The complexity of SPP formula minimization

Dave Buchfuhrer

December 16, 2008

Outline

.⊒ . ►

SPP Formulae

An SPP formula consists of 3 levels, the top of which is and OR gate, followed by AND gates then XOR (parity) gates

/⊒ > < ∃ >

Pseudoproducts

- ● ● ●

Pseudoproducts

- **→** → **→**

Pseudoproducts

- **→** → **→**

SPP Minimization

Problem (SPP Minimization)

Given an SPP S and an integer k, does there exist an SPP S' of size at most k such that $S \equiv S'$?

∃ >

SPP Minimization

Problem (SPP Minimization)

Given an SPP S and an integer k, does there exist an SPP S' of size at most k such that $S \equiv S'$?

We show that this is complete for Σ_2^P under Turing reductions

Background Information

- DNF Minimization is Σ_2^P -complete (Umans, '98)
- Constant depth/unlimited depth (∨, ∧, ¬) formula minimization is Σ^P₂-complete (Buchfuhrer, Umans, '08)
- SPP Minimization is clearly coNP-hard, but no matching upper-bound

Outline

2 Basic Results

3 Main Resul

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_i Variables Split the Formula
- Finishing Up

Open Problems

-

Problem (SPP Equivalence)

Given two SPP formulae S, T, do both S and T compute the same function?

(人間) ト く ヨ ト く ヨ ト

Problem (SPP Equivalence)

Given two SPP formulae S, T, do both S and T compute the same function?

coNP-complete because it contains DNF Equivalence as a special case

Irredundancy

Problem (SPP Irredundancy)

Given an SPP S and and an integer k, does there exist an SPP S' equivalent to S which is composed of exactly k pseudoproducts from S?

- **→** → **→**

Irredundancy

Problem (SPP Irredundancy)

Given an SPP S and and an integer k, does there exist an SPP S' equivalent to S which is composed of exactly k pseudoproducts from S?

 Σ_2^P -hard to approximate within n^{ϵ} because it contains DNF Irredundancy as a special case (shown hard by Umans, '99)

Prime Pseudoproducts

Definition (Prime Pseudoproduct)

A prime pseudoproduct of an SPP S is a pseudoproduct P which implies S, but does not imply any other pseudoproduct which implies S.

- A - E - M

Prime Pseudoproducts

Definition (Prime Pseudoproduct)

A prime pseudoproduct of an SPP S is a pseudoproduct P which implies S, but does not imply any other pseudoproduct which implies S.

Problem

SPP Prime Pseudoproduct Given an SPP S and a pseudoproduct P, is P a prime pseudoproduct of S?

Prime Pseudoproducts

Definition (Prime Pseudoproduct)

A prime pseudoproduct of an SPP S is a pseudoproduct P which implies S, but does not imply any other pseudoproduct which implies S.

Problem

SPP Prime Pseudoproduct Given an SPP S and a pseudoproduct P, is P a prime pseudoproduct of S?

DP-Hard by same reduction showing DNF version is DP-Hard in (GHM, 08)

- **→** → **→**

Modified Succinct Set Cover Weighting Description of Reduction z_i Variables Split the Formula Finishing Up

Outline

2 Basic Results

Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_i Variables Split the Formula
- Finishing Up

4 Open Problems

< ∃ >

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Outline

Open Problems

.⊒ . ►

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Modified Succinct Set Cover (MSSC)

Given a DNF formula D on variables

$$v_1,\ldots,v_m,x_1,\ldots,x_n$$

and an integer k, is there a subset $I \subseteq \{1, 2, ..., n\}$ with $|I| \le k$ and for which

$$D \vee \bigvee_{i \in I} \neg x_i \equiv \left(\bigvee_{i=1}^m \neg v_i \vee \bigvee_{i=1}^n \neg x_i\right)?$$

(人間) ト く ヨ ト く ヨ ト

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Outline

2 Basic Results

Main Result

Modified Succinct Set Cover

Weighting

- Description of Reduction
- z_i Variables Split the Formula
- Finishing Up

Open Problems

★ ∃ → < ∃</p>

P.

Weighting

Under the usual size function, the formula

Weighting

has size 2.

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Weighting

Under the usual size function, the formula

has size 2. If we give weights w(x) = 2, w(y) = 3, it has size 5.

▲ □ ▶ ▲ □ ▶ ▲

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Weighting by Substitution

What if we replace x by the XOR of w(x) new variables below?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Weighting by Substitution

What if we replace x by the XOR of w(x) new variables below?

▲ □ ▶ ▲ □ ▶ ▲

Modified Succinct Set Cover Weighting Description of Reduction z_i Variables Split the Formula Finishing Up

Weighting by Substitution

What if we replace x by the XOR of w(x) new variables below?

It is not difficult to see that this substitution preserves minimum formula size

/⊒ > < ∃ >

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Outline

2 Basic Results

Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_i Variables Split the Formula
- Finishing Up

4 Open Problems

< ∃ >

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

High-Level Description of the Reduction

• We start with an MSSC instance $\langle D, x_1, \dots, x_n, k \rangle$ of MSSC

- 4 同 6 4 日 6 4 日 6

Modified Succinct Set Cover Weighting Description of Reduction z_i Variables Split the Formula Finishing Up

High-Level Description of the Reduction

- We start with an MSSC instance $\langle D, x_1, \dots, x_n, k \rangle$ of MSSC
- We create new variables z_1, \ldots, z_ℓ for large (but poly) ℓ

| 4 同 1 4 三 1 4 三 1

Modified Succinct Set Cover Weighting Description of Reduction z_i Variables Split the Formula Finishing Up

High-Level Description of the Reduction

- We start with an MSSC instance $\langle D, x_1, \dots, x_n, k \rangle$ of MSSC
- We create new variables z_1,\ldots,z_ℓ for large (but poly) ℓ
- Weight the x_i variables by $k\ell$ and the v_i variables over k times higher than this

▲ □ ▶ ▲ □ ▶ ▲

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

High-Level Description of the Reduction

- We start with an MSSC instance $\langle D, x_1, \dots, x_n, k \rangle$ of MSSC
- We create new variables z_1, \ldots, z_ℓ for large (but poly) ℓ
- Weight the x_i variables by $k\ell$ and the v_i variables over k times higher than this
- Check the minimum size for $D \lor (Z \land \neg x_1) \lor \cdots \lor (Z \land \neg x_n)$ where $Z = z_1 \land \cdots \land z_\ell$

(人間) ト く ヨ ト く ヨ ト

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

High-Level Description of the Reduction

- We start with an MSSC instance $\langle D, x_1, \dots, x_n, k \rangle$ of MSSC
- We create new variables z_1, \ldots, z_ℓ for large (but poly) ℓ
- Weight the x_i variables by kl and the v_i variables over k times higher than this
- Check the minimum size for $D \lor (Z \land \neg x_1) \lor \cdots \lor (Z \land \neg x_n)$ where $Z = z_1 \land \cdots \land z_\ell$
- The minimum equivalent formula should look like

$$D \lor \bigvee_{i \in I} (z_1 \land \cdots \land z_\ell \land \neg x_i)$$

| 4 同 1 4 三 1 4 三 1

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Outline

2 Basic Results

Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- *z_i* Variables Split the Formula
- Finishing Up

Open Problems

< ∃ >

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_i$ must contain at least α XOR gates.

< 1 →

- ∢ ≣ ▶

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_i$ must contain at least α XOR gates.

Proof (sketch)

With each variable z_i associate the vector ẑ_i ∈ Z^β₂ which contains a 1 in position j iff z_i is in the jth XOR gate

< 17 ▶

- A 3 N

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_i$ must contain at least α XOR gates.

Proof (sketch)

- With each variable z_i associate the vector ẑ_i ∈ Z^β₂ which contains a 1 in position j iff z_i is in the jth XOR gate
- Also create such a vector \hat{c} for the constants

< 17 ▶

- A 🗄 🕨

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_i$ must contain at least α XOR gates.

Proof (sketch)

- With each variable z_i associate the vector ẑ_i ∈ Z^β₂ which contains a 1 in position j iff z_i is in the jth XOR gate
- Also create such a vector \hat{c} for the constants
- A pseudoproduct accepts when $\hat{c} + \sum z_i \hat{z}_i = \vec{1}$

< ロト < 同ト < 三ト <

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_i$ must contain at least α XOR gates.

Proof (sketch)

- With each variable z_i associate the vector ẑ_i ∈ Z^β₂ which contains a 1 in position j iff z_i is in the jth XOR gate
- Also create such a vector \hat{c} for the constants
- A pseudoproduct accepts when $\hat{c} + \sum z_i \hat{z}_i = \vec{1}$
- Since Λ^α_{i=1} z_i accepts exactly one assignment, the ẑ_i are linearly independent

• □ ▶ • □ ▶ • □ ▶ • □

3.5

Modified Succinct Set Cover Weighting Description of Reduction z_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

Formula to Minimize

 $D \vee \bigvee_i (z_1 \wedge \cdots \wedge z_\ell \wedge \neg x_i)$

Consider a pseudoproduct P that accepts some assignment σ not accepted by D.

- Suppose that z_{i^*} occurs in an XOR gate shared only by other z_i variables.
- By appropriately restricting the other z_i , P implies $z_{i^*} = \text{true}$
- Can we find a single index *i** that works for all *P*?

- 4 同 6 4 日 6 4 日 6

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

• Let *H_P* be the set of *z_i* variables in *P* which only appear in XORs containing non-*z_i* variables

→ □ → → □ →

< 1 →

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

- Let *H_P* be the set of *z_i* variables in *P* which only appear in XORs containing non-*z_i* variables
- If we restrict to σ on every variable outside of H_P , P becomes $\bigwedge_{z_i \in H_P} z_i$

★ ∃ →

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

- Let *H_P* be the set of *z_i* variables in *P* which only appear in XORs containing non-*z_i* variables
- If we restrict to σ on every variable outside of H_P , P becomes $\bigwedge_{z_i \in H_P} z_i$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_i$ must contain at least α XOR gates.

• So by the above lemma, there are at least *H_P* non-*z_i* variables in *P*

- ∢ ≣ ▶

Modified Succinct Set Cover Weighting Description of Reduction *z*_i Variables Split the Formula Finishing Up

Why the z_i Separate the D and the $\neg x_i$

- Let *H_P* be the set of *z_i* variables in *P* which only appear in XORs containing non-*z_i* variables
- If we restrict to σ on every variable outside of H_P , P becomes $\bigwedge_{z_i \in H_P} z_i$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_i$ must contain at least α XOR gates.

- So by the above lemma, there are at least *H_P* non-*z_i* variables in *P*
- Thus, if no index i^* works for all variables, the size is at least $k\ell^2$

Modified Succinct Set Cover Weighting Description of Reduction z; Variables Split the Formula Finishing Up

Outline

2 Basic Results

Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_i Variables Split the Formula
- Finishing Up

Open Problems

< ∃ >

Finishing Up

Now, we have an SPP formula of the form

$$D \lor \bigvee_i (z_1 \land \cdots \land z_\ell \land X_i)$$

for some set of pseudoproducts $\{X_i\}$, where

$$D \lor \bigvee_i X_i \equiv \bigvee_i \neg v_i \lor \bigvee_i \neg x_i$$

- 4 同 6 4 日 6 4 日 6

Finishing Up

We now take the simple lemma

Lemma

The smallest SPP formula accepting every assignment in a set S but not the all true assignment is of the form $\bigvee_i \neg y_i$

and apply it to

$$D \lor \bigvee_i X_i \equiv \bigvee_i \neg v_i \lor \bigvee_i \neg x_i$$

to see that $\bigvee_i X_i$ is at least as large as $\bigvee_{i \in I} \neg x_i$ for the smallest possible *I*

- 4 同 6 4 日 6 4 日 6

Problem Definition Basic Results Main Result Open Problems 7 Variables Split the Formula Finishing Up

Done

Recall that the problem we reduced from asks whether there is a subset $I \subseteq \{1, 2, ..., n\}$ with $|I| \le k$ and for which

$$D \vee \bigvee_{i \in I} \neg x_i \equiv \left(\bigvee_{i=1}^m \neg v_i \vee \bigvee_{i=1}^n \neg x_i\right)?$$

Done

Recall that the problem we reduced from asks whether there is a subset $I \subseteq \{1, 2, ..., n\}$ with $|I| \le k$ and for which

$$D \lor \bigvee_{i \in I} \neg x_i \equiv \left(\bigvee_{i=1}^m \neg v_i \lor \bigvee_{i=1}^n \neg x_i\right)?$$

So we want to know the total size of the X_i in

$$D \lor \bigvee_i (z_1 \land \cdots \land z_\ell \land X_i)$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline

2 Basic Results

3 Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_i Variables Split the Formula
- Finishing Up

Open Problems

-

Open Problems

- Can the result be shown under many-one reductions?
- Hardness of approximation
- Limited fanout XOR gates

< ∃ →

Open Problems

- Can the result be shown under many-one reductions?
- Hardness of approximation
- Limited fanout XOR gates

For a full version of this paper, visit http://www.cs.caltech.edu/~dave/papers/