 Find a polynomial-time reduction R from A to B
2 Show that if R(a) = b, queries to Q on b can be answered in

polynomial time with access to O on a

We define IONP to be the class of problems AO with A ∈ NP.

Any of the following conditions show that AO is IONP-hard:

A is NP-hard and queries to O are poly-time computable

BQ is IONP-hard and reduces to AO

A is shown NP-hard via R and O is easy on R(a)
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Simple Results

We begin by showing that oracle queries are easy for several of the
classes of public projects we study.

Subadditive
(Complement-Free)

Fractionally-
Subadditive (XOS) Submodular

Gross Substitute Capped-Additive
(Budget-Additive)

Weighted 
Coverage

Multi-Unit-Demand 
(OXS)

Unit-Demand (XS) Additive (OS)

Scaled Coverage

Coverage

2-{0,1}-Unit-
Demand

Hard with one player
Hard with two players
Hard with three players
Hard with an unbounded
number of players
Easy



Oracle Definitions

Definition (k-Demand Oracle)

A k-demand oracle takes in a list of prices p1, . . . , pm and returns a
set S of size k maximizing vi (S)−∑j∈S pj

Definition (Demand Oracle)

A demand oracle takes in a list of prices p1, . . . , pm and returns a
set S maximizing vi (S)−∑j∈S pj



How to compute k-demand queries

Theorem

Let V be a valuation class for which 2-player public projects have a
polynomial-time exact solution. k-demand queries can be solved
exactly in polynomial time for valuations in V.

Proof.

Consider a query p1, . . . , pm to a valuation function vi .

1 Let P = maxj pj

2 Let v ′i (S) =
∑

j∈S(P − pj)

3 Solve the public project with players vi , v
′
i to get S

S maximizes vi (S) + v ′i (S) = vi (S)−∑j∈S pj + kP, and is
therefore an answer to the k-demand query.
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How to compute demand queries

Theorem

Let V be a valuation class for which 2-player auctions have a
polynomial-time exact solution. Demand queries can be solved
exactly in polynomial time for valuations in V.

This theorem has a similar proof to the one for k-demand queries.



Results following from easy oracles

All the classes of public projects which are easy for two players
have easy oracles, so oracles do not affect their complexity.

Subadditive
(Complement-Free)

Fractionally-
Subadditive (XOS) Submodular

Gross Substitute Capped-Additive
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Coverage
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What We Show

Theorem

Public projects with 2 players with coverage valuations and
k-demand or demand oracles are IONP hard.

Definition (Coverage Valuation)

A coverage valuation vi consists of m sets V 1
i , . . . ,V

m
i and the

value of a set S is

vi (S) =

∣∣∣∣∣∣
⋃
j∈S

V j
i

∣∣∣∣∣∣
These public projects are NP-hard with 1 player, so we can’t
show that oracle queries are easy

We show a reduction to a special case where oracles are easy



The Reduction

Theorem

Public projects with 2 players with coverage valuations and
k-demand or demand oracles are IONP hard.

We reduce from vertex cover on a
3-regular graph

We can construct v(S) = # edges
covered by S

We split the graph into two simpler
graphs where queries are easy

Simultaneously maximizing both
valuations is hard

3
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The Reduction

We begin with an instance of vertex cover on a 3-regular graph.
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Four-Coloring

First, 4-color the edges (possible by Vizing’s theorem)
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Split the Graph

Partition the edges by colors to get two 2-colorable graphs
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A set of nodes is a vertex cover in the original graph iff it covers
both of these graphs, so we have a valid reduction here.
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Computing Queries
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It’s easy to compute queries on paths and cycles
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Summary of Results

We were able to show hardness for all classes using oracles.
Subadditive

(Complement-Free)

Fractionally-
Subadditive (XOS) Submodular

Gross Substitute Capped-Additive
(Budget-Additive)

Weighted 
Coverage

Multi-Unit-Demand 
(OXS)

Unit-Demand (XS) Additive (OS)

Scaled Coverage

Coverage

2-{0,1}-Unit-
Demand

Hard with one player
Hard with two players
Hard with three players
Hard with an unbounded
number of players
Easy

The only case we missed was 2 capped-additive players.



2 Capped-Additive Players

We showed that public projects with 2 capped-additive players and
k-demand queries reduce to both public projects and auctions with
2 capped-additive players and demand queries.

PC2
kdem

AC2
dem PC2

dem

PCOV2
dem

PCOV2
kdem

ACdem
PC3

kdem

PC3
dem

IONP-hard

P: public project
A: auction
C: capped-additive valuation
COV: coverage valuation
subscript: number of players
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Tables of Results

Bounds on best achievable approximation ratio r for public projects
Number of Players

Valuation Class 1 2 3

Additive 1 1 1

Unit-Demand 1 1 1

Multi-Unit-Demand 1 1 [New] 1 [New] < r ≤ 3/2 [New]

Capped-Additive 1 1 + ε [New] 1 + ε [New]

Coverage r = e/(e − 1) r = e/(e − 1) r = e/(e − 1)

Fractionally-Subadditive 1 1 1

Number of Players

Valuation Class Constant Unbounded

Additive 1 1

Unit-Demand 1 r = e/(e − 1) [New]

Multi-Unit-Demand 1 + ε [New] < r ≤ e/(e − 1) [New] r = e/(e − 1) [New]

Capped-Additive r = 1 + ε [New] r = e/(e − 1) [New]

Coverage r = e/(e − 1) r = e/(e − 1)

Fractionally-Subadditive 1 r ≥ 2log1−γ(min(n,m)) [New]



Tables of Results

Best achievable MIR approximations for public projects
Number of Players

Valuation Class 1 2 3 Constant Unbounded

Additive 1 1 1 1 1

Unit-Demand 1 1 1 1
√

m [New]

Multi-Unit-Demand 1 1 [New]
√

m [New]
√

m [New]
√

m [New]

Capped-Additive 1
√

m [New]
√

m [New]
√

m [New]
√

m [New]

Coverage
√

m [New]
√

m [New]
√

m [New]
√

m [New]
√

m [New]

Fractionally-Subadditive 1 1 1 1
√

m [New]

Best MIR approximations with demand or k-demand oracles
Number of Players

Valuation Class 1 2 3 Constant Unbounded

Additive 1 1 1 1 1

Unit-Demand 1 1 1 1
√

m [New]

Multi-Unit-Demand 1 1 [New]
√

m [New]
√

m [New]
√

m [New]

Capped-Additive 1 ?
√

m [New]
√

m [New]
√

m [New]

Coverage 1/?
√

m [New]
√

m [New]
√

m [New]
√

m [New]

Fractionally-Subadditive 1 1 1 1
√

m [New]



Conclusions and Open Problems

Conclusions

Truthful mechanisms for submodular valuations are hard

Hardness is mostly preserved even with oracle access

Open Problems

What is the complexity of PC2
kdem, PC2

dem, PCOV1
dem?

Are there reasonable oracles that make some of our hard
problems easy?

Auctions remain largely open in our oracle framework

Our framework is an interesting tool that can be used to
study other problems
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In Theaters Now



3-Player Capped-Additive Public Projects

Definition (Capped-Additive)

A capped-additive valuation function vi has values v1
i , . . . , v

m
i for

items 1, . . . ,m and a value cap ci . The value for a set S is

vi (S) = min

∑
j∈S

v j
i , ci

 .



3-Dimensional Matching

Definition (3DM)

An instance of 3DM consists of a set T ⊆ [k]× [k]× [k]. Is there
some S ⊆ T of size |S | = k such that ∀i , j∃(x1, x2, x3) ∈ S such
that xi = j?

Equivalently, does there exist an S of size k such that the
projection of S onto any of its coordinates is [k]?



Single Coordinate Reduction

Question

Does there exist an S of size k such that the projection of S onto
any of its coordinates is [k]?

Consider a single coordinate. Let Ti = {x1
i , . . . , x

m
i } be the

projection of T to coordinate i . Does there exist some Si ⊆ Ti

where |Si | = k and Si = [k]?

Easy to answer, but let’s try a reduction:

Player 1 has v j
1 = 2x j

i and c1 = 2m+1 − 1

Player 2 has v j
2 = 2m+1 − 2x j

i and c2 = k2m+1 − (2m+1 − 1)

Si = [k] iff v1(S) = c1 and v2(S) = c2.



3-Coordinate Reduction

We saw that 2 players are enough to perform a reduction that
checks a single coordinate. So 6 players are enough to do this
for all 3 coordinates.

Each player either has positive or negative value for items in
their coordinate

We could combine players such that a single player has values
corresponding to multiple coordinates

If we reduce to 2 players, each player has 3 coordinates, so
queries must solve 3DM

If we reduce to 3 players, each player has 2 coordinates, so we
need only solve bipartite matching



Cumulative Results

Subadditive
(Complement-Free)

Fractionally-
Subadditive (XOS) Submodular

Gross Substitute Capped-Additive
(Budget-Additive)

Weighted 
Coverage

Multi-Unit-Demand 
(OXS)

Unit-Demand (XS) Additive (OS)

Scaled Coverage

Coverage

2-{0,1}-Unit-
Demand



Capped-Additive Auctions

So far, our reductions haven’t made use of oracles. We now reduce
from capped-additive public projects with demand oracles to
capped-additive auctions with demand oracles.



The Reduction

Start with a public project with m items, of which we allocate k

1 2 3 4 · · · m



The Reduction

Create n duplicates of the items, one for each player

v1

11 21 31 41 · · · m1

v2

12 22 32 42 · · · m2

v3

13 23 33 43 · · · m3

...

...
...

...
...

. . .
...

vn

1n 2n 3n 4n · · · mn

vn+1 vn+2 vn+3 vn+4 · · · vn+m

k players are satisfied by these k items

The other m − k need their whole column

The original n players get the same k items each

Demand queries can all be answered
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This picture leaves open 2 capped-additive players.



Two Kinds of Oracles

We denote the 2-player capped-additive public project with
k-demand and demand oracles by PC2

kdem and PC2
dem.

We don’t yet know whether PC2
kdem and PC2

dem are IONP-hard,
but we can reduce between them.



k-Demand to Demand Reduction

Consider a public project where player i has valuation function

vi (S) = min(
∑
j∈S

v j
i , ci ).

Let V =
∑

i ,j v j
i and

v ′i (S) = min

∑
j∈S

(
v j
i + V

)
, ci + kV


The social welfare of a set S of size k after this reduction is just
the social welfare before it, plus nkV . So the welfare-maximizing
set is not changed.



Oracle Queries

v ′i (S) = min

∑
j∈S

(
v j
i + V

)
, ci + kV


If the demand query returns a set of size k , the k-demand
query can tell us which set it is

If the demand query returns a set of size < k , the cap isn’t
reached, so it’s as easy as additive

If the demand query returns a set of size > k , the cap is
reached, so we only need to minimize the price



Reduction to Auctions

We can reduce not only across oracles, but from public projects to
auctions as well. Let AC2

dem be the 2-player combinatorial auction
problem with capped-additive valuations and demand queries.



The Reduction

Consider an AC2
dem instance with values

vi (S) = min

∑
j∈S

v j
i , ci

 .

Let V =
∑

i ,j v j
i and W =

∑
j v j

2. We produce an instance with
valuations

v ′1(S) = min

∑
j∈S

(
v j
1 + V

)
, kV + c1


v ′2(S) = min

∑
j∈S

(
V − v j

2

)
, (m − k)V − (W − c2)





Reduction is Valid

v ′1(S) = min

∑
j∈S

(
V + v j

1

)
, kV + c1


v ′2(S) = min

∑
j∈S

(
V − v j

2

)
, (m − k)V − (W − c2)


In an optimal allocation, player 1 gets a set S of size k and
player 2 gets SC

The social welfare of such an allocation is equal to the social
welfare of the PC2

kdem instance, plus some fixed terms



Computing Oracle Queries

v ′1(S) = min

∑
j∈S

(
V + v j

1

)
, kV + c1


v ′2(S) = min

∑
j∈S

(
V − v j

2

)
, (m − k)V − (W − c2)


If player 1 doesn’t get k items, queries are easy

If player 1 gets k items, the k-demand oracle gives the answer

If player 2 doesn’t get m − k items, queries are easy

If player 2 gets m − k items, the k-demand oracle can give us
a set S of size k which is the complement of the best m − k
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