The complexity of SPP formula minimization

Dave Buchfuhrer

December 16, 2008

Outline

(1) Problem Definition
(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up

4 Open Problems

SPP Formulae

An SPP formula consists of 3 levels, the top of which is and OR gate, followed by AND gates then XOR (parity) gates

Pseudoproducts

The following SPP formula consists of 2 pseudoproducts

Pseudoproducts

The following SPP formula consists of 2 pseudoproducts

Pseudoproducts

The following SPP formula consists of 2 pseudoproducts

SPP Minimization

Problem (SPP Minimization)

Given an SPP S and an integer k, does there exist an SPP S^{\prime} of size at most k such that $S \equiv S^{\prime}$?

SPP Minimization

Problem (SPP Minimization)

Given an SPP S and an integer k, does there exist an SPP S^{\prime} of size at most k such that $S \equiv S^{\prime}$?

We show that this is complete for Σ_{2}^{P} under Turing reductions

Background Information

- DNF Minimization is \sum_{2}^{P}-complete (Umans, '98)
- Constant depth/unlimited depth (\vee, \wedge, \neg) formula minimization is \sum_{2}^{P}-complete (Buchfuhrer, Umans, '08)
- SPP Minimization is clearly coNP-hard, but no matching upper-bound

Outline

(1) Problem Definition
(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up
(4) Open Problems

Equivalence

Problem (SPP Equivalence)

Given two SPP formulae S, T, do both S and T compute the same function?

Equivalence

Problem (SPP Equivalence)

Given two SPP formulae S, T, do both S and T compute the same function?
coNP-complete because it contains DNF Equivalence as a special case

Irredundancy

Problem (SPP Irredundancy)

Given an SPP S and and an integer k, does there exist an SPP S^{\prime} equivalent to S which is composed of exactly k pseudoproducts from S ?

Irredundancy

Problem (SPP Irredundancy)

Given an SPP S and and an integer k, does there exist an SPP S^{\prime} equivalent to S which is composed of exactly k pseudoproducts from S ?
Σ_{2}^{P}-hard to approximate within n^{ϵ} because it contains DNF Irredundancy as a special case (shown hard by Umans, '99)

Prime Pseudoproducts

Definition (Prime Pseudoproduct)

A prime pseudoproduct of an SPP S is a pseudoproduct P which implies S, but does not imply any other pseudoproduct which implies S.

Prime Pseudoproducts

Definition (Prime Pseudoproduct)

A prime pseudoproduct of an SPP S is a pseudoproduct P which implies S, but does not imply any other pseudoproduct which implies S.

Problem

SPP Prime Pseudoproduct Given an SPP S and a pseudoproduct P, is P a prime pseudoproduct of S ?

Prime Pseudoproducts

Definition (Prime Pseudoproduct)

A prime pseudoproduct of an SPP S is a pseudoproduct P which implies S, but does not imply any other pseudoproduct which implies S.

Problem

SPP Prime Pseudoproduct Given an SPP S and a pseudoproduct P, is P a prime pseudoproduct of S ?

DP-Hard by same reduction showing DNF version is DP-Hard in (GHM, 08)

Modified Succinct Set Cover
Weighting
Description of Reduction
z_{i} Variables Split the Formula
Finishing Up

Outline

(1) Problem Definition

(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up
(9) Open Problems

Modified Succinct Set Cover
Weighting
Description of Reduction
z_{i} Variables Split the Formula
Finishing Up

Outline

(1) Problem Definition
(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up

4 Open Problems

Modified Succinct Set Cover
Weighting
Description of Reduction
z_{i}. Variables Split the Formula Finishing Up

Modified Succinct Set Cover (MSSC)

Given a DNF formula D on variables

$$
v_{1}, \ldots, v_{m}, x_{1}, \ldots, x_{n}
$$

and an integer k, is there a subset $I \subseteq\{1,2, \ldots, n\}$ with $|I| \leq k$ and for which

$$
D \vee \bigvee_{i \in I} \neg x_{i} \equiv\left(\bigvee_{i=1}^{m} \neg v_{i} \vee \bigvee_{i=1}^{n} \neg x_{i}\right) ?
$$

Outline

(1) Problem Definition

(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up
(4) Open Problems

Weighting

Under the usual size function, the formula

has size 2.

Weighting

Under the usual size function, the formula

has size 2. If we give weights $w(x)=2, w(y)=3$, it has size 5 .

Weighting by Substitution

What if we replace x by the XOR of $w(x)$ new variables below?

Weighting by Substitution

What if we replace x by the XOR of $w(x)$ new variables below?

Weighting by Substitution

What if we replace x by the XOR of $w(x)$ new variables below?

It is not difficult to see that this substitution preserves minimum formula size

Outline

(1) Problem Definition
(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up
(-) Open Problems

High-Level Description of the Reduction

- We start with an MSSC instance $\left\langle D, x_{1}, \ldots, x_{n}, k\right\rangle$ of MSSC

High-Level Description of the Reduction

- We start with an MSSC instance $\left\langle D, x_{1}, \ldots, x_{n}, k\right\rangle$ of MSSC
- We create new variables z_{1}, \ldots, z_{ℓ} for large (but poly) ℓ

High-Level Description of the Reduction

- We start with an MSSC instance $\left\langle D, x_{1}, \ldots, x_{n}, k\right\rangle$ of MSSC
- We create new variables z_{1}, \ldots, z_{ℓ} for large (but poly) ℓ
- Weight the x_{i} variables by $k \ell$ and the v_{i} variables over k times higher than this

High-Level Description of the Reduction

- We start with an MSSC instance $\left\langle D, x_{1}, \ldots, x_{n}, k\right\rangle$ of MSSC
- We create new variables z_{1}, \ldots, z_{ℓ} for large (but poly) ℓ
- Weight the x_{i} variables by $k \ell$ and the v_{i} variables over k times higher than this
- Check the minimum size for $D \vee\left(Z \wedge \neg x_{1}\right) \vee \cdots \vee\left(Z \wedge \neg x_{n}\right)$ where $Z=z_{1} \wedge \cdots \wedge z_{\ell}$

High-Level Description of the Reduction

- We start with an MSSC instance $\left\langle D, x_{1}, \ldots, x_{n}, k\right\rangle$ of MSSC
- We create new variables z_{1}, \ldots, z_{ℓ} for large (but poly) ℓ
- Weight the x_{i} variables by $k \ell$ and the v_{i} variables over k times higher than this
- Check the minimum size for $D \vee\left(Z \wedge \neg x_{1}\right) \vee \cdots \vee\left(Z \wedge \neg x_{n}\right)$ where $Z=z_{1} \wedge \cdots \wedge z_{\ell}$
- The minimum equivalent formula should look like

$$
D \vee \bigvee_{i \in I}\left(z_{1} \wedge \cdots \wedge z_{\ell} \wedge \neg x_{i}\right)
$$

Outline

(1) Problem Definition
(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up

4 Open Problems

Modified Succinct Set Cover
Weighting
Description of Reduction
z_{i} Variables Split the Formula Finishing Up

Why the z_{i} Separate the D and the $\neg x_{i}$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_{i}$ must contain at least α XOR gates.

Why the z_{i} Separate the D and the $\neg x_{i}$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_{i}$ must contain at least α XOR gates.

Proof (sketch)

- With each variable z_{i} associate the vector $\hat{z}_{i} \in \mathbb{Z}_{2}^{\beta}$ which contains a 1 in position j iff z_{i} is in the j th XOR gate

Why the z_{i} Separate the D and the $\neg x_{i}$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_{i}$ must contain at least α XOR gates.

Proof (sketch)

- With each variable z_{i} associate the vector $\hat{z}_{i} \in \mathbb{Z}_{2}^{\beta}$ which contains a 1 in position j iff z_{i} is in the j th XOR gate
- Also create such a vector \hat{c} for the constants

Why the z_{i} Separate the D and the $\neg x_{i}$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_{i}$ must contain at least α XOR gates.

Proof (sketch)

- With each variable z_{i} associate the vector $\hat{z}_{i} \in \mathbb{Z}_{2}^{\beta}$ which contains a 1 in position j iff z_{i} is in the j th XOR gate
- Also create such a vector \hat{c} for the constants
- A pseudoproduct accepts when $\hat{c}+\sum z_{i} \hat{z}_{i}=\overrightarrow{1}$

Why the z_{i} Separate the D and the $\neg x_{i}$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_{i}$ must contain at least α XOR gates.

Proof (sketch)

- With each variable z_{i} associate the vector $\hat{z}_{i} \in \mathbb{Z}_{2}^{\beta}$ which contains a 1 in position j iff z_{i} is in the j th XOR gate
- Also create such a vector \hat{c} for the constants
- A pseudoproduct accepts when $\hat{c}+\sum z_{i} \hat{z}_{i}=\overrightarrow{1}$
- Since $\bigwedge_{i=1}^{\alpha} z_{i}$ accepts exactly one assignment, the \hat{z}_{i} are linearly independent

Why the z_{i} Separate the D and the $\neg x_{i}$

Formula to Minimize

$D \vee \bigvee_{i}\left(z_{1} \wedge \cdots \wedge z_{\ell} \wedge \neg x_{i}\right)$
Consider a pseudoproduct P that accepts some assignment σ not accepted by D.

- Suppose that $z_{i^{*}}$ occurs in an XOR gate shared only by other z_{i} variables.
- By appropriately restricting the other z_{i}, P implies $z_{i^{*}}=$ true
- Can we find a single index i^{*} that works for all P ?

Why the z_{i} Separate the D and the $\neg x_{i}$

- Let H_{P} be the set of z_{i} variables in P which only appear in XORs containing non- z_{i} variables

Why the z_{i} Separate the D and the $\neg x_{i}$

- Let H_{P} be the set of z_{i} variables in P which only appear in XORs containing non- z_{i} variables
- If we restrict to σ on every variable outside of H_{P}, P becomes $\bigwedge_{z_{i} \in H_{P}} z_{i}$

Why the z_{i} Separate the D and the $\neg x_{i}$

- Let H_{P} be the set of z_{i} variables in P which only appear in XORs containing non- z_{i} variables
- If we restrict to σ on every variable outside of H_{P}, P becomes $\bigwedge_{z_{i} \in H_{P}} z_{i}$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_{i}$ must contain at least α XOR gates.

- So by the above lemma, there are at least H_{P} non- z_{i} variables in P

Why the z_{i} Separate the D and the $\neg x_{i}$

- Let H_{P} be the set of z_{i} variables in P which only appear in XORs containing non- z_{i} variables
- If we restrict to σ on every variable outside of H_{P}, P becomes $\bigwedge_{z_{i} \in H_{P}} z_{i}$

Lemma

A pseudoproduct which computes $\bigwedge_{i=1}^{\alpha} z_{i}$ must contain at least α XOR gates.

- So by the above lemma, there are at least H_{P} non- z_{i} variables in P
- Thus, if no index i^{*} works for all variables, the size is at least $k \ell^{2}$

Outline

(1) Problem Definition

(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up
(4) Open Problems

Finishing Up

Now, we have an SPP formula of the form

$$
D \vee \bigvee_{i}\left(z_{1} \wedge \cdots \wedge z_{\ell} \wedge X_{i}\right)
$$

for some set of pseudoproducts $\left\{X_{i}\right\}$, where

$$
D \vee \bigvee_{i} x_{i} \equiv \bigvee_{i} \neg v_{i} \vee \bigvee_{i} \neg x_{i}
$$

Finishing Up

We now take the simple lemma

Lemma

The smallest SPP formula accepting every assignment in a set S but not the all true assignment is of the form $\bigvee_{i} \neg y_{i}$
and apply it to

$$
D \vee \bigvee_{i} x_{i} \equiv \bigvee_{i} \neg v_{i} \vee \bigvee_{i} \neg x_{i}
$$

to see that $\bigvee_{i} X_{i}$ is at least as large as $\bigvee_{i \in I} \neg x_{i}$ for the smallest possible I

Done

Recall that the problem we reduced from asks whether there is a subset $I \subseteq\{1,2, \ldots, n\}$ with $|I| \leq k$ and for which

$$
D \vee \bigvee_{i \in I} \neg x_{i} \equiv\left(\bigvee_{i=1}^{m} \neg v_{i} \vee \bigvee_{i=1}^{n} \neg x_{i}\right) ?
$$

Done

Recall that the problem we reduced from asks whether there is a subset $I \subseteq\{1,2, \ldots, n\}$ with $|I| \leq k$ and for which

$$
D \vee \bigvee_{i \in I} \neg x_{i} \equiv\left(\bigvee_{i=1}^{m} \neg v_{i} \vee \bigvee_{i=1}^{n} \neg x_{i}\right) ?
$$

So we want to know the total size of the X_{i} in

$$
D \vee \bigvee_{i}\left(z_{1} \wedge \cdots \wedge z_{\ell} \wedge X_{i}\right)
$$

Outline

(1) Problem Definition
(2) Basic Results
(3) Main Result

- Modified Succinct Set Cover
- Weighting
- Description of Reduction
- z_{i} Variables Split the Formula
- Finishing Up

4 Open Problems

Open Problems

- Can the result be shown under many-one reductions?
- Hardness of approximation
- Limited fanout XOR gates

Open Problems

- Can the result be shown under many-one reductions?
- Hardness of approximation
- Limited fanout XOR gates

For a full version of this paper, visit
http://www.cs.caltech.edu/~dave/papers/

